RU2586259C1 - Тензорезистивный преобразователь - Google Patents

Тензорезистивный преобразователь Download PDF

Info

Publication number
RU2586259C1
RU2586259C1 RU2015103960/28A RU2015103960A RU2586259C1 RU 2586259 C1 RU2586259 C1 RU 2586259C1 RU 2015103960/28 A RU2015103960/28 A RU 2015103960/28A RU 2015103960 A RU2015103960 A RU 2015103960A RU 2586259 C1 RU2586259 C1 RU 2586259C1
Authority
RU
Russia
Prior art keywords
elastic
sensitive element
strain
measuring
planar
Prior art date
Application number
RU2015103960/28A
Other languages
English (en)
Inventor
Андрей Евгеньевич Спирин
Евгений Анатольевич Спирин
Анатолий Иванович Крылов
Original Assignee
Федеральное государственное бюджетное учреждение "Научно-исследовательский испытательный центр подготовки космонавтов имени Ю.А. Гагарина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Научно-исследовательский испытательный центр подготовки космонавтов имени Ю.А. Гагарина" filed Critical Федеральное государственное бюджетное учреждение "Научно-исследовательский испытательный центр подготовки космонавтов имени Ю.А. Гагарина"
Priority to RU2015103960/28A priority Critical patent/RU2586259C1/ru
Application granted granted Critical
Publication of RU2586259C1 publication Critical patent/RU2586259C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Изобретение относится к измерительной технике, а именно к датчикам давления контактного типа, в частности к тензометрическим средствам измерений консольного типа. Техническим результатом изобретения является расширение динамического диапазона тензорезистивного преобразования напряженно-деформированных состояний при прямом контактном воздействии на упруго-чувствительный элемент скоростного напора газовых или жидкостных потоков в электрический сигнал. Тензорезистивный преобразователь содержит упруго-чувствительный элемент консольного типа, выполненный из тензорезисторов, планарно и попарно расположенных на его противоположных сторонах, и электрических выводов со стороны его заделки, измерительный мост и индикатор, включенный в измерительную диагональ измерительного моста. При этом упруго-чувствительный элемент работает на изгиб ортогонально вектору приложенной силы. Также в преобразователь введены, по меньшей мере, один и более упругих слоев, выполненных из тонкопленочного эластичного полимера, имеющих одинаковую с упруго-чувствительным элементом ширину, но различные длины и расположены на нем последовательно с уменьшением длины в сторону его заделки. Упругие слои планарно жестко связаны между собой и упруго-чувствительным элементом, либо планарно свободны, но собраны воедино в заделке в сэндвич-структуру, обладающей качеством тела равного сопротивления изгибу. 2 з.п. ф-лы, 6 ил.

Description

Заявленное изобретение относится к измерительной технике, к датчикам давления контактного типа, в частности к тензометрическим средствам измерений и анализа стационарных и динамических напряженно-деформированных состояний упругого чувствительного элемента консольного типа вследствие воздействия на его поверхность физических величин (линейных перемещений, температуры, механических колебаний, скоростного напора газовых или жидкостных потоков и др.), преобразуемых в электрический сигнал, и может быть применено в экспериментальной аэродинамике для измерений скорости движения воздуха или скоростного напора (динамического давления) воздушного потока (ВП), а также для его визуализации при проведении аэродинамических испытаний как на аэродинамических поверхностях, так и в окружающем пространстве.
В практике наибольшее применение нашли простейшие контактные анемометры прямого преобразования, работающие в движущихся потоках [Дж. Фрайден. Современные датчики. Справочник. Москва: Техносфера, 2005. - 592 с; Рыжов C.H. Устройства для контроля за потоками жидкостей и газов. Датчики потока/Датчики и системы. Москва, 2007, №9, с. 38-40; Интернет-сайт http://www.ahlborn.com. Датчики воздушного потока ALMEMO]. Они состоят из трех основных частей: приемное устройство (чувствительный элемент, первичный преобразователь), вторичный преобразователь (механический, пневматический или электронный) и отсчетное устройство (индикатор, дисплей и т.п.).
Основным недостатком контактных анемометров прямого преобразования является их инерционность и, как следствие, ограниченность быстродействия при изменении скорости напора ВП и его направления.
Известно устройство для измерения скорости газожидкостного потока [Авторское свидетельство СССР на изобретение SU №1673986 A1. Устройство для измерения скорости газожидкостного потока], состоящее из комбинации двух чувствительных элементов, выполненных из микропроволоок полупроводника (нитевидного кристалла), включенных в смежные плечи измерительного моста, один из которых работает в режиме термоанемометра при малых скоростях ВП, а другой - в основном режиме тензорезистора. В набегающих газожидкостных потоках основной тензорезистор прогибается, увеличивая свою длину и получая деформацию, являющуюся функцией скорости потока. Основными недостатками устройства являются: анизотропность материала - сильная зависимость кристаллографической оси проволочного полупроводника от вектора скорости при невозможности регистрации этого направления; малая контактная (взаимодействующая с ВП) площадь и низкие упруго-эластичные свойства, и, как следствие, низкий тензорезистивный эффект.
Наиболее близким по технической сущности и достигаемому результату является тензорезистивный преобразователь [Авторское свидетельство СССР №387234. Тензорезистивный преобразователь], содержащий упругий элемент с симметрично расположенными по отношению к его продольной оси по обеим сторонам тензочувствительными элементами, выполненными в виде многослойной тонкопленочной структуры с четным числом последовательно соединенных тензочувствительных слоев, разделенных изолирующими пленками, и образующий упруго-чувствительный элемент консольного типа (УЧЭ), работающий на изгиб. Тензочувствительные слои, расположенные по обеим сторонам УЧЭ, имеют общий электрический вывод и соединены в полумостовую (мостовую) электрическую схему [Панфилов В.А. Электрические измерения, «Академия», 2006 г.]. Под действием силы, приложенной к тензорезистивному преобразователю, его свободный конец изгибается. Тензочувствительные слои, расположенные на одной стороне УЧЭ, растягиваются, а на другой - сжимаются. Сжатие и растяжение тензослоев изменяет их электрические сопротивления: с одной стороны УЧЭ сопротивление уменьшается, а с другой стороны - увеличивается. При таком включении тензочувствительных слоев (тензорезисторов) в смежные плечи измерительного моста электрический сигнал, пропорциональный перемещению от возмущающего воздействия, удваивается. Планарное или сэндвич изготовление попарных тензочувствительных слоев в четном количестве повышает коэффициент полезного действия, соответственно на единицу площади или объема. Следовательно, информацию о векторе силы, ортогонально приложенной сосредоточенной или равномерно распределенной по поверхности тензорезистивного преобразователя (например, динамического давления или скоростного напора воздушного или жидкостного потока), можно получить из деформации его изгиба в одну или другую противоположную сторону (инверсия знака вектора силы).
Известно, что изгибная жесткость EJx, определяемая как способность упругого элемента консольного типа сопротивляться изгибу, равна произведению модуля упругости Ε материала УЧЭ на момент инерции Jx=bh3/123 (где b - ширина, h - толщина) сечения консоли и может быть мягкой при Е<100 МПа или жесткой при Е>1000 МПа. При этом всегда является фиксированной величиной. Зависимость коэффициента упругости k консоли от ее размеров и свойств материала k=F/δ=EJx/4l3=Ebh3/4l3, где F - приложенная сила: сосредоточенная или равномерно распределенная F=ql, l - длина консоли. При этом отклонение свободного конца консоли δ=ml2/2EJx(1-m2l2/12(EJx)2), где m - реактивный момент: для сосредоточенной силы m=Fl; для равномерно распределенной силы m=ql2/2. Следовательно, при большой изгибной жесткости EJx консоли для получения требуемого тензорезистивного эффекта ΔR/R=KΔδ/δ (K - фактор) требуются значительные возмущающие воздействия силы (F, q). При мягкой изгибной жесткости, имеющей высокую чувствительностью к малым возмущениям, рост нагрузки приводит к пластическому излому - обратимой деформации (вынужденной эластичности) УЧЭ вблизи ее защемления (крепления, основания).
Следовательно, основным недостатком такого устройства является малый динамический диапазон преобразуемых внешних воздействий, из-за фиксированной изгибной жесткости EJx=const УЧЭ, определяемой формой и размерами его конструкции и упруго-эластичной константой материала. Кроме того, в пределах чувствительности и для жесткой, и для мягкой изгибной жесткости имеет место проблема квадратичной и кубической зависимости свойств УЧЭ от его размеров. При равномерно распределенной нагрузке q≠0 по площади S=lb консоли ее максимальный изгиб соответствует δmax≈Vl4/8EJx, а максимальный угол изгиба консоли составляет Θmax≈1/ρ≈Vl3/6EJx (где ρ - радиус кривизны, V - вектор силы, скоростной напор ВП). Более того, поскольку коэффициент упругости k связан с резонансной частотой консоли ω0 по закону гармонического осциллятора
Figure 00000001
(где mэфф - эффективная масса консоли), то изменение силы, приложенной к консоли, приводит к сдвигу резонансной частоты. В результате, на преобразуемый сигнал будут накладываться пульсации, амплитуда и частота которых зависит как от величины, так и направления возмущающей силы.
Таким образом, наличие фиксированной изгибной жесткости УЧЭ препятствует увеличению динамического диапазона преобразуемых внешних воздействий: жесткая упругость ограничивает порог чувствительности тензорезистивного преобразователя; мягкая изгибная жесткость, с ростом давления на поверхность S УЧЭ и, соответственно, увеличением изгиба δ приводит к его пластическому излому вблизи защемления (в заделке, у основания).
Целью изобретения является расширение динамического диапазона напряженно-деформированных состояний УЧЭ консольного типа, состоящего из тонкопленочного эластичного полимера и фольговых тензорезисторов, соответственно, расширение динамического диапазона тензорезистивного преобразования при прямом контактном воздействии скоростного напора (динамического давления) газовых или жидкостных потоков в электрический сигнал. При его осуществлении может быть получен следующий технический результат: расширение динамического диапазона преобразования напряженно-деформированных состояний в электрический сигнал с одновременным:
- уменьшением инерционности;
- уменьшением пульсаций с ростом скоростного напора;
- определением вектора скорости ВП, с возможностью регистрации его мгновенной составляющей, в том числе при его инверсии;
- прямой визуализацией направления ВП; и,
- существенным упрощением конструкции по сравнению с аналогами.
Технический результат достигается тем, что в известном тензорезистивном преобразователе [Авторское свидетельство СССР №387234. Тензорезистивный преобразователь] содержится: измерительный мост, индикатор и УЧЭ, выполненный в виде консольной балки из тонкопленочного эластичного полимера, двух или четырех фольговых тензорезисторов, планарно и попарно расположенных на противоположных сторонах УЧЭ, продольные оси которых симметричны относительно его продольной оси и параллельны между собой, при этом УЧЭ ориентирован ортогонально вектору приложенной силы и работает на изгиб. В результате образуется электрический сигнал, пропорциональный величине упругой деформации на изгиб, соответственно приложенной силе.
Признаками, отличающими изобретение от прототипа, являются:
1. введение по меньшей мере одного и более упругих слоев, выполненных из тонкопленочного эластичного полимера, имеющих одинаковую с УЧЭ ширину, но различные длины, и расположенных на нем последовательно с уменьшением длины в сторону его заделки, при этом упругие слои и УЧЭ планарно жестко связаны между собой или планарно свободны, но собраны воедино в заделке в упруго-чувствительную сэндвич-структуру, обладающую качеством тела равного сопротивления изгибу;
2. введенные один и более упругие слои расположены с двух сторон УЧЭ попарно симметрично или ассиметрично относительно его продольной оси;
3. введение одного упругого монослоя, выполненного из эластичного полимера с непрерывно-изменяемой площадью поперечного сечения, минимальной на свободном конце УЧЭ и максимальной в заделке, с образованием тела равного сопротивления изгибу.
Для расширения динамического диапазона преобразования кинетической энергии известно техническое решение: выполнение консольной балки в виде листовой рессоры - пакета упругих слоев (листов) разной длинны, собранных воедино и образующих тело равного сопротивления изгибу [Сопротивление материалов: Учебник для вузов / А.В. Александров, В.Д. Потапов, Б.П. Державин; под. ред. А.В. Александрова. - 3-е изд. испр. - М., Высшая школа, 2003. - 560 с; Интернет-сайт http://machinepedia.org/index.php. Рессора. Виды рессор]. В таких конструкциях совмещены функции демпфирующего (амортизатора, поглотителя колебаний) и упругого (энергоемкого) элементов. На этом принципе основана работа рессорных виброизоляторов [Например: Патент на изобретение RU №2282073 от 20.08.2006 г. Рессорный виброизолятор].
Признаком, характеризующим предлагаемое изобретение тензорезистивный преобразователь, является: выполнение упруго-чувствительного тензорезистивного элемента консольного типа совместно с одним и более упругими слоями разной длины или с одним упругим монослоем в виде симметричной или ассиметричной упруго-чувствительной сэндвич-структуры консольного типа, с переменной площадью сечения и обладающей качеством тела равного сопротивления изгибу. При этом упругие слои планарно жестко связаны между собой и упруго-чувствительным элементом либо планарно свободны, но собраны воедино в заделке.
Полученный при осуществлении изобретения технический результат, а именно, расширение динамического диапазона тензорезистивного преобразования напряженно-деформированных состояний в электрический сигнал при прямом контактном воздействии с одновременным: уменьшением инерционности; уменьшением пульсаций с ростом скоростного напора; определением вектора скорости, с возможностью регистрации его мгновенной составляющей, в том числе при инверсии вектора скорости; а также прямой визуализацией направления потока и существенным упрощением конструкции по сравнению с аналогами достигается за счет того, что изгибная жесткость на каждом участке (в сечении) упруго-чувствительной сэндвич-структуре тензорезистивного преобразователя различна: минимальна на свободном конце, поскольку определяется только мягкой жесткостью УЧЭ, и максимальна вблизи защемления (в заделке), поскольку складывается из жесткостей всех упругих слоев, включая упругость УЧЭ. При этом изменение изгибной жесткости упруго-чувствительной сэндвич-структуры осуществляется либо дискретно с введением каждого последующего упругого слоя, выполненного из тонкопленочного полимера, имеющего одинаковую с УЧЭ ширину, но различные длины, либо непрерывно за счет введения одного монослоя, выполненного из эластичного полимера с непрерывно-изменяемой площадью поперечного сечения.
На фиг. 1 изображен тензорезистивный преобразователь, содержащий: 1 - упруго-чувствительный элемент консольного типа (УЧЭ), выполненный из тонкопленочного эластичного полимера; 2 - двух или четырех фольговых тензорезисторов с выводами 5; 3 - один и более упругих слоев, выполненных из тонкопленочного эластичного полимера, имеющих одинаковую с УЧЭ ширину, но различные длины и собраны последовательно с уменьшением длины в упруго-чувствительную сэндвич-структуру; при этом упругие слои и УЧЭ планарно жестко связаны между собой, либо планарно свободны, но собраны воедино в пакет в заделке и образуют тело равного сопротивления изгибу; 4 - основание с жестким защемлением - заделкой; 6 - измерительный мост, плечи которого попарно соединены выводами 5 с тензорезисторами 2 в мостовую (полумостовую) схему, индикатор 7 и источник питания 8.
На фиг. 2-6 дополнительно показаны варианты изготовления устройства: фиг. 2, 3, 4 соответствуют п. 2, а фиг. 5, 6 - п. 3 формулы изобретения. На фиг. 2 равномерно распределенное по площади S упруго-чувствительной сэндвич-структуры воздействие V скоростного напора показано в виде стрелок.
Упруго-чувствительный элемент консольного типа 1 выполнен из упругого тонкопленочного эластичного полимера, двух (RG1, RG2) или четырех (RG1, RG2, RG3, RG4) фольговых тензорезисторов 2, планарно и попарно расположенных на его противоположных сторонах, продольные оси которых симметричны относительно его продольной оси и параллельны между собой, и электрических выводов 5 у основания 4. Смежные плечи измерительного моста 6 попарно соединены электрическими выводами 5 с фольговыми тензорезисторами 2 в полумостовую схему для двух активных RG1, RG2 тензорезисторов (R1, R2 - балансные постоянные сопротивления, показаны на фиг. 1 штриховыми линиями) или мостовую схему для четырех активных RG1, RG2, RG3, RG4 тензорезисторов. Индикатор 7 включен в измерительную диагональ измерительного моста, другая диагональ которого соединена с источником 8 напряжения U питания.
Введенные один и более упругие слои, выполненные из тонкопленочного эластичного полимера (фиг. 1-4), имеют одинаковую с УЧЭ ширину, но различные длины и расположены на нем последовательно с уменьшением длины в сторону заделки - в сторону его основания 4. При этом упругие слои могут быть выполнены либо планарно жестко связанными между собой и упруго-чувствительным элементом (например, склейкой, или изготовлены в едином технологическом цикле по планарной технологии), либо планарно свободными, но собранными воедино в пакет в заделке (в основании 4) с формированием упруго-чувствительной сэндвич-структуры, обладающей качеством тела равного сопротивления изгибу. Таким образом, количество участков с разной изгибной жесткостью определяется количеством упругих слоев и их расположением в сэндвич-структуре и может быть любым и изменяться как ступенчато, так и непрерывно.
Упруго-чувствительная сэндвич-структура ориентирована ортогонально вектору V приложенной силы - скоростному напору q (динамическому давлению). Согласно уравнению Бернулли это позволяет преобразовывать кинетическую энергию ВП (V) в потенциальную энергию давления q изоэнтропически заторможенного газа: q=ρвоздV2/2, где ρвозд и V - плотность и скорость ВП, соответственно [Гарбузов В.М. и др. Аэромеханика: Учеб. для студентов вузов. - М.: Транспорт, 2000]. В исходном состоянии при отсутствии скоростного напора (при V=0, и, соответственно q=0) упруго-чувствительная сэндвич-структура находится в равновесном состоянии, изгиб
Figure 00000002
и деформация изгиба
Figure 00000003
равны нулю, соответственно, ε0=ΔR/R=KΔδ/δ=0. При этом угол изгиба Θ=0 и радиус кривизны упруго-чувствительной сэндвич-структуры ρ=1/Θ~∞.
Отношение между деформацией ε0 и выходным напряжением u0 определяется: для полумостового включения -u0=U/2·KSε0; для полномостового включения - u0=U·KSε0, где KS - K - фактор. При указанном включении тензорезисторов в плечи измерительного моста 6 деформация продольного (по осям плоскости S=lb) сжатия/растяжения исключена, возможна только деформация на δ-изгиб при прямом направлении распространения потока или - δ-изгиб при обратном инверсном направлении (фиг. 2).
Устройство работает следующим образом. Под действием отличного от нуля скоростного напора (например, воздушного или жидкостного потока) малой величины q≥0, распределенного по всей поверхности S=lb упруго-чувствительной сэндвич-структуре, имеющей различную изгибную жесткость на разных а, b, с, d участках, изгибается на малую величину
Figure 00000004
только начальный, первый а участок свободного конца консоли, имеющий самую мягкую изгибную жесткость. Поскольку изгибная жесткость всех последующих b, с, d участков (фиг. 2) возрастает кратно с каждым последовательно введенным упругим слоем, то эти b, с, d участки находятся в равновесии и не испытывают напряженно-деформированных состояний. При этом b участок, состоящий из слоя УЧЭ и одного или более упругих слоев планарно связанных либо не связанных между собой является опорным для предыдущего а участка. Соответственно, с участок является опорным для b участка, а основание 4 является опорным для последнего d участка. При этом количество участков неограниченно. С ростом скоростного напора q>0 увеличивается давление, распределенное по всей поверхности, и реакция опоры предыдущего а слоя на последующий b слой, вызывая в нем напряженно-деформированное состояние
Figure 00000005
. Поскольку реактивный момент для равномерно распределенной силы соответствует m=ql2/2, то рост нагрузки (скоростного напора q>0) на а участке с мягкой изгибной жесткостью приводит к его пластическому излому в максимуме реактивного момента, находящегося вблизи его защемления последующими слоями (опорным b участком), если его длина La равна или превышает критическую длину l. И так далее. При этом изгибную жесткость и длину каждого упругого слоя подбирают с таким расчетом, чтобы обеспечить максимально-возможную упругую деформацию предыдущего слоя с предотвращением его пластического излома. При дальнейшем росте скоростного напора q>>0 напряженно-деформированному состоянию будут подвергаться последующие участки с большей изгибной жесткостью до тех пор, пока не деформируется последний d участок
Figure 00000006
вблизи заделки у основания 4.
Введение по меньшей мере одного и более упругих слоев, имеющих одинаковую с УЧЭ ширину, но различные длины, и расположенных на нем последовательно с уменьшением длины в сторону его заделки, планарно жестко связанные между собой и УЧЭ или планарно свободные, но собранные воедино в заделке в упруго-чувствительную сэндвич-структуру, обладающей качеством тела равного сопротивления изгибу, предотвращает излом в областях максимума реактивного момента на каждом участке.
Таким образом, мягкая изгибная жесткость на свободном конце консоли обеспечивает высокую чувствительность тензорезистивного преобразователя при малых воздействиях, а напряженно-деформированное состояние самого жесткого участка упруго-чувствительной сэндвич-структуры вблизи ее заделки будет обеспечивать регистрацию максимально возможного воздействия скоростного напора. Благодаря этому обеспечивается расширение динамического диапазона напряженно-деформированных состояний упруго-чувствительной сэндвич-структуры. Более того, выполнение упруго-чувствительной сэндвич-структуры в виде тела равного сопротивления изгибу, с переменной изгибной жесткостью, обеспечивает равномерность напряжений по всей ее длине.
Преобразование скоростного напора при его прямом контактном воздействии на упруго-чувствительную сэндвич-структуру в электрический сигнал осуществляется посредствам двух или четырех фольговых тензорезисторов 2 (фиг. 1). При этом, если вектор скорости V имеет прямое направление, как показано на фиг. 2, то тензорезисторы RG1 и RG3 растягиваются, a RG2 и RG4 - сжимаются. При инверсном направлении, наоборот: RG1 и RG3 - сжимаются, a RG2 и RG4 - растягиваются. Сжатие и растяжение фольговых тензорезисторов 2 под действием компонентов механической энергии (деформации) изменяет их электрические сопротивления. Соответственно, с одной стороны упругой подложки электрические сопротивления RG1 и RG3 увеличиваются/уменьшаются, а с другой стороны RG2 и RG4 - уменьшаются/увеличиваются. При таком включении тензорезисторов в смежные плечи измерительного моста 6 электрический сигнал u0, пропорциональный перемещению от возмущающего воздействия, удваивается.
Поскольку последующие упругие слои предотвращают излом предыдущего участка, то соблюдается отношение между деформацией ε0 и выходным напряжением u0 и, соответственно, между электрическим сигналом u0 и возмущающим воздействием V(q).

Claims (3)

1. Тензорезистивный преобразователь, содержащий: упруго-чувствительный элемент консольного типа, выполненный из тонкопленочного эластичного полимера, двух или четырех фольговых тензорезисторов, планарно и попарно расположенных на его противоположных сторонах, продольные оси которых симметричны относительно его продольной оси и параллельны между собой и электрических выводов со стороны его заделки; измерительный мост, смежные плечи которого попарно соединены с электрическими выводами фольговых тензорезисторов в полу- или полномостовую схему и индикатор, включенный в измерительную диагональ измерительного моста, при этом упруго-чувствительный элемент работает на изгиб ортогонально вектору приложенной силы, отличающийся тем, что введены по меньшей мере один и более упругих слоев, выполненных из тонкопленочного эластичного полимера, имеющих одинаковую с упруго-чувствительным элементом ширину, но различные длины, и расположены на нем последовательно с уменьшением длины в сторону его заделки, при этом упругие слои планарно жестко связаны между собой и упруго-чувствительным элементом либо планарно свободны, но собраны воедино в заделке в сэндвич-структуру, обладающей качеством тела равного сопротивления изгибу.
2. Тензорезистивный преобразователь по п. 1 отличающийся тем, что введенные один и более упругие слои расположены с двух сторон упруго-чувствительного элемента попарно симметрично или асимметрично относительно его продольной оси.
3. Тензорезистивный преобразователь по п. 1 или 2 отличающийся тем, что введен один упругий монослой, выполненный из эластичного полимера с непрерывно-изменяемой площадью поперечного сечения, минимальной на свободном конце упруго-чувствительного элемента и максимальной в заделке, с образованием тела равного сопротивления изгибу.
RU2015103960/28A 2015-02-06 2015-02-06 Тензорезистивный преобразователь RU2586259C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015103960/28A RU2586259C1 (ru) 2015-02-06 2015-02-06 Тензорезистивный преобразователь

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015103960/28A RU2586259C1 (ru) 2015-02-06 2015-02-06 Тензорезистивный преобразователь

Publications (1)

Publication Number Publication Date
RU2586259C1 true RU2586259C1 (ru) 2016-06-10

Family

ID=56115335

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015103960/28A RU2586259C1 (ru) 2015-02-06 2015-02-06 Тензорезистивный преобразователь

Country Status (1)

Country Link
RU (1) RU2586259C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2661456C1 (ru) * 2017-09-15 2018-07-16 Федеральное государственное бюджетное учреждение "Научно-исследовательский испытательный центр подготовки космонавтов имени Ю.А. Гагарина" Способ и устройство тензоэлектрического преобразования
IT201900019532A1 (it) * 2019-10-22 2021-04-22 Torino Politecnico Sensore e dispositivo per il monitoraggio di fluidi
CN115252964A (zh) * 2022-09-01 2022-11-01 中国科学院大学深圳医院(光明) 一种输液渗漏动态监测传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU387234A1 (ru) * 1971-02-22 1973-06-21 Вптб
SU489005A1 (ru) * 1974-01-21 1975-10-25 Институт Автоматики Тензорезисторный преобразователь
US4217569A (en) * 1978-10-18 1980-08-12 Atomic Energy Of Canada Limited Three dimensional strain gage transducer
RU94036810A (ru) * 1994-09-30 1996-06-27 Научно-исследовательский институт импульсной техники Двухмембранный тензопреобразователь малых давлений для медицинской техники

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU387234A1 (ru) * 1971-02-22 1973-06-21 Вптб
SU489005A1 (ru) * 1974-01-21 1975-10-25 Институт Автоматики Тензорезисторный преобразователь
US4217569A (en) * 1978-10-18 1980-08-12 Atomic Energy Of Canada Limited Three dimensional strain gage transducer
RU94036810A (ru) * 1994-09-30 1996-06-27 Научно-исследовательский институт импульсной техники Двухмембранный тензопреобразователь малых давлений для медицинской техники

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2661456C1 (ru) * 2017-09-15 2018-07-16 Федеральное государственное бюджетное учреждение "Научно-исследовательский испытательный центр подготовки космонавтов имени Ю.А. Гагарина" Способ и устройство тензоэлектрического преобразования
IT201900019532A1 (it) * 2019-10-22 2021-04-22 Torino Politecnico Sensore e dispositivo per il monitoraggio di fluidi
CN115252964A (zh) * 2022-09-01 2022-11-01 中国科学院大学深圳医院(光明) 一种输液渗漏动态监测传感器
CN115252964B (zh) * 2022-09-01 2023-06-16 中国科学院大学深圳医院(光明) 一种输液渗漏动态监测传感器

Similar Documents

Publication Publication Date Title
Mohammadi et al. Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment
Amarasinghe et al. Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements
Meti et al. MEMS piezoresistive pressure sensor: a survey
RU2586259C1 (ru) Тензорезистивный преобразователь
US9599180B2 (en) Beam-based nonlinear spring
US20090322183A1 (en) Inertial sensor and inertial detecting device
US7047818B2 (en) Capacitive force sensing device
Hari et al. Out-of-plane dual flexure MEMS piezoresistive accelerometer with low cross axis sensitivity
Sujan et al. Design and testing of piezoelectric resonant pressure sensor
Devi et al. A squared bossed diaphragm piezoresistive pressure sensor based on CNTs for low pressure range with enhanced sensitivity
KR20210137545A (ko) 2차원 힘 센서
Neethu et al. Sensitivity analysis of rectangular microcantilever structure with piezoresistive detection technique using Coventorware FEA
JP2013246033A (ja) 加速度センサ
WO2017132968A1 (zh) 压力传感装置及具有该压力传感装置的电子设备
US3143883A (en) Vibration damping means for transducers
RU2618496C1 (ru) Датчик ускорения
Biswas et al. Design and simulation of piezoresistive MEMS accelerometer for the detection of pathological tremor
Sindhanaiselvi et al. Performance analysis of embossed diaphragm based MEMS piezo resistive pressure sensor for flood level measurement
Schmid Electrostatically actuated all-polymer microbeam resonators: Characterization and application
Li et al. Research on pasted FBG-based accelerometer’s sensitization process method and its characteristics
Nallathambi et al. Performance analysis of slotted square diaphragm for MEMS pressure sensor
RU2586083C1 (ru) Тензорезистивный преобразователь
JP7049465B2 (ja) 二次元ナノインデンテーション装置及び方法
JP2008304409A (ja) 加速度検知ユニット及び加速度センサ
RU2505782C1 (ru) Наклеиваемый полупроводниковый тензорезистор (варианты)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200207