RU2586796C2 - Система моделирования в реальном времени окружения двигателя летательного аппарата - Google Patents

Система моделирования в реальном времени окружения двигателя летательного аппарата Download PDF

Info

Publication number
RU2586796C2
RU2586796C2 RU2013102873/11A RU2013102873A RU2586796C2 RU 2586796 C2 RU2586796 C2 RU 2586796C2 RU 2013102873/11 A RU2013102873/11 A RU 2013102873/11A RU 2013102873 A RU2013102873 A RU 2013102873A RU 2586796 C2 RU2586796 C2 RU 2586796C2
Authority
RU
Russia
Prior art keywords
computing device
fad1
aircraft
input
digital computing
Prior art date
Application number
RU2013102873/11A
Other languages
English (en)
Other versions
RU2013102873A (ru
Inventor
Янник ЭВРА
Жан Мишель ПИ
Паскаль РЮПЕР
Original Assignee
Турбомека
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Турбомека filed Critical Турбомека
Publication of RU2013102873A publication Critical patent/RU2013102873A/ru
Application granted granted Critical
Publication of RU2586796C2 publication Critical patent/RU2586796C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/13Plc programming
    • G05B2219/13174Pc, computer connected to plc to simulate machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/13Plc programming
    • G05B2219/13184Pc, computer connected to plc to simulate only part of machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/13Plc programming
    • G05B2219/13186Simulation, also of test inputs
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/23Pc programming
    • G05B2219/23446HIL hardware in the loop, simulates equipment to which a control module is fixed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24061Simulator, generates input signals, shows output signals of logic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24062During simulation, test inhibit output to actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Feedback Control In General (AREA)
  • Testing Of Engines (AREA)
  • Debugging And Monitoring (AREA)

Abstract

Система моделирования в реальном времени окружения двигателя летательного аппарата содержит цифровое вычислительное устройство, устройство моделирования в реальном времени части окружения двигателя и летательного аппарата. Цифровое вычислительное устройство содержит вход приема данных датчиков или летательного аппарата, выход, связанный с приводами двигателя или летательного аппарата, модуль регулирования, модуль выбора. Устройство моделирования содержит цифровые вход и выход, модуль контроля, соединенные определенным образом. Обеспечивается режим моделирования в реальном времени окружения двигателя и летательного аппарата с возможностью его отключения во время полета. 5 з.п. ф-лы, 4 ил.

Description

Уровень техники
Настоящее изобретение относится к области моделирования в реальном времени комплексной системы.
В частности, изобретение применяют в области моделирования окружения двигателя, установленного на летательном аппарате, например на вертолете или самолете.
Как правило, для воспроизведения окружения применяют моделирующее устройство.
В области авиации моделирующие устройства предназначены, в частности, для разработки или доводки новых летательных аппаратов и для тренировки экипажей.
Для моделирования в реальном времени сложных систем известен метод, называемый hardware in the loop, который состоит в подключении бортового вычислительного устройства к инструменту моделирования окружения этого вычислительного устройства, выполненному с возможностью подачи в вычислительное устройство данных, моделирующих один или несколько датчиков летательного аппарата, при этом команды, генерируемые этим вычислительным устройством, вводят на вход инструмента моделирования, который выполнен с возможностью реагирования в зависимости от этих команд и с возможностью изменения входных данных вычислительного устройства.
Внедрение этих систем моделирования требует разработки
специальных электронных плат для генерирования аналоговых сигналов, связанных с каждым из моделируемых датчиков, которые могут быть датчиками самого разного типа: в частности, температурными датчиками, датчиками давления и датчиками скорости.
Изготовление этих электронных плат является дорогим, а их обслуживание сложным, в частности, что касается устранения проблем отклонения.
Объект и сущность изобретения
Задачей изобретения является создание системы моделирования, не имеющей этих недостатков.
Точнее, объектом изобретения является система, содержащая, по меньшей мере, одно цифровое вычислительное устройство, выполненное с возможностью контроля двигателя в летательном аппарате, при этом каждое цифровое вычислительное устройство содержит:
- по меньшей мере, один вход, выполненный с возможностью приема элемента данных, характеризующего состояние датчика;
- по меньшей мере, один выход, связанный, по меньшей мере, с одним приводом; и
- модуль регулирования, выполненный с возможностью отправки, по меньшей мере, одной команды через выходную шину на вышеупомянутый привод в зависимости от данных, принятых на упомянутом, по меньшей мере, одном входе.
Эта система содержит:
- модуль выбора, установленный в упомянутом цифровом вычислительном устройстве и выполненный с возможностью переключения упомянутого входа либо на датчик, либо на шину замены в зависимости от команды оператора;
- устройство моделирования в реальном времени, по меньшей мере, части окружения двигателя и летательного аппарата, при этом устройство моделирования содержит:
- цифровой выход, выполненный с возможностью отправки, по меньшей мере, одного элемента цифровых заменяющих данных через шину замены к входу цифрового вычислительного устройства;
- цифровой вход, соединенный с упомянутым, по меньшей мере, одним выходом цифрового вычислительного устройства и выполненный с возможностью приема команды, выдаваемой цифровым вычислительным устройством, при этом устройство моделирования в реальном времени выполнено с возможностью моделирования реакции двигателя и летательного аппарата на эту команду; и
- модуль контроля, установленный в упомянутом цифровом вычислительном устройстве и выполненный с возможностью осуществления процедуры контроля с целью предотвращения переключения входа цифрового вычислительного устройства на шину замены модулем выбора, когда летательный аппарат совершает полет.
В настоящем документе цифровая шина обозначает любой тип физической связи, через которую могут проходить цифровые данные; например, в рамках изобретения можно использовать шины типа CAN, Ethernet или ARINC.
В частном варианте выполнения цифровой вход и цифровой выход устройства моделирования в реальном времени могут физически находиться на одной двунаправленной шине.
Таким образом, изобретением предлагается связать цифровое вычислительное устройство с устройством моделирования через цифровую шину, а не использовать специальные платы для моделирования различных датчиков.
Цифровые данные, выдаваемые на этой шине и моделирующие различные датчики, можно мультиплексировать.
Согласно изобретению модуль выбора и модуль контроля установлены в цифровом вычислительном устройстве: таким образом, код, применяемый при тестировании, во время фазы моделирования является строго идентичным коду, применяемому на летательном аппарате в полете, при этом отклонены только входы и выходы цифрового вычислительного устройства.
Согласно изобретению заявленная система содержит средства контроля, которые гарантируют, что во время полета летательного аппарата входы цифрового вычислительного устройства подключены к реальным датчикам. Иначе говоря, соединение входов цифрового вычислительного устройства с шиной замены невозможно.
Для этого средства контроля системы в соответствии с изобретением обеспечивают необходимую защиту, чтобы гарантировать, что во время работы летательного аппарата не может произойти случайного включения моделирования.
Благодаря изобретению в фазе моделирования оператор может выбрать для каждого из датчиков переключение входов цифрового вычислительного устройства либо к реальному датчику, либо к шине замены, чтобы заменяющие цифровые данные, генерируемые устройством моделирования в реальном времени, заменяли данные, характеризующие состояние датчиков.
Предпочтительно цифровое вычислительное устройство передает генерируемые им команды через одни и те же выходы, независимо от того, находится оно в режиме моделирования или нет.
В предпочтительном варианте выполнения изобретения заявленная система содержит средства для подключения или отключения выхода цифрового вычислительного устройства к входу модуля регулирования, при этом выход цифрового вычислительного устройства в любом случае всегда соединен с приводом.
В предпочтительном варианте выполнения изобретения модуль выбора применяют при помощи программного модуля, реализующего интерфейс между физическими входами вычислительного устройства и модулем регулирования.
Такой программный модуль известен специалисту под названием API (от английского Application Program Interface).
Этот вариант выполнения представляет особый интерес, так как он позволяет осуществлять разработку модуля регулирования и сертификацию цифрового вычислительного устройства независимо от устройства моделирования в реальном времени.
В предпочтительном варианте выполнения изобретения система содержит два двигателя, каждым из которых управляет цифровое вычислительное устройство.
Этот отличительный признак позволяет моделировать поведение двух двигателей и летательного аппарата.
Краткое описание чертежей
Другие отличительные признаки и преимущества настоящего изобретения будут более очевидны из нижеследующего описания, представленного в качестве неограничительного примера, со
ссылками на прилагаемые чертежи, на которых:
Фиг. 1 - система согласно первому варианту выполнения изобретения, при этом система содержит только один двигатель.
Фиг. 2 - схема архитектуры программного обеспечения цифрового вычислительного устройства системы, показанной на фиг. 1.
Фиг. 3 - вторая система в соответствии с изобретением, содержащая два двигателя.
Фиг. 4 - блок-схема основных этапов процедуры контроля, применяемой в системах, показанных на фиг. 1 и 3.
Подробное описание варианта выполнения
На фиг. 1 показана система SYS1 в соответствии с изобретением.
Эта система содержит цифровое вычислительное устройство FAD1, выполненное с возможностью управления двигателем МОТ1 в летательном аппарате AER, причем этот летательный аппарат и этот двигатель на фигуре не показаны.
Это вычислительное устройство FAD1 содержит множество входов ENT1i, из которых на фигуре показан только один.
Каждый из этих входов ENT1i выполнен с возможностью приема элемента цифровых данных, полученных посредством преобразования элемента аналоговых данных DONi, характеризующего состояние датчика CAP1i двигателя МОТ1 или летательного аппарата AER.
Это преобразование производит модуль XF преобразования, содержащий, в частности, аналого-цифровой преобразователь.
Цифровое вычислительное устройство FAD1 содержит также множество выходов SOR1j, из которых на фигуре показан только один, при этом каждый из выходов SOR1j связан с приводом ACTj двигателя МОТ1 или летательного аппарата AER.
Согласно изобретению система SYS1 содержит также устройство SIM моделирования в реальном времени, выполненное с возможностью моделирования, по меньшей мере, части окружения двигателя МОТ1 и летательного аппарата AER.
Это устройство SIM моделирования содержит выход SIO1, соединенный с цифровой шиной BSU1, называемой шиной замены.
Согласно изобретению система SYS1 содержит модуль MSEL1 выбора, выполненный с возможностью переключения различных входов ENT1i цифрового вычислительного устройства FAP1 либо на датчики CAPi, либо на шину BSU1 замены, соединенную с устройством SIM моделирования в реальном времени.
Переключение может происходить независимо для каждого из датчиков CAPi.
В представленном варианте выполнения цифровое вычислительное устройство FAD1 содержит контроллер CTR, выполненный с возможностью активации или деактивации связи между выходом SOR1j и входом SII1 цифрового устройства моделирования через выключатель MD1.
В представленном примере выполнения модуль выбора MSEL1 контролируют средства контроля CTR по команде оператора.
Следовательно, во время моделирования вход ENT1i может принимать:
- либо элемент данных DONi, характеризующий состояние датчика CAPi;
- либо элемент заменяющих цифровых данных DSUi, генерируемый устройством SIM моделирования в реальном времени.
Цифровое вычислительное устройство FAD1 содержит модуль MREG1 регулирования, выполненный с возможностью отправки через выход SOR1j команды COMi,j на привод ACTj в зависимости от элемента данных, принятого на выходе ENT1i, либо поступившего от датчика CAPi (после цифрового преобразования элемента аналоговых данных DONi), либо поступившего от устройства SIM моделирования (данная DSUi).
Команда COMij принимается приводом ACTj.
Она также принимается на входе SII1 устройства SIM моделирования в реальном времени, если выключатель MD1 находится в замкнутом положении.
В варианте выполнения изобретения оператор может подать команду на цифровое вычислительное устройство FAD1, чтобы оно не учитывало ни одного реального датчика CAPi. В этом случае отчеты о неисправностях, связанных с этими датчиками, маскируются.
В таком варианте выполнения цифровое вычислительное устройство FAD1 все равно стремится задействовать свои выходы, однако ни один из них не соединен с приводами ACTj: в этом случае соответствующие отчеты о неисправностях могут быть принудительно переведены на «нормально».
Значения команд передаются на вход SII1 устройства SIM моделирования в реальном времени.
В этом варианте выполнения устройство моделирования в реальном времени включает в себя компьютерную модель двигателя МОТ1, компьютерную модель летательного аппарата AER и в случае необходимости учитывает реальные бортовые радиоэлектронные средства, но не осуществляет их моделирования.
В другом варианте выполнения оператор может подать команду на цифровое вычислительное устройство FAD1, чтобы учитывать все датчики CAPi, кроме одного, в этом случае маскируется только отчет о неисправностях, связанных с этим датчиком.
В этом случае устройство моделирования в реальном времени включает в себя, по меньшей мере, моделирование этого датчика.
Цифровое вычислительное устройство успешно задействует свои выходы в направлении приводов ACTj, поскольку оператор указал, что все приводы были подсоединены: ни один отчет о неисправностях не маскируется.
В представленном варианте выполнения изобретения значения команд COMi,j, передаваемых на приводы, передаются или нет в устройство SIM моделирования в реальном времени в зависимости от положения выключателя MD1. В фазе моделирования все команды передаются в устройство SIM моделирования в реальном времени, эти команды используются или нет устройством моделирования.
На фиг. 2 схематично показаны слои программы, применяемой цифровым вычислительным устройством FAD1. Речь идет о модели, содержащей три слоя, а именно: нижний слой OS, содержащий операционную систему, управляющую, кроме всего прочего, различными датчиками CAPi и приводами ACTj; верхний слой MREG1, применяющий модуль регулирования и выполненный с возможностью генерирования команд COMi,j на приводы ACTj, в зависимости от данных, принятых на входах ENT1i, и промежуточный интерфейсный слой API между модулем регулирования MRG1 и операционной системой OS, в которой установлен модуль выбора MSEL1.
На фиг. 3 показана система SYS2 в соответствии с изобретением, которая содержит два не показанных двигателя МОТ1, МОТ2, каждый из которых контролируется цифровым вычислительным устройством FAD1, FAD2.
Для второго вычислительного устройства FAD2 использованы аналогичные обозначения.
Эти цифровые вычислительные устройства FAD1, FAD2 связаны друг с другом через межкомпьютерную связь LIF.
В представленном варианте выполнения устройство SIM моделирования в реальном времени включает в себя компьютерные модели двух двигателей МОТ1, МОТ2 и компьютерную модель летательного аппарата AER.
Показанный на фиг. 3 датчик CAPi может быть соединен или нет с каждым из двух цифровых вычислительных устройств FAD1, FAD2, и каждый выход SOR1j, SOR2j может быть соединен или нет с входом SII1, SII2 устройства SIM моделирования в реальном времени.
Разумеется, некоторые датчики могут быть соединены только с одним из двух цифровых вычислительных устройств FAD1, FAD1.
Согласно изобретению цифровые вычислительные устройства FAD1, FAD2 являются абсолютно идентичными во время фазы моделирования и доводки модулей регулирования MREG1, MREG2 и во время эксплуатации летательного аппарата, то есть во время полета.
Разумеется, главным является то, что по соображениям безопасности во время полета летательного аппарата функция моделирования не может быть активирована.
Следовательно, средства контроля CTR осуществляют в каждом из цифровых вычислительных устройств FAD1, FAD2 процедуру контроля, чтобы не допустить переключения входов ENT1i, ENT2i на шины BSU1, BSU2 замены, когда летательный аппарат AER находится в полете.
На фиг. 4 представлен пример процедуры контроля, которую можно применять в системе в соответствии с изобретением.
Эта процедура контроля после подключения напряжения к вычислительному устройству FAD1, FAD2 (этап Е10) содержит этап Е20, в ходе которого проверяют, что вход ENT1i, ENT2i этих вычислительных устройств не связан с шинами BSU1, BSU2 замены устройства SIM моделирования в реальном времени, иначе говоря, что эти входы действительно соединены с датчиками CAPi двигателей или летательного аппарата.
Если это так, то после этапа Е20 следует этап Е30, в ходе которого каждое из вычислительных устройств FAD1, FAD2 проверяет, что определенный адрес ADR памяти МЕМ содержит определенное значение COD.
Если это так, за этим этапом Е30 следует этап Е40, в ходе которого каждое из вычислительных устройств FAD1, FAD2 ожидает заранее определенную последовательность полукадров в течение заранее определенного времени.
Если это происходит, то есть если эти три этапа проверки Е20, Е30, Е40 проходят успешно, можно предусмотреть моделирование, то есть оператор может действительно подключить независимо каждый из входов ENT1i, ENT2i либо к реальному датчику CAPi, либо к устройству SIM1 моделирования в реальном времени через шины BSU1, BSU2 замены.
В представленном варианте выполнения, если, по меньшей мере, один из этапов проверки Е20, Е30, Е40 прошел неудачно, код COD по адресу ADR памяти МЕМ стирается.
Эту процедуру осуществляют при подаче напряжения на вычислительное устройство. Она не допускает никакой несвоевременной активации режима моделирования.

Claims (6)

1. Система (SYS1, SYS2) моделирования в реальном времени окружения двигателя летательного аппарата, содержащая, по меньшей мере, одно цифровое вычислительное устройство (FAD1), выполненное с возможностью контроля двигателя (MOT1) в летательном аппарате (AER), при этом каждое цифровое вычислительное устройство (FAD1) содержит:
- по меньшей мере, один вход (ENT1i), выполненный с возможностью приема элемента данных (DONi), характеризующего состояние датчика (CAPi) двигателя или летательного аппарата;
- по меньшей мере, один выход (SOR1j), связанный, по меньшей мере, с одним приводом (ACTj) двигателя или летательного аппарата; и
- модуль (MREG1) регулирования, выполненный с возможностью отправки, по меньшей мере, одной команды (COMi,j) через упомянутый выход (SOR1j) на упомянутый, по меньшей мере, один привод (ACTj) в зависимости от элемента данных (DONi, DSUi), принятого на упомянутом, по меньшей мере, одном входе (ENT1i);
при этом упомянутая система (SYS) отличается тем, что содержит:
- модуль (MSEL1) выбора, установленный в упомянутом, по меньшей мере, одном цифровом вычислительном устройстве (FAD1) и выполненный с возможностью переключения упомянутого входа (ENT1i) либо на упомянутый датчик (CAPi), либо на шину замены (BSU1) в зависимости от команды оператора;
- устройство (SIM) моделирования в реальном времени, по меньшей мере, части окружения упомянутого двигателя (MOT1) и упомянутого летательного аппарата (AER), содержащее:
- цифровой выход (SIO1), выполненный с возможностью отправки, по меньшей мере, одного элемента цифровых заменяющих данных (DSUi) через упомянутую шину замены (BSU) к упомянутому входу (ENTi) упомянутого, по меньшей мере, одного цифрового вычислительного устройства (FAD1);
- цифровой вход (SII1), соединенный с упомянутым, по меньшей мере, одним выходом (SOR1j) цифрового вычислительного устройства (FAD1) и выполненный с возможностью приема упомянутой, по меньшей мере, одной команды (COMi,j), выдаваемой упомянутым, по меньшей мере, одним цифровым вычислительным устройством (FAD1), при этом упомянутое устройство (SIM) моделирования в реальном времени выполнено с возможностью моделирования реакции упомянутого двигателя (MOT1) и упомянутого летательного аппарата (AER) на упомянутую команду (COMi,j); и
- модуль (CTR) контроля, установленный в упомянутом, по меньшей мере, одном цифровом вычислительном устройстве (FAD1) и выполненный с возможностью осуществления процедуры контроля с целью предотвращения упомянутого переключения упомянутого, по меньшей мере, одного входа (ENT1i) цифрового вычислительного устройства (FAD1) на упомянутую шину замены (BSU1) упомянутым модулем выбора (MSEL1), когда упомянутый летательный аппарат совершает полет.
2. Система (SYS1, SYS2) по п. 1, отличающаяся тем, что упомянутый модуль (MSEL) выбора выполнен посредством программного модуля, реализующего интерфейс между упомянутым, по меньшей мере, одним входом (ENTi) и упомянутым модулем (MREG) регулирования.
3. Система (SYS1, SYS2) по п. 1 или 2, отличающаяся тем,
что содержит средства (CTR, MD1j) для подключения или отключения упомянутого выхода (SOR1j), соединенного с упомянутым приводом (ACTj), к входу или от входа (SII1) упомянутого устройства моделирования.
4. Система (SYS2) по п. 1, отличающаяся тем, что содержит два двигателя (MOT1, MOT2) и два цифровых вычислительных устройства (FAD1, FAD2), соединенных между собой при помощи физической связи (LIF), при этом каждое из упомянутых вычислительных устройств (FAD1, FAD2) выполнено с возможностью контроля одного из упомянутых двигателей.
5. Система (SYS1, SYS2) по п. 1, отличающаяся тем, что упомянутую процедуру контроля осуществляют при подаче напряжения (Е10) на упомянутое, по меньшей мере, одно цифровое вычислительное устройство (FAD1, FAD2), при этом упомянутый модуль контроля выполнен с возможностью:
- проверять (Е20), подключен ли упомянутый вход (ENT1i) к упомянутому датчику (CAPi);
- проверять (E30) определенный код (COD) в определенном адресе (ADR) памяти (MEM) упомянутой системы (SYS1, SYS2);
- проверять (E40) прием, по меньшей мере, одного определенного полукадра в течение определенного времени.
6. Система (SYS1, SYS2) по п. 5, отличающаяся тем, что упомянутый модуль контроля содержит средства для стирания упомянутого кода (COD) в случае неудачи, по меньшей мере, одной из упомянутых проверок (E20, E30, E40).
RU2013102873/11A 2010-06-23 2011-06-16 Система моделирования в реальном времени окружения двигателя летательного аппарата RU2586796C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1055006A FR2961927B1 (fr) 2010-06-23 2010-06-23 Systeme de simulation temps reel de l'environnement d'un moteur d'aeronef
FR1055006 2010-06-23
PCT/FR2011/051378 WO2011161359A1 (fr) 2010-06-23 2011-06-16 Systeme de simulation temps reel de l'environnement d'un moteur d'aeronef

Publications (2)

Publication Number Publication Date
RU2013102873A RU2013102873A (ru) 2014-07-27
RU2586796C2 true RU2586796C2 (ru) 2016-06-10

Family

ID=43034480

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013102873/11A RU2586796C2 (ru) 2010-06-23 2011-06-16 Система моделирования в реальном времени окружения двигателя летательного аппарата

Country Status (10)

Country Link
US (1) US9114883B2 (ru)
EP (1) EP2585369B1 (ru)
JP (1) JP5852108B2 (ru)
KR (1) KR101856263B1 (ru)
CN (1) CN102947178B (ru)
CA (1) CA2802577C (ru)
FR (1) FR2961927B1 (ru)
PL (1) PL2585369T3 (ru)
RU (1) RU2586796C2 (ru)
WO (1) WO2011161359A1 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869707A (zh) * 2012-12-13 2014-06-18 中航商用航空发动机有限责任公司 应用于商用航空发动机控制系统的半物理仿真试验系统
US9639997B2 (en) * 2013-05-22 2017-05-02 Air China Limited Test apparatus and test method based on DFDAU
CN106716272B (zh) * 2014-09-30 2021-03-09 深圳市大疆创新科技有限公司 用于飞行模拟的系统和方法
CN106796761B (zh) 2014-09-30 2021-08-20 深圳市大疆创新科技有限公司 用于支持模拟移动的系统和方法
CN104780177B (zh) * 2015-04-29 2018-03-23 西安电子科技大学 物联网感知设备云端仿真系统的信息安全保障方法
AT517836B1 (de) * 2015-11-19 2017-05-15 Avl List Gmbh Verfahren und Prüfstand zum Durchführen eines Prüfversuchs für einen Prüfling
US20190005826A1 (en) 2017-06-28 2019-01-03 Ge Aviation Systems, Llc Engine load model systems and methods
CN111290289A (zh) * 2018-12-10 2020-06-16 中国科学院沈阳自动化研究所 一种发动机硬件在回路仿真系统
CN111911306B (zh) * 2020-07-27 2022-10-04 山东飞奥航空发动机有限公司 无人机电喷系统的测试仿真系统及其实现方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111402A (en) * 1990-01-19 1992-05-05 Boeing Company Integrated aircraft test system
RU21971U1 (ru) * 2001-09-05 2002-02-27 Федеральное государственное унитарное предприятие Летно-исследовательский институт им. М.М. Громова Летный тренажер
US20070202469A1 (en) * 2006-02-13 2007-08-30 The Boeing Company System for trouble shooting and controlling signals to and from an aircraft simulator
US20090306866A1 (en) * 2008-06-10 2009-12-10 The Regents Of The University Of Michigan Method, control apparatus and powertrain system controller for real-time, self-learning control based on individual operating style

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246229A (ja) * 1985-08-23 1987-02-28 Ishikawajima Harima Heavy Ind Co Ltd 可搬型実時間航空用エンジンシミユレ−タ
JPH0625904B2 (ja) * 1987-06-18 1994-04-06 防衛庁技術研究本部長 飛行模擬装置
US5260874A (en) * 1990-09-05 1993-11-09 The Boeing Company Aircraft flight emulation test system
FR2711609B1 (fr) * 1993-10-28 1996-01-26 Sextant Avionique Procédé et dispositif pour la validation au sol des fonctions de sécurité du système de pilotage équipant un aérodyne.
US6292712B1 (en) * 1998-01-29 2001-09-18 Northrop Grumman Corporation Computer interface system for a robotic system
US6647301B1 (en) * 1999-04-22 2003-11-11 Dow Global Technologies Inc. Process control system with integrated safety control system
DE10131317A1 (de) * 2001-06-28 2003-01-09 Volkswagen Ag Steuergerät und Verfahren zum Testen eines Steuergerätes
US6882929B2 (en) * 2002-05-15 2005-04-19 Caterpillar Inc NOx emission-control system using a virtual sensor
US6735500B2 (en) * 2002-06-10 2004-05-11 The Boeing Company Method, system, and computer program product for tactile cueing flight control
JP4133435B2 (ja) * 2003-02-26 2008-08-13 健蔵 野波 小型無人ヘリコプタの自律制御方法
US9099012B2 (en) * 2005-03-14 2015-08-04 Cubic Corporation Adjustment of altitude measurements
US20070142980A1 (en) * 2005-12-19 2007-06-21 Marc Ausman Avionics method and apparatus
JP4987382B2 (ja) * 2006-08-09 2012-07-25 富士通テン株式会社 分散型シミュレーションシステム、シミュレータ識別方法、及び、分散型シミュレーションシステムの管理装置
FR2906881B1 (fr) * 2006-10-05 2009-01-30 Mbda France Sa Procede de controle fonctionnel d'une centrale inertielle d'un mobile.
FR2917715B1 (fr) * 2007-06-20 2009-12-25 Eurocopter France Procede et dispositif de controle et de regulation d'un turbomoteur de giravion
NO20081293L (no) * 2008-03-11 2009-09-14 Aker Mh As Simulator system and method
US8364340B2 (en) * 2009-03-31 2013-01-29 General Electric Company Method and systems for virtual sensor selection and blending
US8380473B2 (en) * 2009-06-13 2013-02-19 Eric T. Falangas Method of modeling dynamic characteristics of a flight vehicle
US8612192B2 (en) * 2010-05-24 2013-12-17 GM Global Technology Operations LLC Vehicle simulation system with software-in-the-loop bypass control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111402A (en) * 1990-01-19 1992-05-05 Boeing Company Integrated aircraft test system
RU21971U1 (ru) * 2001-09-05 2002-02-27 Федеральное государственное унитарное предприятие Летно-исследовательский институт им. М.М. Громова Летный тренажер
US20070202469A1 (en) * 2006-02-13 2007-08-30 The Boeing Company System for trouble shooting and controlling signals to and from an aircraft simulator
US20090306866A1 (en) * 2008-06-10 2009-12-10 The Regents Of The University Of Michigan Method, control apparatus and powertrain system controller for real-time, self-learning control based on individual operating style

Also Published As

Publication number Publication date
FR2961927A1 (fr) 2011-12-30
KR101856263B1 (ko) 2018-05-09
WO2011161359A1 (fr) 2011-12-29
CA2802577C (fr) 2018-01-02
JP5852108B2 (ja) 2016-02-03
RU2013102873A (ru) 2014-07-27
US9114883B2 (en) 2015-08-25
JP2013533478A (ja) 2013-08-22
KR20130096216A (ko) 2013-08-29
CN102947178A (zh) 2013-02-27
CN102947178B (zh) 2015-12-02
EP2585369A1 (fr) 2013-05-01
CA2802577A1 (fr) 2011-12-29
EP2585369B1 (fr) 2019-10-30
PL2585369T3 (pl) 2020-06-29
FR2961927B1 (fr) 2013-12-20
US20130211691A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
RU2586796C2 (ru) Система моделирования в реальном времени окружения двигателя летательного аппарата
US20080009983A1 (en) Flight control system for aircraft and test for testing such a flight control system
RU2604362C1 (ru) Информационно-управляющий комплекс автоматизированной системы управления подготовкой двигательных установок и технологическим оборудованием ракет космического назначения на техническом и стартовом комплексах
WO2008066985A2 (en) Docked emulation system
CN110673592B (zh) 一种微小卫星多个分系统通用化的故障检测测试系统
US10877471B2 (en) Method and apparatus for generating a fault tree for a failure mode of a complex system
KR101658563B1 (ko) 항공기의 임베디드 컴퓨터 검증을 위한 외부장치 모의기 시스템 및 이의 운영방법
Papathakis et al. Safety considerations for electric, hybrid-electric, and turbo-electric distributed propulsion aircraft testbeds
CN111443618B (zh) 一种用于gnc系统的多模式在线实时自主切换仿真系统及方法
US20110246160A1 (en) Method and device for development and certification of training simulators for aircraft piloting and resulting simulation device
Darwesh et al. A demonstrator for the verification of the selective integration of the Flexible Platform approach into Integrated Modular Avionics
CN110941289A (zh) 一种发动机高空台试验飞控模拟装置
JP6074969B2 (ja) シミュレータ
Maaß et al. Software system architecture for control of tethered kites
Rachucki et al. Analysis of scalable distributed on-board computer architecture for suborbital rockets and micro launchers
Hofsäß et al. On the Design and Model-Based Validation of Flight Control System Automation for an Unmanned Coaxial Helicopter
KR101418481B1 (ko) 무인기용 비행제어시스템의 bit처리장치 및 그 제어방법
Papathakis et al. A NASA Approach to Safety Considerations for Electric Propulsion Aircraft Testbeds
KR102056812B1 (ko) 항공기 가스터빈 엔진의 전자식 엔진 제어유닛의 테스트벤치 시스템 및 이를 이용한 테스트 방법
CN113050583A (zh) 一种飞行控制系统地面测试平台及其测试方法
KR101605839B1 (ko) Arinc429 통신 인터페이스의 통합 시험 시스템
de Matos et al. Using design patterns for safety assessment of integrated modular avionics
Tremblay et al. A hardware prototype for integration, test and validation of avionic networks
Haus Ground and Flight Testing the New VISTA Simulation System (VSS)
RU2653670C1 (ru) Способ тестирования канала управления бортовой аппаратурой космического аппарата

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner