RU2534450C1 - Расходомер - Google Patents

Расходомер Download PDF

Info

Publication number
RU2534450C1
RU2534450C1 RU2013139219/28A RU2013139219A RU2534450C1 RU 2534450 C1 RU2534450 C1 RU 2534450C1 RU 2013139219/28 A RU2013139219/28 A RU 2013139219/28A RU 2013139219 A RU2013139219 A RU 2013139219A RU 2534450 C1 RU2534450 C1 RU 2534450C1
Authority
RU
Russia
Prior art keywords
waveguide
pipeline
frequency
flow rate
electromagnetic
Prior art date
Application number
RU2013139219/28A
Other languages
English (en)
Inventor
Михаил Вениаминович Жиров
Александр Сергеевич Совлуков
Вера Владимировна Жирова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority to RU2013139219/28A priority Critical patent/RU2534450C1/ru
Application granted granted Critical
Publication of RU2534450C1 publication Critical patent/RU2534450C1/ru

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

Изобретение относится к области измерительной техники и может быть использовано для измерения расхода веществ, перемещаемых по трубопроводам, и применимо в пищевой, химической, нефтяной и других отраслях промышленности, в энергетике и др. Предлагаемый расходомер содержит два расположенных вдоль трубопровода с внешней его стороны чувствительных элемента в виде полых волноводов, каждый из которых имеет общую с трубопроводом упругую торцевую стенку, каждый волновод соединен с соответствующим электронным блоком, блок сравнения информативных параметров чувствительных элементов, имеющий два входа, подключенные соответственно к выходам указанных двух электронных блоков, и выход, соединенный с индикатором. При этом в каждом волноводе элемент возбуждения и элемент съема электромагнитных колебаний расположены у одного и того же конца волновода, а частота возбуждаемых в каждом волноводе электромагнитных волн фиксирована и выбрана ниже частоты возбуждения в нем электромагнитных волн низшего типа. Технический результат - упрощение конструкции устройства. 1 ил.

Description

Изобретение относится к области измерительной техники и может быть использовано для измерения расхода веществ, перемещаемых по трубопроводам, и применимо в пищевой, химической, нефтяной и других отраслях промышленности, в энергетике и др. Во всех этих отраслях преимущественная область применения - измерение расхода в трубах достаточно большого диаметра (более 200 мм).
Известны расходомеры, основанные на разных физических принципах (Кремлевский П.П. Расходомеры и счетчики количества. Л.: Машиностроение (Ленинградское отделение), 1975). В частности, известны описанные в этой книге (главы I-V) расходомеры, основанные на измерении перепада давления в магистралях и связанные с применением расположенных внутри трубопроводов сужающих устройств-сопел различных форм и конструкций. Применение таких расходомеров вызывает нарушение структуры потока, развитие турбулентности, нарушение цельнометаллической конструкции трубопровода при отборе давления. Во многих практических задачах это недопустимо. Например, при измерениях расхода в тяжелых эксплуатационных условиях (на объектах химии, энергетики и др.) необходимо применение приборов, не имеющих указанных недостатков. В то же время применяемые приборы должны быть простыми и надежными в эксплуатации, при проведении ремонтных и регламентных работ, быть взаимозаменяемыми.
Известен также расходомер (пат. РФ №2120111, МКИ G01F 1/56), содержащий два датчика давления, расположенных вдоль длины трубопровода с внешней его стороны в двух сечениях. Каждый из датчиков выполнен в виде волноводного резонатора П-образной формы, имеющего обе, общие с трубопроводом, упругие торцевые стенки. Наличие у каждого из резонаторов упругих торцевых стенок обеспечивает увеличение (вдвое) чувствительности к измеряемому расходу по сравнению с вышеописанным расходомером, у которого каждый резонатор имеет только одну упругую торцевую стенку, общую с трубопроводом.
Наиболее близким по технической сущности к предлагаемому устройству является расходомер, принятый авторами за прототип (Billeter T.R., Phillipp L.D., Schemmel R.R. Microwave fluid flow monitor. Пат. США N 3939406, НКИ: 324-58.5). Этот расходомер является бесконтактным, не нарушающим структуру и динамику потока. Он содержит два объемных СВЧ-резонатора, которые установлены снаружи трубопровода в разных сечениях вдоль его длины. Каждый из этих резонаторов имеет с трубопроводом общую упругую торцевую стенку (мембрану, диафрагму и т.п.), а также соединенные с каждым резонатором блоки для генерации резонансной (собственной) частоты электромагнитных колебаний резонатора и блок сравнения резонансных частот указанных резонаторов. Выходной сигнал блока сравнения соответствует измеряемому расходу. Такое устройство обеспечивает сохранение цельнометаллической конструкции трубопровода и не содержит внутри него каких-либо конструктивных элементов. Это не приводит к нарушению гидродинамических характеристик и структуры потока. Резонансная частота каждого объемного резонатора является функцией давления внутри трубопровода в том его сечении, в области которого установлен данный резонатор. Эта частота имеет обычно величину порядка нескольких гигагерц и зависит от размеров резонатора, выбранного "рабочего" типа электромагнитных колебаний. При этом изменение давления в трубопроводе приводит к смещению гибкой стенки, общей для резонатора (это его торцевая стенка) и трубопровода, изменяя продольный размер полости резонатора и, как следствие, его резонансную частоту. В трубопроводе давление имеет разную величину в разных его сечениях. Соответствующие этим величинам давления значения прогиба торцевых стенок резонаторов, расположенных вдоль трубопровода в двух его сечениях, также различны. Перепад давления зависит функционально от скорости потока вещества в трубопроводе. Определяя этот перепад давления по разности резонансных частот двух резонаторов, можно найти скорость потока и расход вещества. У такого расходомера чувствительность зависит, помимо других факторов, не связанных с устройством, также и от расстояния между резонаторами, установленными на трубопроводе вдоль его длины.
Увеличения чувствительности расходомера можно добиться путем увеличения этого расстояния между резонаторами, что часто не представляется возможным. Так, например, в устройстве-прототипе для определения скорости жидкого натрия в трубопроводе, равной ~1,8 м/с (минимальная величина) по падению давления, расстояние между резонаторами должно составлять ~3 м. При меньшем расстоянии чувствительность расходомера оказывается недопустимо низкой. При этом существует необходимость в измерении с высокой точностью значений резонансных частот обоих резонаторов, поскольку перемещения мембран, зависящие от давления в области их нахождения, малы по сравнению с размерами полостей резонаторов.
Недостатком устройства-прототипа является достаточно высокая сложность его реализации, обусловленная необходимостью наличия в его конструкции функциональных элементов для требуемого измерения с высокой точностью значений резонансных частот электромагнитных колебаний обоих резонаторов.
Техническим результатом настоящего изобретения является упрощение конструкции устройства.
Технический результат достигается тем, что в предлагаемом расходомере, содержащем два расположенных вдоль трубопровода с внешней его стороны чувствительных элемента в виде полых волноводов, каждый из которых имеет общую с трубопроводом упругую торцевую стенку, каждый волновод соединен с соответствующим электронным блоком, блок сравнения информативных параметров чувствительных элементов, имеющий два входа, подключенные соответственно к выходам указанных двух электронных блоков, и выход, соединенный с индикатором, при этом в каждом волноводе элемент возбуждения и элемент съема электромагнитных колебаний расположены у одного и того же конца волновода, а частота возбуждаемых в каждом волноводе электромагнитных волн фиксирована и выбрана ниже частоты возбуждения в нем электромагнитных волн низшего типа.
Предлагаемое устройство поясняется фиг.1, где приведена его структурная схема.
На фиг.1 показаны трубопровод 1, волноводные резонаторы 2 и 3, упругие торцевые стенки 4 и 5, элементы связи 6, 7, 8, 9, генераторы электромагнитных колебаний 10 и 11, детекторы 12 и 13, блок сравнения 14, индикатор 15.
Устройство работает следующим образом.
В данном устройстве обеспечивается восприятие значения давления P (за счет измерения величины прогиба упругой торцевой стенки, в частности мембраны) в каждом из двух сечений трубопровода 1. Информативным параметром в данном устройстве является амплитуда E(l) ослабеваемых электромагнитных волн в каждом из двух волноводов, где l - величина прогиба мембраны, точнее ее центральной части относительно ее исходного положения, соответствующего отсутствию движения потока вещества.
Как приведено в описании к устройству-прототипу, падение давления ΔP на участке длиной L между двумя областями расположения резонаторов выражается следующей формулой:
Δ P = ρ μ ν 2 L 144 D 2 g
Figure 00000001
,
где ρ - плотность вещества, ν - вязкость, D - диаметр трубопровода, µ - коэффициент трения, g - ускорение свободного падения.
Изменение скорости потока и расхода вещества приводит к соответствующим изменениям величины коэффициента трения, который зависит также от степени шероховатости стенок трубопровода. Упругая стенка может быть изготовлена, например, из нержавеющей стали. Толщина диафрагмы может составлять 0,1÷0,2 мм, а диаметр ~10÷40 мм (в зависимости от диаметра трубопровода).
В предлагаемом устройстве осуществляют возбуждение электромагнитных волн в волноводе на частоте, которая ниже критической частоты для волны низшего типа, при этом вдоль волновода существует только реактивное поле, убывающее при удалении от возбуждающего элемента у одного из торцов каждого волновода.
Условием распространения электромагнитных волн по любому волноводу является выполнение неравенства: f>fкр, которому должны удовлетворять рабочая частота f и критическая частота fкр для волны низшего типа, в частности в круглом волноводе - для волны типа H11. Для волн типа H11 будем иметь fкр=2c/3,41D, где D - диаметр волновода (Лебедев И.В. Техника и приборы СВЧ. Т.1. М.: Высшая школа. 1970. С.78-94). При f<fкр имеет место запредельный режим, при котором распространения волн по волноводу не происходит, а существует только ослабевающее реактивное поле, убывающее при удалении от элемента возбуждения волн. В запредельном волноводе поле изменяется вдоль координаты z (оси волновода) по закону:
E = E m e α z e j ω t , H = H m e α z e j ω t , ( 1 )
Figure 00000002
а постоянная ослабления α есть
α = 2 π ε μ c f к р 2 f 2 ( 2 )
Figure 00000003
В этих формулах Em и Hm - амплитуды напряженности соответственно электрического и магнитного полей при z=0; ω=2πf; ε и µ - соответственно диэлектрическая и магнитная проницаемость вещества в волноводе, c - скорость света.
Выбирая соотношение между f и fкр, можно управлять величиной ослабления α.
В предлагаемом устройстве к трубопроводу 1 в двух его сечениях вдоль него подсоединены снаружи к нему два волновода 2 и 3 одним из своих торцов 3 и 4 соответственно (фиг.1). В качестве такой торцевой стенки каждого из волноводов 2 и 3 применяют гибкую металлическую мембрану. Величина прогиба мембран 3 и 4 зависит от скорости потока (расхода) жидкости в трубопроводе 1.
В волноводах 2 и 3, располагаемых на поверхности трубопровода 1 и имеющих с ним общие стенки 3 и 4 соответственно, являющиеся гибкими металлическими мембранами, возбуждают через элементы связи 6 и 8 с помощью соответствующего генератора фиксированной частоты (10 и 11) электромагнитные волны на частоте f, меньшей критической частоты fкр для этого волновода (фиг.1). Напряженность электрического поля E и магнитного поля H при удалении от элемента связи спадает в соответствии с соотношением (1). При этом значение E (и H) зависит от величины прогиба l торцевой мембраны каждого из волноводов 2 и 3. У того же торца каждого из волноводов 2 и 3 (фиг.1) принимаемые сигналы поступают через соответствующие элементы связи 7 и 9 на детекторы 12 и 13 соответственно. Затем продетектированные сигналы поступают на входы блока сравнения 14 для определения амплитуды E(l) сигнала, служащего информативным параметром. Выход блока сравнения 14 подсоединен к регистратору 15.
Выражение для E(z) должно учитывать распространение электромагнитных волн вдоль волновода, а также и их отражение от его торца - гибкой торцевой мембраны (3 и 4 у волновода 2 и 3 соответственно).
Для схемы устройства на фиг.1 амплитуда напряженности результирующего электромагнитного поля E(z) в некотором сечении с координатой z в данном случае есть
E ( z ) = E m ( e α z e α z 2 α l ) ( 3 )
Figure 00000004
где Em - амплитуда напряженности зондирующего электромагнитного поля при z=0, то есть у элемента связи 4, где z=0; l - расстояние, отсчитываемое от элемента связи 4.
Величина коэффициента α определяется соотношением (2).
Величина l определяется степенью прогиба гибкой мембраны (3 или 4) в месте ее расположения и, следовательно, зависит от давления P в каждом из двух сечений трубопровода 1: l=l0+l(P), где l0 - значение l при нулевом прогибе мембраны, т.е. при P=0; l(P) - величина прогиба мембраны в области ее расположения.
Следовательно, как следует из (3), амплитуда результирующего значения напряженности электромагнитного поля в сечении с координатой z=0 есть
E ( P ) = E m ( 1 e 2 α l ( P ) ) ( 4 )
Figure 00000005
Для волноводов 2 и 3 с гибкими мембранами соответственно 4 и 5 будем иметь
E 1 ( P 1 ) = E m 1 ( 1 e 2 α 1 l 1 ( P 1 ) ) ( 5 )
Figure 00000006
E 2 ( P 2 ) = E m 2 ( 1 e 2 α 2 l 2 ( P 2 ) ) ( 6 )
Figure 00000007
где индексы 1 и 2 при символах E, Em, α, P и l соответствуют мембранам 4 и 5 (т.е. волноводам 2 и 3).
Разность E(Q) значений амплитуд E1(P1) и E2(P2) является здесь информативным параметром, позволяя определить искомый расход Q жидкости в трубопроводе 1:
E ( Q ) = E 1 ( P 1 ) E 2 ( P 2 ) = E m 1 ( 1 e 2 α l 1 ( P 1 ) ) E m 2 ( 1 e 2 α l 2 ( P 2 ) ) ( 7 )
Figure 00000008
Если волноводы 2 и 3 идентичны (для них Em1=Em2=Em; α12=α), то тогда
E ( Q ) = E m ( e 2 α l 2 ( P 2 ) e 2 α l 1 ( P 1 ) ) ( 8 )
Figure 00000009
Величина E(Q) является монотонной функцией Q, позволяя однозначно определять искомый расход жидкости, перемещаемой по трубопроводу.
Данное устройство характеризуется достаточно простой его конструкцией и реализацией. Оно не требует наличия объемных резонаторов и специальных прецизионных схемных элементов для высокоточного измерения их резонансных частот. Здесь требуется наличие лишь двух генераторов электромагнитных колебаний фиксированной частоты, двух волноводов с соответствующей торцевой гибкой металлической мембраной, общей со стенкой трубопровода, двух детекторов, блока определения разности принимаемых амплитуд и регистратора. При этом точность измерения может быть достаточно высокой: амплитуда принимаемых колебаний соответствует ослабеваемому реактивному электромагнитному полю в волноводах и не связана с омическими потерями электромагнитной энергии в них.
Для трубопроводов конкретных размеров выбором частоты f каждого генератора, подсоединенного к соответствующему измерительному волноводу, можно оптимизировать чувствительность расходомера в рабочем диапазоне изменения расхода.
Таким образом, в предлагаемом расходомере за счет проведения в каждом из двух волноводных резонаторов измерений на фиксированной частоте, меньшей критической частоты возбуждения в нем распространяющихся электромагнитных волн, достигается поставленная цель - упрощение конструкции. Такой расходомер может иметь широкое практическое применение для измерения расхода различных веществ, перемещаемых по трубопроводам, без введения каких-либо элементов внутрь трубопровода.

Claims (1)

  1. Расходомер, содержащий два расположенных вдоль трубопровода с внешней его стороны чувствительных элемента в виде полых волноводов, каждый из которых имеет общую с трубопроводом упругую торцевую стенку, каждый волновод соединен с соответствующим электронным блоком, блок сравнения информативных параметров чувствительных элементов, имеющий два входа, подключенные соответственно к выходам указанных двух электронных блоков, и выход, соединенный с индикатором, отличающийся тем, что в каждом волноводе элемент возбуждения и элемент съема электромагнитных колебаний расположены у одного и того же конца волновода, а частота возбуждаемых в каждом волноводе электромагнитных волн фиксирована и выбрана ниже частоты возбуждения в нем электромагнитных волн низшего типа.
RU2013139219/28A 2013-08-23 2013-08-23 Расходомер RU2534450C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013139219/28A RU2534450C1 (ru) 2013-08-23 2013-08-23 Расходомер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013139219/28A RU2534450C1 (ru) 2013-08-23 2013-08-23 Расходомер

Publications (1)

Publication Number Publication Date
RU2534450C1 true RU2534450C1 (ru) 2014-11-27

Family

ID=53383058

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013139219/28A RU2534450C1 (ru) 2013-08-23 2013-08-23 Расходомер

Country Status (1)

Country Link
RU (1) RU2534450C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2586388C1 (ru) * 2015-04-27 2016-06-10 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Устройство для измерения давления

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939406A (en) * 1973-06-13 1976-02-17 Westinghouse Electric Corporation Microwave fluid flow meter
JPS5551314A (en) * 1978-10-11 1980-04-15 Toshiba Corp Ultrasonic flowmeter
RU2161779C1 (ru) * 1999-06-30 2001-01-10 Жиров Михаил Вениаминович Расходомер
RU102109U1 (ru) * 2009-09-18 2011-02-10 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Расходомер

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939406A (en) * 1973-06-13 1976-02-17 Westinghouse Electric Corporation Microwave fluid flow meter
JPS5551314A (en) * 1978-10-11 1980-04-15 Toshiba Corp Ultrasonic flowmeter
RU2161779C1 (ru) * 1999-06-30 2001-01-10 Жиров Михаил Вениаминович Расходомер
RU102109U1 (ru) * 2009-09-18 2011-02-10 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Расходомер

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2586388C1 (ru) * 2015-04-27 2016-06-10 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Устройство для измерения давления

Similar Documents

Publication Publication Date Title
US11293791B2 (en) Leaky lamb wave flowmeter
US3719073A (en) Mass flow meter
KR101810724B1 (ko) 다상 유체 특성화 시스템
WO1990005283A1 (en) Method and apparatus for measuring mass flow
Mohindru Development of liquid level measurement technology: A review
Takamoto et al. New measurement method for very low liquid flow rates using ultrasound
RU2534450C1 (ru) Расходомер
CN203069223U (zh) 用于超声波流量计的相位编码同步时差检测装置
RU102109U1 (ru) Расходомер
WO2002037082A1 (en) Acoustic viscometer and method of determining kinematic viscosity and intrinsic viscosity by propagation of shear waves
US5099691A (en) Method for measuring length, and apparatus for implementing the method
RU2586388C1 (ru) Устройство для измерения давления
RU2515129C1 (ru) Вихревой расходомер
US3314289A (en) Swirl flow meter transducer system
RU2351900C2 (ru) Расходомер жидких сред в трубопроводах
RU2649421C1 (ru) Ультразвуковой расходомер с металлическим датчиком
Comes et al. Ultrasonic flowmeter
RU2161779C1 (ru) Расходомер
RU2691283C1 (ru) Устройство для измерения давления
RU66029U1 (ru) Комплексное устройство измерения расхода, плотности и вязкости нефтепродуктов
US3204455A (en) Ultrasonic flowmeter
RU2194950C2 (ru) Устройство для определения расхода двухкомпонентных веществ в трубопроводе
RU2354959C1 (ru) Устройство для определения сплошности газожидкостного потока
RU2805029C1 (ru) Расходомер постоянного перепада давления типа ротаметра с дистанционной передачей величины расхода
US20200209029A1 (en) Circumferential Resonance Flowmeter

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180824