RU2586388C1 - Устройство для измерения давления - Google Patents

Устройство для измерения давления Download PDF

Info

Publication number
RU2586388C1
RU2586388C1 RU2015115756/28A RU2015115756A RU2586388C1 RU 2586388 C1 RU2586388 C1 RU 2586388C1 RU 2015115756/28 A RU2015115756/28 A RU 2015115756/28A RU 2015115756 A RU2015115756 A RU 2015115756A RU 2586388 C1 RU2586388 C1 RU 2586388C1
Authority
RU
Russia
Prior art keywords
waveguide
electromagnetic waves
frequency
electromagnetic
end wall
Prior art date
Application number
RU2015115756/28A
Other languages
English (en)
Inventor
Александр Сергеевич Совлуков
Original Assignee
Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН filed Critical Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН
Priority to RU2015115756/28A priority Critical patent/RU2586388C1/ru
Application granted granted Critical
Publication of RU2586388C1 publication Critical patent/RU2586388C1/ru

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

Изобретение относится к измерительной технике. Устройство для измерения давления содержит СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком, металлическая полость выполнена в виде волновода с упругой одной торцевой стенкой, при этом электронный блок содержит генератор электромагнитных колебаний фиксированной частоты и подключенный к индикатору детектор, подсоединенные с помощью, соответственно, элемента возбуждения и элемента съема электромагнитных колебаний к волноводу у его другой торцевой стенки, а волновод выполнен в виде предельного волновода, для которого частота возбуждаемых в нем электромагнитных волн выбрана ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн. Технический результат - упрощение конструкции. 1 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения статического и динамического давления.
Известно устройство для измерения давления (US 4604898 А, 12.08.1986), которое содержит датчик в виде отрезка коаксиальной длинной линии с торцевым чувствительным элементом. Он представляет собой конденсатор, образованный совокупностью плоской металлической пластины, подсоединенной к внутреннему проводнику коаксиальной линии и установленной перпендикулярно ее продольной оси, и параллельной пластине деформируемой торцевой стенки (мембраны), воспринимающей внешнее давление. Резонансная частота колебаний, возбуждаемых в устройстве, зависит от величины прогиба деформируемой торцевой стенки резонатора. Известно также устройство для измерения давления, содержащее коаксиальный резонатор, на торце которого расположены два плоских диска, выполняющих функцию конденсатора. Один из этих дисков прикреплен с помощью штока к центру мембраны, воспринимающей измеряемое давление, а другой диск закреплен на торце внутреннего проводника коаксиальной линии параллельно первому диску (RU 2221228 C2, 10.01.2004).
Известно также устройство (US 3927369, 31.01.1973), которое по технической сущности наиболее близко к предлагаемому устройству и принято в качестве прототипа. Устройство-прототип содержит сверхвысокочастотный (СВЧ) чувствительный элемент в виде объемного СВЧ-резонатора, который имеет упругую торцевую стенку (мембрану, диафрагму и т.п.), а также соединенный с резонатором блок для генерации резонансной (собственной) частоты электромагнитных колебаний резонатора и блок измерения резонансной частоты данного резонатора. Выходной сигнал этого блока соответствует измеряемому давлению. Эта частота имеет обычно величину порядка нескольких гигагерц и зависит от размеров резонатора, выбранного "рабочего" типа электромагнитных колебаний. При этом изменение давления приводит к смещению гибкой стенки резонатора (это его торцевая стенка), изменяя продольный размер полости резонатора и, как следствие, его резонансную частоту.
Недостатком устройства-прототипа является достаточно высокая сложность его реализации, обусловленная применением объемного СВЧ-резонатора в качестве СВЧ чувствительного элемента. При этом необходимо наличия в конструкции устройства функциональных элементов для требуемого измерения с высокой точностью значения резонансной частоты электромагнитных колебаний резонатора.
Техническим результатом настоящего изобретения является упрощение конструкции устройства.
Технический результат достигается тем, что в предлагаемом устройстве для измерения давления, содержащем СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком, металлическая полость выполнена в виде волновода с упругой одной торцевой стенкой, электронный блок содержит генератор электромагнитных колебаний фиксированной частоты и подключенный к индикатору детектор, подсоединенные с помощью, соответственно, элемента возбуждения и элемента съема электромагнитных колебаний к волноводу у его другой торцевой стенки, а волновод выполнен в виде предельного волновода, для которого частота возбуждаемых в нем электромагнитных волн выбрана ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн.
Предлагаемое устройство поясняется фиг. 1, где приведена его структурная схема.
На фиг. 1 показаны волновод 1, упругая торцевая стенка 2, элементы связи 3 и 4, генератор электромагнитных колебаний 5, детектор 6, индикатор 7.
Устройство работает следующим образом.
В данном устройстве СВЧ чувствительный элемент в виде волновода 1 имеет на одном из его торцов упругую торцевую стенку 2, в частности мембрану. При воздействии извне какой-либо физической величины (на фиг. 1 такое воздействие показано стрелкой) или при изменении этого воздействия относительно его некоторого исходного значения имеет место прогиб упругой торцевой стенки 2 волновода 1, обеспечивается восприятие значения соответствующего давления P (за счет измерения величины прогиба). Информативным параметром в данном устройстве является амплитуда E(l) ослабеваемых электромагнитных волн в волноводе, где l - величина прогиба мембраны, точнее ее центральной части, относительно ее исходного положения, соответствующего отсутствию воздействия извне физической величины (или изменения этого воздействия относительно его некоторого исходного значения). Волновод 1 является при этом предельным волноводом.
Упругая стенка может быть изготовлена, например, из нержавеющей стали. Толщина диафрагмы может составлять 0,1÷0,2 мм, а диаметр ~10÷40 мм (в зависимости от диаметра трубопровода).
В предлагаемом устройстве осуществляют возбуждение электромагнитных волн в волноводе на частоте, которая ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн, то есть ниже критической частоты fкр для волны низшего типа. Но при этом вдоль волновода существует только реактивное электромагнитное поле, убывающее при удалении от возбуждающего волны элемента связи у одного из торцов волновода.
Условием распространения электромагнитных волн по любому волноводу является выполнение неравенства: f>fкр, которому должны удовлетворять рабочая частота f и критическая частота fкр для волны низшего типа, в частности, в круглом волноводе - для волны типа Н11. Для волн типа Н11 будем иметь fкр=2c/3,41D где D - диаметр волновода (Лебедев И.В. Техника и приборы СВЧ. Т. 1. М.: Высшая школа. 1970. С. 78-94). При f<fкр имеет место предельный режим, при котором распространение электромагнитных волн по волноводу не происходит, а существует только ослабевающее реактивное электромагнитное поле, убывающее при удалении от элемента возбуждения электромагнитных волн. В предельном волноводе 1 поле изменяется вдоль координаты z (оси волновода) по закону:
Figure 00000001
а постоянная ослабления α есть
Figure 00000002
В этих формулах Em и Hm - амплитуды напряженности соответственно электрического и магнитного полей при z=0; и ω=2πf; ∈ и µ - соответственно диэлектрическая и магнитная проницаемость вещества в волноводе, с - скорость света.
Выбирая соотношение между f и fкр, можно управлять величиной ослабления α в предельном волноводе.
Отметим, что при f≤fкр распространение электромагнитных волн вдоль волновода отсутствует. Имеет место запредельный режим распространения волн, а волновод является при этом запредельным волноводом. В данном же устройстве имеет место именно предельный режим, указанный выше и характеризуемый наличием ослабеваемого вдоль волновода реактивного электромагнитного поля, а не запредельный режим распространения электромагнитных волн.
В волноводе 1 с гибкой металлической мембраной 2 возбуждают через элемент связи 3 с помощью генератора электромагнитных колебаний 5 электромагнитные волны на фиксированной частоте f, которая выбрана ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн - меньшей критической частоты fкр для этого волновода (фиг. 1). Волновод 1 является при этом предельным волноводом.
Напряженность электрического поля Е и магнитного поля Н при удалении от элемента связи спадает в соответствии с соотношением (1). При этом значение E (и Н) зависит от величины прогиба l торцевой мембраны волновода 1. У того же торца волновода 1 (фиг. 1) принимаемые сигналы поступают через элемент связи 4 на детектор 6. Затем продетектированный сигнал поступает на индикатор 7 для определения амплитуды Е(l) сигнала, служащего информативным параметром.
Выражение для E(z) должно учитывать распространение электромагнитных волн вдоль предельного волновода 1, а также и их отражение от его торца - гибкой торцевой мембраны 2 у волновода 1.
Для схемы устройства на фиг. 1 амплитуда напряженности результирующего электромагнитного поля E(z) в некотором сечении с координатой z предельного волновода в данном случае есть
Figure 00000003
где Em - амплитуда напряженности зондирующего электромагнитного поля при z=0, то есть у элемента связи 3, где z=0; l - расстояние, отсчитываемое от элемента связи 3. Величина коэффициента α определяется соотношением (2).
Величина l определяется степенью прогиба гибкой мембраны 2 в месте ее расположения и, следовательно, зависит от давления Р:l=l0+l(Р), где l0 - значение l при нулевом прогибе мембраны, т.е. при Р=0; l(P) - величина прогиба мембраны.
Следовательно, как следует из (3), амплитуда результирующего значения напряженности электромагнитного поля в сечении с координатой z=0 есть
Figure 00000004
Величина Е(Р) является монотонной функцией Р, позволяя однозначно определять искомое значение давления.
Величина прогиба деформируемой торцевой стенки (мембраны) выражается следующей формулой (US 3927369, 31.01.1973):
Figure 00000005
где ΔP - разность давлений с внешней и внутренней сторон мембраны, a - радиус цилиндрической мембраны, d - ее толщина, Е - модуль упругости конкретного материала, из которого изготовлена мембрана. Формула (5) выражает максимальную величину деформации в центре мембраны.
Конструкция волновода может быть изготовлена из меди, латуни и других металлов с небольшим удельным сопротивлением. Упругая торцевая стенка (мембрана) может быть изготовлена из различных металлов, например элинвара (RU 2221228 C2, 10.01.2004). В качестве материала для мембраны допустимо выбрать нержавеющую сталь. Толщина мембраны может составлять 0,1÷0,2 мм, а ее диаметр 10÷40 мм.
Данное устройство характеризуется простотой его конструкции и реализации. Оно не требует наличия объемных резонаторов и специальных прецизионных схемных элементов для высокоточного измерения их резонансных частот. Здесь требуется наличие лишь генератора электромагнитных колебаний фиксированной частоты, волновода с торцевой гибкой металлической стенкой, детектора и регистратора. При этом точность измерения может быть достаточно высокой: амплитуда принимаемых колебаний соответствует ослабеваемому реактивному электромагнитному полю в предельном волноводе и не связана с омическими потерями электромагнитной энергии в нем.
Выбором фиксированной частоты f генератора, подсоединенного к предельному волноводу, поперечных и продольного размеров этого волновода можно оптимизировать чувствительность устройства в рабочем диапазоне изменения давления или другой измеряемой физической величины, изменение которой приводит к прогибу упругой торцевой стенки предельного волновода.
Таким образом, в предлагаемом устройстве для измерения давления за счет проведения в волноводе измерений на фиксированной частоте, меньшей минимальной частоты возбуждения в нем распространяющихся электромагнитных волн, достигается поставленная цель - упрощение конструкции. Такое устройство может иметь применение для измерения давления и других физических величин.

Claims (1)

  1. Устройство для измерения давления, содержащее СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком, металлическая полость выполнена в виде волновода с упругой одной торцевой стенкой, отличающееся тем, что электронный блок содержит генератор электромагнитных колебаний фиксированной частоты и подключенный к индикатору детектор, подсоединенные с помощью, соответственно, элемента возбуждения и элемента съема электромагнитных колебаний к волноводу у его другой торцевой стенки, а волновод выполнен в виде предельного волновода, для которого частота возбуждаемых в нем электромагнитных волн выбрана ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн.
RU2015115756/28A 2015-04-27 2015-04-27 Устройство для измерения давления RU2586388C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015115756/28A RU2586388C1 (ru) 2015-04-27 2015-04-27 Устройство для измерения давления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015115756/28A RU2586388C1 (ru) 2015-04-27 2015-04-27 Устройство для измерения давления

Publications (1)

Publication Number Publication Date
RU2586388C1 true RU2586388C1 (ru) 2016-06-10

Family

ID=56115384

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015115756/28A RU2586388C1 (ru) 2015-04-27 2015-04-27 Устройство для измерения давления

Country Status (1)

Country Link
RU (1) RU2586388C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663552C1 (ru) * 2017-09-27 2018-08-07 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения давления
RU2691283C1 (ru) * 2018-08-28 2019-06-11 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения давления

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927369A (en) * 1973-01-31 1975-12-16 Westinghouse Electric Corp Microwave frequency sensor utilizing a single resonant cavity to provide simultaneous measurements of a plurality of physical properties
US4945768A (en) * 1988-05-20 1990-08-07 Parker Electronics, Inc. Pressure sensor
RU2457451C2 (ru) * 2010-04-13 2012-07-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М.Василевского" Министерства обороны Российской Федерации Датчик давления
RU2534450C1 (ru) * 2013-08-23 2014-11-27 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Расходомер

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927369A (en) * 1973-01-31 1975-12-16 Westinghouse Electric Corp Microwave frequency sensor utilizing a single resonant cavity to provide simultaneous measurements of a plurality of physical properties
US4945768A (en) * 1988-05-20 1990-08-07 Parker Electronics, Inc. Pressure sensor
RU2457451C2 (ru) * 2010-04-13 2012-07-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М.Василевского" Министерства обороны Российской Федерации Датчик давления
RU2534450C1 (ru) * 2013-08-23 2014-11-27 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Расходомер

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663552C1 (ru) * 2017-09-27 2018-08-07 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения давления
RU2691283C1 (ru) * 2018-08-28 2019-06-11 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения давления

Similar Documents

Publication Publication Date Title
GB2067756A (en) Liquid level measurement
RU2626409C1 (ru) Способ измерения физических свойств жидкости
RU2473889C1 (ru) Способ измерения физической величины
US2418538A (en) Measurement of distance by frequency-modulated carrier wave
RU2586388C1 (ru) Устройство для измерения давления
Mohindru Development of liquid level measurement technology: A review
WO2019106391A1 (en) Fluid property measurement by reflection of vibrational waves
CN113340382B (zh) 反射回波可调的磁致伸缩液位计以及液位检测方法
RU2567441C1 (ru) Способ цифрового измерения электрических величин
RU2691283C1 (ru) Устройство для измерения давления
RU2650605C1 (ru) Способ измерения внутреннего диаметра металлической трубы
RU2534450C1 (ru) Расходомер
RU2663552C1 (ru) Способ измерения давления
RU102109U1 (ru) Расходомер
RU2536184C1 (ru) Концентратомер
RU2767586C1 (ru) Устройство для измерения внутреннего диаметра металлической трубы
RU2199731C1 (ru) Устройство для определения влажности нефтепродуктов в трубопроводе
RU2473055C1 (ru) Способ измерения уровня жидкости в емкости
RU2408856C9 (ru) Устройство для измерения давления
EP2815220B1 (en) A pressure measuring device
RU2723149C1 (ru) Ультразвуковой акустоимпедансный измеритель уровня жидкости
RU2690971C1 (ru) Датчик давления
RU2521722C1 (ru) Устройство для измерения физических параметров объекта
WO2001061312A1 (en) Method of determining viscosity
US6647780B1 (en) Slow wave structure sensor with zero-based frequency output

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200428