RU2586856C1 - Способ раннего обнаружения пожара и устройство для его реализации - Google Patents

Способ раннего обнаружения пожара и устройство для его реализации Download PDF

Info

Publication number
RU2586856C1
RU2586856C1 RU2015101039/08A RU2015101039A RU2586856C1 RU 2586856 C1 RU2586856 C1 RU 2586856C1 RU 2015101039/08 A RU2015101039/08 A RU 2015101039/08A RU 2015101039 A RU2015101039 A RU 2015101039A RU 2586856 C1 RU2586856 C1 RU 2586856C1
Authority
RU
Russia
Prior art keywords
frequency
amplifier
output
input
signals
Prior art date
Application number
RU2015101039/08A
Other languages
English (en)
Inventor
Виктор Иванович Дикарев
Владимир Евгеньевич Прохорович
Владимир Анатольевич Быченок
Олег Валерьевич Краснов
Original Assignee
Учреждение науки "Инженерно-конструкторский центр сопровождения эксплуатации космической техники" (Учреждение науки ИКЦ СЭКТ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение науки "Инженерно-конструкторский центр сопровождения эксплуатации космической техники" (Учреждение науки ИКЦ СЭКТ) filed Critical Учреждение науки "Инженерно-конструкторский центр сопровождения эксплуатации космической техники" (Учреждение науки ИКЦ СЭКТ)
Priority to RU2015101039/08A priority Critical patent/RU2586856C1/ru
Application granted granted Critical
Publication of RU2586856C1 publication Critical patent/RU2586856C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/117Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means by using a detection device for specific gases, e.g. combustion products, produced by the fire
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/009Signalling of the alarm condition to a substation whose identity is signalled to a central station, e.g. relaying alarm signals in order to extend communication range
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/12Electric signal transmission systems in which the signal transmitted is frequency or phase of ac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/12Channels characterised by the type of signal the signals being represented by different phase modulations of a single carrier
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

Изобретение относится к области пожарной безопасности и обеспечивает обнаружение пожара на ранних стадиях тления и возгорания горючих материалов. Технический результат - повышение избирательности и помехоустойчивости приемного устройства путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Устройство содержит датчик в виде, например, газового сенсора, согласующий усилитель, аналого-цифровой преобразователь, микропроцессор, формирователь световых и звуковых сигналов, световой сигнализатор, звуковой сигнализатор, формирователь модулирующего кода, задающий генератор, фазовый манипулятор, усилитель мощности и передающую антенну, а на принимающей стороне - для приема сложных фазоманипулированных (ФМн) сигналов содержит приемную антенну, усилитель высокой частоты, гетеродин, смеситель, усилитель промежуточной частоты, усилитель суммарной частоты, амплитудный детектор, ключ, демодулятор ФМн сигналов, перемножители, узкополосный фильтр, фильтр нижних частот и блок регистрации. 2 н.п. ф-лы, 6 ил.

Description

Предлагаемые способ и устройство относятся к области пожарной безопасности и могут быть использованы для обнаружения пожара на ранних стадиях тления и возгорания горючих материалов.
Известны способы и устройства раннего обнаружения пожара (авт. свид. СССР №№1.118.551, 1.472.933, 1.741.817, 1.836.970; патенты РФ №№2.032.229, 2.081.640, 2.095.099, 2.101.058, 2.115.450, 2.184.585, 2.207.631, 2.110.094, 2.256.228, 2.256.231, 2.340.002, 2.359.722; патенты США №№5.049.861, 5.079.422, 6.307.477; патенты Великобритании №№2.088.200, 2.423.400; патенты ЕР №0.940.679; патенты WO №9.948.070; Шаровар Ф.И. Устройства и системы пожарной сигнализации. - М.: Стройиздат, 1985, с. 292-295, ГОСТ-22.331-87. Классификация пожара и др.).
Из известных способов и устройств наиболее близкими к предлагаемым являются «Способ раннего обнаружения пожара и устройство для его реализации» (патент РФ №2.340.002, G08B 17/117, 2007), которые и выбраны в качестве прототипов.
Известные способ и устройство обеспечивают своевременную передачу сигналов тревоги с объектов пожарной безопасности в пожарную службу и/или на диспетчерский пункт наблюдения путем использования радиоканала и сложных сигналов с фазовой манипуляцией (ФМн).
При этом устройство для приема сложных ФМн сигналов построено по супергетеродинной схеме, в которой одно и то же значение промежуточной частоты ωпр может быть получено в результате приема сигналов на двух частотах ωс и ωз, т.е.
Figure 00000001
Следовательно, если частоту настройки ωс принять за основной канал приема, то наряду с ним будет иметь место зеркальный канал приема, частота ωз которого отличается от частоты ωс на 2ωпр и расположена симметрично (зеркально) относительно частоты ωг гетеродина (фиг. 6). Преобразование по зеркальному каналу приема происходит с тем же коэффициентом преобразования Kпр, что и по основному каналу. Поэтому он наиболее существенно влияет на изобретательность и помехоустойчивость устройства приема сигналов.
Кроме зеркального существуют и другие дополнительные (комбинационные) каналы приема. В общем виде любой комбинационный канал приема имеет место при выполнении условия:
Figure 00000002
где ωki - частота i-го комбинационного канала приема;
m, n, i - целые положительные числа.
Наиболее вредными комбинационными каналами приема являются каналы, образующиеся при взаимодействии первой гармоники частоты сигнала с гармониками частоты гетеродина малого порядка (второй, третий), так как чувствительность приемного устройства по этим каналам близка к чувствительности основного канала. Так, двум комбинационным каналам при m=1 и n=2 соответствуют частоты:
Figure 00000003
Наличие ложных сигналов (помех), принимаемых по зеркальному и комбинационным каналам, приводит к снижению избирательности и помехоустойчивости приемного устройства.
Технической задачей изобретения является повышение избирательности и помехоустойчивости приемного устройства путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам.
Поставленная задача решается тем, что способ раннего обнаружения пожара, основанный, в соответствии с ближайшим аналогом, на том, что измеряют текущие значения концентрации в воздухе газовых компонентов, выбранных из группы, состоящей из водорода, окиси углерода, двуокиси углерода и ароматических углеводородов, выделяющихся при тлении горючих материалов, определяют соотношение измеренных концентраций газовых компонентов, которое сравнивают с заданным его значением, при этом сигнал тревоги формируют при совпадении указанных значений соотношений концентрации газовых компонентов, формируют наряду с сигналом тревоги высокочастотное колебание и модулирующий код, отображающий идентификационный номер объекта пожарной безопасности и его координаты, манипулируют высокочастотное колебание по фазе модулирующим кодом, усиливают по мощности сформированный сложный сигнал с фазовой манипуляцией, излучают его в эфир, улавливают на диспетчерском пункте наблюдения и/или в пожарной службе, преобразуют по частоте с использованием частоты гетеродина и выделяют напряжение промежуточной частоты, а затем выделяют и регистрируют низкочастотное напряжение, пропорциональное модулирующему коду, отличается от ближайшего аналога тем, что выделяют напряжение суммарной частоты, детектируют его по амплитуде, используют продетектированное напряжение для разрешения дальнейшей обработки напряжения промежуточной частоты, в соответствии с которой перемножают принимаемый сложный сигнал с фазовой манипуляцией с низкочастотным напряжением, пропорциональным модулирующему коду, выделяют гармоническое колебание на промежуточной частоте ωпр и перемножают его с принимаемым сложным сигналом с фазовой манипуляцией на промежуточной частоте.
Поставленная задача решается тем, что устройство для раннего обнаружения пожара, содержащее, в соответствии с ближайшим аналогом, n датчиков концентрации в воздухе газовых компонентов, выделяющихся при тлении горючих материалов, при этом каждый датчик посредством последовательно соединенных согласующего усилителя и аналого-цифрового преобразователя связан с микропроцессором, подключенным к формирователю сигала тревоги и предназначенным для сопоставления текущих значений измеренных датчиками концентраций газовых компонентов с одновременным формированием соотношения текущих значений концентрации и сравнения сформированного соотношения с заданным его значением, причем к второму выходу микропроцессора последовательно подключены задающий генератор, фазовый манипулятор, второй вход которого через формирователь модулирующего кода соединен со вторым выходом микропроцессора, усилитель мощности и передающая антенна, а на диспетчерском пункте наблюдения и/или в пожарной службе блок регистрации и последовательно включенные приемную антенну, усилитель высокой частоты, смеситель, второй вход которого соединен с выходом гетеродина, и усилитель промежуточной частоты, отличается от ближайшего аналога тем, что оно снабжено на диспетчерском пункте наблюдения и/или в пожарной службе усилителем суммарной частоты, амплитудным детектором, ключом, двумя перемножителями, узкополосным фильтром и фильтром нижних частот, причем к выходу смесителя последовательно подключены усилитель суммарной частоты, амплитудный детектор, ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, первый перемножитель, второй вход которого соединен с выходом фильтра нижних частот, узкополосный фильтр, второй перемножитель, второй вход которого соединен с выходом ключа, и фильтр нижних частот, выход которого соединен с входом блока регистрации.
Временные зависимости концентраций основных газовых компонентов, выделяющихся при тлении хлопка, изображены на фиг. 1. Временные зависимости концентраций основных газовых компонентов, выделяющихся при тлении древесины, изображены на фиг. 2. Структурная схема устройства для раннего обнаружения пожара представлена на фиг. 3. Структурная схема устройства для приема сложных сигналов с фазовой манипуляцией, содержащих сведения об объектах, где возникает пожар, представлена на фиг. 4. Временные диаграммы, поясняющие принцип работы устройств, показаны на фиг. 5. Частотная диаграмма, иллюстрирующая принцип образования дополнительных каналов, изображена на фиг. 6.
Устройство для раннего обнаружения пожара содержит n каналов, каждый из которых предназначен для измерения концентрации одного газового компонента и содержит датчик в виде, например, газового сенсора 1.i (i=1, 2, …, n), к которому подключены последовательно соединенные согласующий усилитель 2.i и аналого-цифровой преобразователь 3.i. Выход каждого аналого-цифрового преобразователя 3.i подсоединен к соответствующему входу микропроцессора 4, подключенного к формирователю 5 световых и звуковых сигналов тревоги, снабженного световым 6 и звуковым 7 сигнализаторами, при этом выход 8 формирователя 5 соединен с центральным концентратором пожарной охраны (не показан). Количество каналов зависит от количества газовых компонентов, концентрации которых измеряют одновременно на начальной стадии возгорания. Ко второму выходу микропроцессора 4 последовательно подключены формирователь 9 модулирующего кода, фазовый манипулятор 11, второй вход которого через задающий генератор 10 соединен с выходом микропроцессора 4, усилитель 12 мощности и передающая антенна 13.
Устройство для приема сложных сигналов с фазовой манипуляцией (ФМн) содержит последовательно включенные приемную антенну 14, усилитель 15 высокой частоты, смеситель 17, второй вход которого соединен с выходом гетеродина 16, усилитель 19 суммарной частоты, амплитудный детектор 20, ключ 21, второй вход которого через усилитель 18 промежуточной частоты соединен с выходом смесителя 17, первый перемножитель 23, второй вход которого соединен с выходом фильтра 26 нижних частот, узкополосный фильтр 25, второй перемножитель 24, второй вход которого соединен с выходом ключа 21, фильтр 26 нижних частот и блок 27 регистрации.
Перемножители 23 и 24, узкополосный фильтр 25 и фильтр 26 нижних частот образуют универсальный демодулятор 22 ФМн сигналов.
Устройство для приема сложных ФМн-сигналов устанавливается на диспетчерском пункте наблюдения и/или в пожарной службе.
Устройство для раннего обнаружения пожара может быть реализовано на известных элементах отечественного и зарубежного производства, таких как полупроводниковые сенсоры типа ПГС-1 или сенсоры Model 911 фирмы «Sieger» (Германия), MICS 1110 фирмы «Motorola» (США), микропроцессоры типа Р1С12С509-А фирмы «Motorola», стандартные АЦП типа АД9202 фирмы «Analog Deviees» (каталог 1999 г.) и индикаторы разных марок.
Предполагаемый способ реализуется следующим образом.
Установлено, что для начальных стадий тления и возгорания большинства известных горючих материалов характерно выделение газовых компонентов, основными из которых являются водород (Н2), окись углерода (СО), двуокись углерода (СО2) и ароматические углеводороды (CxHy), причем концентрации этих газов изменяются во времени.
Экспериментально полученные временные зависимости концентраций в воздухе водорода, окиси углерода, двуокиси углерода и ароматических углеводородов в первые несколько минут после начала тления хлопка и древесины показаны соответственно на фиг. 1 и 2, где K - текущее значение концентрации газового компонента в воздухе в %.
Анализ графиков показывает, что в течение первых минут тления идет резкое газовыделение одновременно нескольких газов, а именно водорода, ароматических углеводородов, окиси углерода и двуокиси углерода.
Значения концентраций выделяемых газов для разных горючих материалов могут быть различны, но выделение окиси углерода всегда сопровождается выделением водорода, ароматических углеводородов и двуокиси углерода. При этом значения соотношений концентраций перечисленных газов лежат в определенных пределах.
Установлено, что в первые 2-3 минуты начала процесса тления основных горючих материалов соотношения концентраций в воздухе ароматических углеводородов, водорода, окиси углерода и двуокиси углерода в каждый текущий момент времени составляют:
Figure 00000004
При этом значения соотношения концентраций, например, водорода и окиси углерода лежат в пределах 1:2,4-5,6 в каждый текущий момент времени.
Указанные выше соотношения концентраций основных газовых компонентов выбирают в качестве заданных соотношений величин, с которыми сравнивают соотношение текущих значений концентраций этих компонентов, и в случае их совпадения формируют сигнал тревоги.
Каждый из полупроводниковых газовых сенсоров 1.l-1.n, чувствительный к воздействию одного из перечисленных газовых компонентов (Н2, СО, CO2, и CxHy), изменяет свою проводимость при изменении концентрации этого компонента в воздухе, в результате чего на выходе соответствующего сенсора 1.l-1.n появляется электрический сигнал, величина которого соответствует определенной концентрации этого газового компонента в воздухе. Затем этот сигнал усиливают и преобразуют с помощью соответствующего преобразователя 3.l.-3.n в цифровой сигнал.
Микропроцессор 4 непрерывно или с заданной периодичностью, например через 0,1-1 минуту, опрашивает сенсоры 1.l-1.n, сопоставляет между собой поступившие с них текущие значения сигналов (соответствующие текущим значениям концентраций газовых компонентов в воздухе) и полученные соотношения текущих значений сигналов сравнивает с заданными соотношениями значений сигналов, записанными ранее и хранящимися в его памяти. При совпадении соотношений текущих значений сигналов с заданными соотношениями значений на формирователи 5 и 9 поступают сигналы, формирующие на них сигналы тревоги: световой, звуковой, а также сигнал, подаваемый с выхода 8 на центральный концентратор пожарной охраны, и модулирующий код M(t), отображающий идентификационный номер объекта пожарной безопасности, соответственно.
Устройство вырабатывает устойчивый сигнал тревоги на второй-третьей минутах после начала искусственно вызванного тления строительного мусора, выбранного в качестве горючего материала.
Пример.
На первой минуте тления строительного мусора, состоящего из тряпок с преобладающим содержанием хлопка, соотношение было:
Figure 00000005
на третьей минуте:
Figure 00000006
Соответственно соотношение водорода и окиси углерода на первой минуте:
Figure 00000007
а на третьей минуте:
Figure 00000008
При тлении строительного мусора с преобладающим составом древесины (стружка, щепа, шпон) на первой минуте соотношение:
Figure 00000009
на третьей минуте:
Figure 00000010
Соотношение
Figure 00000011
на первой минуте и
Figure 00000012
на третьей минуте.
При совпадении соотношения текущих значений концентрации основных газовых компонентов с заданными соотношениями в микропроцессоре 4 формируется сигнал, который с его второго выхода поступает на вход задающего генератора 10 и включает его.
Задающий генератор 10 формирует высокочастотное колебание (фиг. 5, а)
Figure 00000013
где Vc, ωc, φc, Tc - амплитуда, несущая частота, начальная фаза и длительность высокочастотного колебания, которое поступает на второй вход фазового манипулятора 11, на первый вход которого подается модулирующий код M(t) с выхода формирователя 9 (фиг. 5, б), отображающий идентификационный номер объекта пожарной безопасности.
На выходе фазового манипулятора 11 образуется сложный ФМн-сигнал (фиг. 5, в)
Figure 00000014
где φk(t)={0,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t) (фиг. 5, б), причем φk(t)=const при kτэ<t<(k+1)τэ и может изменяться скачком при t=kτэ, т.е. на границах между элементарными посылками (k=1, 2, … N);
τэ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Tc(N·tэс), который после усиления в усилителе 12 мощности поступает в антенну 13, излучается в эфир, улавливается приемной антенной 14 и через усилитель 15 высокой частоты поступает на первый вход смесителя 17, на второй вход которого подается напряжение гетеродина 16
Figure 00000015
На выходе смесителя 17 образуются напряжения комбинационных частот. Усилителями 18 и 19 выделяются напряжения промежуточной (разностной) и суммарной частот соответственно:
Figure 00000016
Figure 00000017
где
Figure 00000018
;
Figure 00000019
- промежуточная (разностная) частота (фиг. 6);
Figure 00000020
- суммарная частота;
Figure 00000021
Напряжение UΣ(t) суммарной частоты с выхода усилителя 19 поступает на вход амплитудного детектора 20, который выделяет его огибающую. Последняя поступает на управляющий вход ключа 21, открывая его. В исходном состоянии ключ 21 всегда закрыт.
Напряжение Uпр(t) (фиг. 5,г) промежуточной частоты с выхода усилителя 18 через открытый ключ 21 поступает на первые входы перемножителей 23 и 24 универсального демодулятора 22 ФМн сигналов.
На второй вход перемножителя 24 с выхода узкополосного фильтра 25 подается опорное напряжение (фиг. 5,д)
Figure 00000022
В результате перемножения указанных напряжений образуется следующее напряжение:
Figure 00000023
где
Figure 00000024
из которого фильтром 26 нижних частот выделяется низкочастотное напряжение (фиг. 5,е)
Figure 00000025
пропорциональное модулирующему коду M(t) (фиг. 5,б), которое фиксируется блоком 27 регистрации и одновременно поступает на второй вход перемножителя 23. На выходе последнего образуется следующее напряжение:
Figure 00000026
где
Figure 00000027
,
которое выделяется узкополосным фильтром 25, используется в качестве опорного напряжения и подается на второй вход перемножителя 24.
Следовательно, опорное напряжение, необходимое для синхронного детектирования принимаемого ФМн сигнала, выделяется из самого принимаемого ФМн сигнала, также как у широко известных демодуляторов ФМн сигналов (схемы А.А. Пистолькорса, В.И. Сифорова, Д.Ф. Костаса, Г.А. Травина).
Но если известным демодуляторам присуще явление «обратной работы», то предлагаемый универсальный демодулятор ФМн сигналов свободен от указанного недостатка.
Описанная выше работа приемного устройства соответствует случаю приема полезных сложных ФМн сигналов по основному каналу на частоте wc (фиг. 6).
Если ложный сигнал (помеха)
Figure 00000028
поступает на вход приемного устройства по зеркальному каналу на частоте wз, но на выходе смесителя 17 образуются следующие напряжения:
Figure 00000029
Figure 00000030
где
Figure 00000031
Figure 00000032
- промежуточная (разностная) частота:
Figure 00000033
- первая суммарная частота;
Figure 00000034
Так как частота настройки ωн усилителя 19 суммарной частоты выбирается равной суммарной частоте
Figure 00000035
то напряжение UΣ1(t) не попадает в полосу пропускания усилителя 19 суммарной частоты, ключ 21 не открывается и ложный сигнал (помеха), поступающий по зеркальному каналу на частоте ωз, подавляется.
По аналогичной причине подавляются и ложные сигналы (помехи), поступающие по первому комбинационному каналу на частоте ωk1 и по второму комбинационному каналу на частоте ωk2 (фиг. 6).
Одновременное контролирование нескольких газов повышает надежность обнаружения пожара именно на ранних стадиях тления и возгорания. При этом исключается возможность ложных срабатываний измерительного устройства при повышении концентрации одного из газов по любой из причин, не соответствующей процессу возгорания. Последнее возможно, например, в результате утечки газов из баллонов, емкостей или трубопроводов, находящихся внутри или вблизи охраняемых помещений.
Таким образом, предлагаемые способ и устройство по сравнению с прототипами обеспечивают повышение избирательности и помехоустойчивости приемного устройства. Это достигается подавлением ложных сигналов (помех), принимаемых по зеркальному и комбинационным каналам.
Предлагаемый универсальный демодулятор ФМн сигналов обеспечивает выделение опорного напряжения непосредственно из принимаемого ФМн сигнала промежуточной частоты, лишен явления «обратной работы» и отличается простотой технической реализации.

Claims (2)

1. Способ раннего обнаружения пожара, основанный на том, что измеряют текущее значение концентраций в воздухе газовых компонентов, выбранных из группы, состоящей из водорода, окиси углерода, двуокиси углерода и ароматических углеводородов, выделяющихся при тлении горючих материалов, определяют соотношение измеренных концентраций газовых компонентов, которое сравнивают с заданным его значением, при этом сигнал тревоги формируют при совпадении указанных значений соотношений концентраций газовых компонентов, формируют наряду с сигналом тревоги высокочастотное колебание и модулирующий код, отображающий идентификационный номер объекта пожарной безопасности и его координаты, манипулируют высокочастотное колебание по фазе модулирующим кодом, усиливают по мощности сформированный сложный сигнал с фазовой манипуляцией, излучают его в эфир, улавливают на диспетчерском пункте наблюдения и/или в пожарной службе, преобразуют по частоте с использованием частоты гетеродина и выделяют напряжение промежуточной частоты, а затем выделяют и регистрируют низкочастотное напряжение, пропорциональное модулирующему коду, отличающийся тем, что выделяют напряжение суммарной частоты, детектируют его по амплитуде, используют продетектированное напряжение для разрешения дальнейшей обработки напряжения промежуточной частоты, в соответствии с которой перемножают принимаемый сложный сигнал с фазовой манипуляцией с низкочастотным напряжением, пропорциональным модулирующему коду, выделяют гармоническое колебание на промежуточной частоте wпр и перемножают его с принимаемым сложным сигналом с фазовой манипуляцией на промежуточной частоте.
2. Устройство для раннего обнаружения пожара, содержащее n датчиков концентраций в воздухе газовых компонентов, выделяющихся при тлении горючих материалов, при этом каждый датчик посредством последовательно соединенных согласующего усилителя и аналого-цифрового преобразователя связан с микропроцессором, подключенным к формирователю сигнала тревоги и предназначенным для сопоставления текущих значений измеренных датчиками концентраций газовых компонентов с одновременным формированием соотношений текущих значений концентраций и сравнения сформированного соотношения с заданным его значением, причем к второму выходу микропроцессора последовательно подключены задающий генератор, фазовый манипулятор, второй вход которого через формирователь модулирующего кода соединен с вторым выходом микропроцессора, усилитель мощности и передающая антенна, а на диспетчерском пункте наблюдения и/или в пожарной службе блок регистрации и последовательно включенные приемную антенну, усилитель высокой частоты, смеситель, второй вход которого соединен с выходом гетеродина, и усилитель промежуточной частоты, отличающееся тем, что оно снабжено на диспетчерском пункте наблюдения и/или в пожарной службе усилителем суммарной частоты, амплитудным детектором, ключом, двумя перемножителями, узкополосным фильтром и фильтром нижних частот, причем к выходу смесителя последовательно подключены усилитель суммарной частоты, амплитудный детектор, ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, первый перемножитель, второй вход которого соединен с выходом фильтра нижних частот, узкополосный фильтр, второй перемножитель, второй вход которого соединен с выходом ключа, и фильтр нижних частот, выход которого соединен с входом блока регистрации.
RU2015101039/08A 2015-01-12 2015-01-12 Способ раннего обнаружения пожара и устройство для его реализации RU2586856C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015101039/08A RU2586856C1 (ru) 2015-01-12 2015-01-12 Способ раннего обнаружения пожара и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015101039/08A RU2586856C1 (ru) 2015-01-12 2015-01-12 Способ раннего обнаружения пожара и устройство для его реализации

Publications (1)

Publication Number Publication Date
RU2586856C1 true RU2586856C1 (ru) 2016-06-10

Family

ID=56115673

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015101039/08A RU2586856C1 (ru) 2015-01-12 2015-01-12 Способ раннего обнаружения пожара и устройство для его реализации

Country Status (1)

Country Link
RU (1) RU2586856C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703366C1 (ru) * 2018-06-13 2019-10-16 Федеральное государственное образовательное учреждение высшего образования "Санкт-Петербургский университет Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" Способ раннего обнаружения пожара и устройство для его реализации

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079422A (en) * 1989-09-06 1992-01-07 Gaztech Corporation Fire detection system using spatially cooperative multi-sensor input technique
EP1159606A1 (en) * 1999-03-05 2001-12-05 Marconi Applied Technologies Limited Fire detection apparatus
RU2256228C2 (ru) * 2001-02-01 2005-07-10 Олихов Игорь Михайлович Способ раннего обнаружения пожара
RU2340002C1 (ru) * 2007-08-06 2008-11-27 Военно-космическая академия им. А.Ф. Можайского Способ раннего обнаружения пожара и устройство для его реализации
RU2409865C1 (ru) * 2009-06-03 2011-01-20 Вячеслав Адамович Заренков Способ раннего обнаружения пожара и система для его реализации
RU2427922C1 (ru) * 2010-03-09 2011-08-27 Открытое акционерное общество "Авангард" Способ раннего обнаружения пожара и устройство для его реализации
RU2533299C2 (ru) * 2012-10-31 2014-11-20 Общество с ограниченной ответственностью "Ди-Эс-Эр" Способ раннего обнаружения пожара и устройство для его реализации
DE19952255B4 (de) * 1998-10-30 2015-10-29 Hochiki Corp. Feuerüberwachungssystem und Brandsensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079422A (en) * 1989-09-06 1992-01-07 Gaztech Corporation Fire detection system using spatially cooperative multi-sensor input technique
DE19952255B4 (de) * 1998-10-30 2015-10-29 Hochiki Corp. Feuerüberwachungssystem und Brandsensor
EP1159606A1 (en) * 1999-03-05 2001-12-05 Marconi Applied Technologies Limited Fire detection apparatus
RU2256228C2 (ru) * 2001-02-01 2005-07-10 Олихов Игорь Михайлович Способ раннего обнаружения пожара
RU2340002C1 (ru) * 2007-08-06 2008-11-27 Военно-космическая академия им. А.Ф. Можайского Способ раннего обнаружения пожара и устройство для его реализации
RU2409865C1 (ru) * 2009-06-03 2011-01-20 Вячеслав Адамович Заренков Способ раннего обнаружения пожара и система для его реализации
RU2427922C1 (ru) * 2010-03-09 2011-08-27 Открытое акционерное общество "Авангард" Способ раннего обнаружения пожара и устройство для его реализации
RU2533299C2 (ru) * 2012-10-31 2014-11-20 Общество с ограниченной ответственностью "Ди-Эс-Эр" Способ раннего обнаружения пожара и устройство для его реализации

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703366C1 (ru) * 2018-06-13 2019-10-16 Федеральное государственное образовательное учреждение высшего образования "Санкт-Петербургский университет Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" Способ раннего обнаружения пожара и устройство для его реализации

Similar Documents

Publication Publication Date Title
McNeill et al. Detecting gravitational wave memory without parent signals
RU2340002C1 (ru) Способ раннего обнаружения пожара и устройство для его реализации
US10027517B2 (en) Measuring device and method
JPH06324161A (ja) 物品検出方法及びシステム
RU2537804C2 (ru) Способ раннего обнаружения пожара и устройство для его реализации
RU2586856C1 (ru) Способ раннего обнаружения пожара и устройство для его реализации
RU2409865C1 (ru) Способ раннего обнаружения пожара и система для его реализации
US4368539A (en) Transmitter detector
US3939420A (en) Debugging arrangement
RU2623988C1 (ru) Способ раннего обнаружения пожара и устройство для его реализации
RU2533086C1 (ru) Способ раннего обнаружения пожара и устройство для его реализации
RU2531883C2 (ru) Способ раннего обнаружения пожара и устройство для его реализации
RU2533299C2 (ru) Способ раннего обнаружения пожара и устройство для его реализации
RU2331083C2 (ru) Двухпороговый обнаружитель сигналов панорамного приемника последовательного анализа
RU2703366C1 (ru) Способ раннего обнаружения пожара и устройство для его реализации
RU2438186C1 (ru) Система сигнализации о достижении предельно допустимой концентрации метана в атмосфере
RU2691665C1 (ru) Способ измерения электрической энергии в двухпроводных сетях с защитой от хищения и устройство для его осуществления
RU2427922C1 (ru) Способ раннего обнаружения пожара и устройство для его реализации
JPH1169583A (ja) 機器の異常診断装置
RU2015118889A (ru) Устройство для контроля концентрации опасных газов
RU2723443C1 (ru) Спутниковая система для определения местоположения судов и самолетов, потерпевших аварию
US20200182810A1 (en) Mobile detector and method for detecting potentially explosive substances, explosives and drugs by nuclear quadrupole resonance (nqr)
RU2009140808A (ru) Способ раннего обнаружения пожара и устройство для его реализации
Abernethy Signal recovery methods
JPS56168520A (en) Detecting method for damage of planetary gear

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170113