RU2586225C1 - Нагнетающая установка для транспортировки продукции нефтяных скважин с высоким газовым фактором и способ ее работы - Google Patents

Нагнетающая установка для транспортировки продукции нефтяных скважин с высоким газовым фактором и способ ее работы Download PDF

Info

Publication number
RU2586225C1
RU2586225C1 RU2014154369/06A RU2014154369A RU2586225C1 RU 2586225 C1 RU2586225 C1 RU 2586225C1 RU 2014154369/06 A RU2014154369/06 A RU 2014154369/06A RU 2014154369 A RU2014154369 A RU 2014154369A RU 2586225 C1 RU2586225 C1 RU 2586225C1
Authority
RU
Russia
Prior art keywords
fluid
bypass line
ejector
pump unit
installation according
Prior art date
Application number
RU2014154369/06A
Other languages
English (en)
Inventor
Азат Гумерович Хабибрахманов
Денис Валентинович Ксенофонтов
Андрей Алексеевич Паскидов
Айдар Кутдусович Абдрахманов
Original Assignee
Публичное акционерное общество "Татнефть" им. В.Д. Шашина (ПАО "Татнефть" им. В.Д. Шашина)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Татнефть" им. В.Д. Шашина (ПАО "Татнефть" им. В.Д. Шашина) filed Critical Публичное акционерное общество "Татнефть" им. В.Д. Шашина (ПАО "Татнефть" им. В.Д. Шашина)
Priority to RU2014154369/06A priority Critical patent/RU2586225C1/ru
Application granted granted Critical
Publication of RU2586225C1 publication Critical patent/RU2586225C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/14Conveying liquids or viscous products by pumping

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

Настоящее изобретение относится к области нефтедобычи, а именно к внутрипромысловой перекачке нефти, и в частности, к нагнетающей установке для транспортировки продукции нефтяных скважин с высоким газовым фактором и способу ее работы. В первом аспекте изобретения предложена насосная установка, обеспечивающая щадящий режим работы насосного агрегата посредством упрощенной конструкции насосной установки, что увеличивает межремонтный интервал оборудования при гарантировании надежности и стабильности транспортировки газожидкостной смеси с высоким газовым фактором в системах внутрипромысловой перекачки нефти. В дополнительном аспекте изобретения предложен способ работы такой насосной установки. 2 н. и 19 з.п. ф-лы, 3 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к области нефтедобычи, а именно к внутрипромысловой перекачке нефти, и в частности, к нагнетающей установке для транспортировки продукции нефтяных скважин с высоким газовым фактором и способу ее работы.
УРОВЕНЬ ТЕХНИКИ
Традиционным подходом для нагнетания мультифазной текучей среды является его сепарация для дальнейшей транспортировки. Из документов уровня техники известна система осуществления способа сбора и транспортирования продукции нефтяных скважин с высоким газовым фактором (RU 2406917 С2, МПК F17D 1/14, опубл. 20.12.2010), включающего в себя забор продукции нефтяных скважин с групповых замерных установок под устьевым давлением, пропускание ее через струйную технику, снабженную соплом, приемной камерой, камерой смешения и диффузором, последующую подачу ее на сепарационный узел, где производят разделение указанной продукции на газосодержащую продукцию сепарации - газонефтеводяную фазу, направляемую в напорный трубопровод, и водонефтяную часть, выполняющую роль рабочей среды, которую направляют на прием силового блока и с его выхода - в сопло струйной техники. В качестве струйной техники используют струйный аппарат, а перед пропусканием продукции нефтяных скважин через указанный струйный аппарат производят ее турбулизацию. Далее ее направляют в приемную камеру струйного аппарата и затем через камеру смешения последнего и его диффузор - в сепарационный узел с двумя ступенями сепарации, состоящий из последовательно размещенных гидроциклона и гравитационного сепаратора. При этом производят последовательную сепарацию продукции нефтяных скважин в гидроциклоне на свободный газ, отводимый в напорный трубопровод, и на газонефтеводяную жидкость, направляемую в гравитационный сепаратор, где указанную жидкость разделяют на газонефтеводяную фазу, направляемую в напорный трубопровод, и водонефтяную часть, выполняющую роль рабочей среды, которую через трубопровод и вспомогательное технологическое оборудование, обеспечивающее устойчивую работу силового блока и струйного аппарата, направляют на прием силового блока, а с его выхода - в сопло струйного аппарата.
Недостатком указанной системы является сложность конструкции, которая не обладает высокой эксплуатационной надежностью ввиду наличия множества сложных устройств, таких как гидроциклоны и струйные аппараты. Кроме того, необходимо дополнительно предусматривать средства разделения текучей среды на фазы для решения проблемы формирования так называемых газовых пробок, когда содержание газа в мультифазной текучей среде резко повышается и становится преобладающим.
Другой подход, реализуемый в системах внутрипромысловой перекачки нефти состоит в использовании мультифазных насосов винтового типа. Основными недостатками указанных насосных агрегатов являются низкая наработка на отказ конструктивных элементов ввиду наличия в текучей среде сероводородсодержащих примесей и избыточного количества попутного нефтяного газа. При этом стоимости приобретения и сервисного обслуживания высоки, а в случае выхода из строя насосных агрегатов указанного типа или их элементов требуется продолжительный ремонт.
В уровне техники известны решения, направленные на повышение надежности работы мультифазных насосов, общая идея которых заключается в подаче дополнительной текучей среды в жидкой фазе на впуск насоса. Например, система нефтегазового мультифазного насоса, описанная в CN 203067275 U (МПК F04B 53/20; опубл. 2013-07-17), в которой предусмотрено впускное отверстие, для впрыска в насос нефтяной составляющей, отделенной на сепараторном и фильтрующем устройстве, при подаче в нефтегазовый мультифазный насос смеси с высоким отношением газа к жидкости, при этом не возникает сухого трения, а впрыснутая нефтяная взвесь служит в качестве смазки.
Кроме того, например, в RU 2403448 С1 (МПК F04C 2/16; опубл. 10.11.2010) описана система защиты мультифазного насоса, выполненная с возможностью осуществления способа, включающего в себя этапы, на которых во всасывающую полость мультифазного насоса осуществляют дополнительную подачу жидкой фазы в периоды снижения доли жидкой фазы в перекачиваемой газосодержащей рабочей среде ниже допустимого значения порциями, через интервалы времени, в течение которых жидкая фаза гарантированно сохраняется в количестве, достаточном для замыкания зазоров в рабочих органах и уплотнениях валов мультифазного насоса.
Указанная система, выбранная в качестве наиболее близкого по своей технической сущности аналога для заявляемой установки, обладает рядом недостатков, как например, необходимость выполнения в насосе дополнительного впуска для введения жидкой фазы нефтегазовой смеси, что в свою очередь требует усложнения конструкции насосного агрегата и включения дополнительных устройств накопления и подведения текучей среды в жидкой фазе. Это в свою очередь приводит к снижению эксплуатационной надежности системы.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Для преодоления вышеуказанных проблем, а именно обеспечения щадящего режима работы насосного агрегата посредством упрощенной конструкции нагнетающей установки, что увеличивает межремонтный интервал оборудования при гарантировании надежности и стабильности транспортировки газожидкостной смеси с высоким газовым фактором в системах внутрипромысловой перекачки нефти, авторами была предложена нагнетающая установка для транспортировки продукции нефтяных скважин с высоким газовым фактором, содержащая:
открыто-вихревой насосный агрегат самовсасывающего типа, выполненный с возможностью нагнетания текучей среды, представляющей собой газожидкостную смесь,
байпасную линию, впуск которой расположен выше по потоку от насосного агрегата, а выпуск расположен ниже по потоку от насосного агрегата,
по меньшей мере одну задвижку, расположенную в байпасной линии,
эжектор, расположенный в байпасной линии ниже по потоку от по меньшей мере одной задвижки, расположенной в байпасной линии, и выполненный с возможностью регулирования потока текучей среды через байпасную линию и через насосный агрегат, причем нагнетающий впуск эжектора соединен по текучей среде посредством участка байпасной линии с основной линией в местоположении ниже по потоку от насосного агрегата и выше по потоку от места соединения основной линии и выпуска байпасной линии, всасывающий впуск эжектора соединен по текучей среде посредством участка байпасной линии с впуском байпасной линии, а выпуск эжектора соединен по текучей среде посредством участка байпасной линии с выпуском байпасной линии,
средство измерения параметров текучей среды, расположенное в основной линии для текучей среды ниже по потоку от насосного агрегата,
блок управления, выполненный с возможностью управления задвижками в ответ на параметры текучей среды, измеренные средством измерения параметров текучей среды.
В одном из вариантов предложена установка, в которой участок байпасной линии, присоединенный к нагнетающему впуску эжектора, выполнен в виде трубы диаметром не менее 60 мм.
В одном из вариантов предложена установка, в которой участок байпасной линии, присоединенный к всасывающему впуску эжектора, выполнен в виде трубы диаметром, составляющим не более половины диаметра участка байпасной линии, присоединенного к нагнетающему впуску эжектора.
В одном из вариантов предложена установка, в которой участок байпасной линии, присоединенный к всасывающему впуску эжектора, выполнен в виде трубы диаметром 26 мм.
В одном из вариантов предложена установка, в которой участок байпасной линии, присоединенный к выпуску эжектора, выполнен в виде трубы диаметром, составляющим не менее полутора диаметров участка байпасной линии, присоединенного к всасывающему впуску эжектора, и не более двух диаметров участка байпасной линии, присоединенного к всасывающему впуску эжектора.
В одном из вариантов предложена установка, в которой участок байпасной линии, присоединенный к выпуску эжектора, выполнен в виде трубы диаметром 48 мм.
В одном из вариантов предложена установка, в которой насосный агрегат выполнен с возможностью работы при производительности не менее 2,4 м3/час.
В одном из вариантов предложена установка, в которой насосный агрегат выполнен с возможностью работы при производительности до 40 м3/час.
В одном из вариантов предложена установка, в которой насосный агрегат потребляет не более 10 кВт электроэнергии.
В одном из вариантов предложена установка, в которой насосный агрегат выполнен с возможностью нагнетания текучей среды, подаваемой при давлении до 25 атм.
В одном из вариантов предложена установка, в которой насосный агрегат выполнен с возможностью создания давления нагнетаемой текучей среды не менее 20 атм.
В одном из вариантов предложена установка, в которой насосный агрегат содержит одно или более рабочих колес, причем насосный агрегат выполнен с возможностью вращения одного или более рабочих колес со скоростью до 1450 об/мин.
В одном из вариантов предложена установка, в которой средствами измерения параметров текучей среды является одно или более из датчика температуры, датчика давления, манометра, расходомера.
В одном из вариантов предложена установка, выполненная с возможностью нагнетания текучей среды с газосодержанием от 100 до 1500 и более м3 на тонну текучей среды.
В одном из вариантов предложена установка, выполненная с возможностью нагнетания текучей среды с процентным содержанием газа до 60%.
В одном из дополнительных аспектов изобретения предложен способ работы нагнетающей установки по первому аспекту изобретения, включающий в себя этапы, на которых:
направляют текучую среду в насосный агрегат и
одновременно направляют текучую среду в байпасную линию,
регулируют поток текучей среды посредством блока управления для одновременной работы насосного агрегата и байпасной линии с эжектором.
В одном из вариантов предложен способ, в котором регулирование потока текучей среды включает в себя этапы, на которых:
увеличивают поток текучей среды через байпасную линию при увеличении содержания газа в нагнетаемой текучей среде;
уменьшают поток текучей среды через байпасную линию при уменьшении содержания газа в нагнетаемой текучей среде.
В одном из вариантов предложен способ, в котором регулирование потока текучей среды включает в себя этап, на котором регулируют степень открывания задвижки, установленной на участке байпасной линии, присоединенном к всасывающему впуску эжектора.
В одном из вариантов предложен способ, в котором увеличивают степень открывания задвижки, установленной на участке байпасной линии, присоединенном к всасывающему впуску эжектора, для увеличения потока текучей среды, и уменьшают степень открывания задвижки, установленной на участке байпасной линии, присоединенном к всасывающему впуску эжектора, для уменьшения потока текучей среды.
В одном из вариантов предложен способ, в котором определяют уменьшение и/или увеличение содержания газа в нагнетаемой текучей среде средствами измерения параметров текучей среды, установленными перед впуском насосного агрегата.
В одном из вариантов предложен способ, в котором используют средства измерения параметров текучей среды, представляющие собой одно или более из датчика давления и манометра.
Следует понимать, что в предложенном способе работы так же, как и в предложенной нагнетающей установке достигается технический результат, состоящий в обеспечении щадящего режима работы насосного агрегата посредством осуществления описанных выше этапов работы нагнетающей установки согласно первому аспекту изобретения. А значит, в целом увеличивается межремонтный интервал оборудования и обеспечивается надежность и стабильность транспортировки газожидкостной смеси с высоким газовым фактором в системах внутрипромысловой перекачки нефти.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Далее подробнее будут описаны наиболее предпочтительные варианты осуществления изобретения со ссылкой на чертежи, на которых:
на фиг. 1 схематично показана нагнетающая установка в соответствии с первым аспектом изобретения,
на фиг. 2 схематично показана нагнетающая установка в составе групповой замерной установки,
на фиг. 3 схематично показана групповая замерная установка, содержащая насосную установку по фиг. 1.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Последующее описание относится к системам и устройствам внутрипромысловой перекачки нефти, и в частности, к нагнетающей установке для транспортировки продукции нефтяных скважин с высоким газовым фактором и способу ее работы.
На фиг. 1 схематично показана насосная установка 1 для транспортировки продукции нефтяных скважин с высоким газовым фактором, содержащая открыто-вихревой насосный агрегат 5 самовсасывающего типа, выполненный с возможностью нагнетания текучей среды, представляющей собой газожидкостную смесь, байпасную линию, впуск которой расположен выше по потоку от насосного агрегата 5, а выпуск расположен ниже по потоку от насосного агрегата 5, по меньшей мере одну задвижку (в проиллюстрированном варианте осуществления три задвижки 6, 7, 8), расположенную в байпасной линии, эжектор 9, расположенный в байпасной линии ниже по потоку от по меньшей мере одной задвижки 6, расположенной в байпасной линии, и выполненный с возможностью регулирования потока текучей среды через байпасную линию и через насосный агрегат 5, причем нагнетающий впуск эжектора 9 соединен по текучей среде посредством участка байпасной линии с основной линией в местоположении ниже по потоку от насосного агрегата 5 и выше по потоку от места соединения основной линии и выпуска байпасной линии, всасывающий впуск эжектора 9 соединен по текучей среде посредством участка байпасной линии с впуском байпасной линии, а выпуск эжектора 9 соединен по текучей среде посредством участка байпасной линии с выпуском байпасной линии, средство 14 измерения параметров текучей среды, расположенное в основной линии для текучей среды ниже по потоку от насосного агрегата 5, блок управления (не показан), выполненный с возможностью управления задвижками 6, 7, 8 в ответ на параметры текучей среды, измеренные средством измерения параметров текучей среды.
В качестве примера насосного агрегата 5, который представляет собой открыто-вихревой насос самовсасывающего типа, может быть указан открыто-вихревой насос FAS-NZ, предназначенный для транспортировки чистых и мутных, а также газонесущих жидкостей без абразивных примесей, перекачки сжиженных углеводородных газов.
С учетом свойств перекачиваемой текучей среды в системе внутрипромысловой перекачки нефти, таких как наличие в перекачиваемой текучей среде сероводород содержащих примесей и избыточного количества попутного нефтяного газа, в предпочтительных вариантах осуществления полезной модели необходимо предусмотреть насосный агрегат с возможностью работы при производительности не менее 2,4 м3/час и по меньшей мере до 40 м3/час.
Для обеспечения указанных параметров производительности, с учетом в случае необходимости возможности проведения монтажных работ и последующих эксплуатационных работ стандартными средствами, предпочтительным является выполнение участка байпасной линии, присоединенного к нагнетающему впуску эжектора, в виде трубы диаметром не менее 60 мм. Тогда предпочтительным является выполнение участка байпасной линии, присоединенного к всасывающему впуску эжектора, в виде трубы диаметром, составляющим не более половины диаметра участка байпасной линии, присоединенного к нагнетающему впуску эжектора, в качестве наиболее предпочтительного варианта, диаметром 26 мм. Кроме того, предпочтительно выполнять участок байпасной линии, присоединенный к выпуску эжектора, в виде трубы диаметром, составляющим не менее полутора диаметров участка байпасной линии, присоединенного к всасывающему впуску эжектора, и не более двух диаметров участка байпасной линии, присоединенного к всасывающему впуску эжектора, в качестве наиболее предпочтительного варианта, диаметром 48 мм.
Исходя из требований энергопотребления и энергоэффективности использования насосной установки в предпочтительных вариантах осуществления полезной модели насосный агрегат должен потреблять не более 10 кВт электроэнергии, при этом он должен быть выполнен с возможностью нагнетания текучей среды, подаваемой при давлении до 25 атм, а кроме того, в наиболее предпочтительных вариантах осуществления с возможностью создания давления нагнетаемой текучей среды не менее 20 атм.
В одном из вариантов осуществления насосный агрегат содержит одно или более рабочих колес, причем насосный агрегат выполнен с возможностью вращения одного или более рабочих колес со скоростью до 1450 об/мин, обеспечивая тем самым необходимые показатели как по энергопотреблению исходя из потребляемой мощности насосным агрегатом, так и по условиям перекачки текучей среды.
Насосная установка выполнена с различными дополнительными элементами и средствами, такими как краны, задвижки, фильтры, клапаны, эжекторы, в качестве которых могут быть использованы стандартные известные из уровня техники элементы, кроме того, в качестве средств измерения параметров текучей среды может выбираться одно или более из датчика температуры, датчика давления, манометра, расходомера.
Указанные элементы предназначены для осуществления функций, известных специалисту в области техники, таких как предотвращение утечек, перекрытие потока текучей среды, например, для проведения ремонтных работ или других эксплуатационных нужд, грубая фильтрация от механических примесей, контроль параметров текучей среды (например, температуры, давление, расход и т.п.).
Эжектор служит для отвода через байпасную линию избыточного количества газа, при образовании газовых пробок в нефтепроводе и обеспечивает щадящий режим работы насосного агрегата. Компоновка насосной установки в соответствии с полезной моделью позволяет выполнить установку с возможностью нагнетания текучей среды с газосодержанием от 100 до 1500 и более м3 на тонну текучей среды, таким образом, в предпочтительных вариантах осуществления полезной модели обеспечивается возможность нагнетания текучей среды с процентным содержанием газа до 60%.
Дополнительно может быть предусмотрен корпус вокруг нагнетающей установки для защиты всех элементов установки от внешних воздействий окружающей среды и неправомерных действий третьих лиц, кроме того, элементы нагнетающей установки могут быть расположены на одной несущей раме, выполненной из подходящего материала, предпочтительно металла, обработанного известными методами обработки металлов для гарантирования надежного закрепления элементов насосной установки.
Типовым применением нагнетающей установки для транспортировки продукции нефтяных скважин с высоким газовым фактором является ее использование в составе групповой замерной установки (ГЗУ).
На фиг. 2 схематично показана нагнетающая установка 31 в составе групповой замерной установки 21, содержащая дополнительно по меньшей мере одну задвижку на впуске насосной установки 31 (в проиллюстрированном варианте осуществления изобретения две задвижки 2 и 3), по меньшей мере один фильтр 4, расположенный ниже по потоку от по меньшей мере одной задвижки 2, 3 на впуске насосной установки 31, по меньшей мере одну задвижку и по меньшей мере один обратный клапан на выпуске насосной установки 31 (в проиллюстрированном варианте осуществления два клапана 10, 11 и две задвижки 12, 13), по меньшей мере одно дополнительное средство 15 измерения параметров текучей среды, расположенное ниже по потоку от насосного агрегата 5.
Далее обращаясь к фиг. 3, на которой схематично показана групповая замерная установка 21 (ГЗУ), содержащая нагнетающую установку в варианте осуществления, показанном на фиг. 2, и обозначенная ссылочной позицией 31 для ясности. Групповая замерная установка, как правило, предназначена для автоматического учета количества жидкости и газа, добываемых из нефтяных скважин с последующим определением дебита скважины. Установка, кроме того, позволяет осуществлять контроль над работой скважин по наличию подачи жидкости и газа и обеспечивает передачу этой информации, а также информацию об аварии на диспетчерский пункт.
Общий принцип работы ГЗУ 21 заключается в следующем. Текучая среда из скважин по сборным коллекторам, через обратные клапаны и линии задвижек (не показаны) поступает в переключатель 22 скважин многоходовой (ПСМ). Посредством ПСМ 22 текучая среда из одной из скважин направляется через задвижку (не показана) в измерительный узел 23, а продукция остальных скважин направляется в общий трубопровод через задвижку (не показана).
При этом для нагнетания текучей среды в общий трубопровод используется нагнетающая установка в варианте осуществления, показанном на фиг. 2, и обозначенная ссылочной позицией 31 для ясности.
Тогда согласно второму аспекту изобретения, способ работы нагнетающей установки включает в себя этапы, на которых направляют текучую среду в насосный агрегат 5, и одновременно направляют текучую среду в байпасную линию, регулируют поток текучей среды посредством блока управления для одновременной работы насосного агрегата 5 и байпасной линии с эжектором 9. В иллюстративных целях общее направление текучей среды через нагнетающую установку 31 ГЗУ 21 показано стрелками.
Регулирование потока текучей среды включает в себя этапы, на которых увеличивают поток текучей среды по байпасной линии при увеличении содержания газа в нагнетаемой текучей среде; уменьшают поток текучей среды по байпасной линии при уменьшении содержания газа в нагнетаемой текучей среде. В предпочтительных вариантах осуществления способа регулирование потока текучей среды включает в себя этап, на котором регулируют степень открывания задвижки, установленной на участке байпасной линии, присоединенном к всасывающему впуску эжектора. Причем в способе эксплуатации групповой замерной установки, содержащей насосную установку, описанную выше, увеличивают степень открывания задвижки, установленной на участке байпасной линии, присоединенном к всасывающему впуску эжектора, для увеличения потока текучей среды, и уменьшают степень открывания задвижки, установленной на участке байпасной линии, присоединенном к всасывающему впуску эжектора, для уменьшения потока текучей среды.
Согласно одному из предпочтительных вариантов осуществления способа изменение содержания газа в нагнетаемой текучей среде определяют средствами измерения параметров текучей среды, установленными перед впуском насосного агрегата, и предпочтительно, используют средства измерения параметров текучей среды, представляющие собой одно или более из датчика давления и манометра.
Устройство управления может быть выполнено в виде микроконтроллера, хранящего в постоянной памяти команды для осуществления этапов описанного выше способа. Подобный вариант осуществления изобретения может позволить оптимизировать и автоматизировать этапы описанного выше способа. В целом может быть дополнительно сокращено время, необходимое, например, для перенаправления потока текучей среды по байпасной линии с эжектором, минуя насосный агрегат при увеличении содержания газа в нагнетаемой текучей среде.
В качестве не ограничивающего примера далее рассматривается частный пример работы нагнетающей установки 1, а именно на стадии ее ввода в эксплуатацию. С запуском насосного агрегата 5, текучую среду направляют в насосный агрегат 5 и одновременно в байпасную линию (задвижки 6, 7 и 8 полностью открыты). Давление, определенное средством 14 измерения параметров текучей среды - манометром, установленным на впуске насосного агрегата, составляет 23 атм. Давление на выпуске составляет 23 атм. Постепенно, содержание газа в нагнетаемой текучей среде снижается, что определяют по падению давления на впуске, определенного средством 14 измерения параметров текучей среды. Задвижку 6 при этом постепенно закрывают, вплоть до обеспечения минимального потока текучей среды через эжектор 9, необходимого для втягивания избытка сероводорода, содержащего в нагнетаемой текучей среде. После часа работы нагнетающей установки 1, устанавливается стабильный режим работы, при этом давление на впуске, определяемое средством 14 измерения параметров текучей среды, составляет 13 атм, а давление на выпуске 3 составляет 24 атм. В дальнейшем избыток сероводорода, содержащегося в нагнетаемой текучей среде, отводят по байпасной линии через эжектор 9.
Таким образом, посредством упрощенной конструкции нагнетающей установки обеспечен щадящий режим работы насосного агрегата, при этом увеличивается межремонтный интервал для оборудования и гарантируется надежность и стабильность транспортировки газожидкостной смеси с высоким газовым фактором в системах внутрипромысловой перекачки нефти.
Следует понимать, что в предложенном способе работы так же, как и в предложенной нагнетающей установке достигается технический результат, состоящий в обеспечении щадящего режима работы насосного агрегата посредством осуществления описанных выше этапов работы нагнетающей установки согласно первому аспекту изобретения. А значит, в целом увеличивается межремонтный интервал оборудования и обеспечивается надежность и стабильность транспортировки газожидкостной смеси с высоким газовым фактором в системах внутрипромысловой перекачки нефти.
Следует также понимать, что конструкции и способы, раскрытые в материалах настоящего описания, являются примерными по сути, и что эти специфичные варианты осуществления не должны рассматриваться в ограничительном смысле, так как возможны многочисленные варианты. Предмет настоящего описания включает в себя все новые и не очевидные комбинации и подкомбинации различных систем и способов, и другие признаки, функции и/или свойства, раскрытые в материалах настоящего описания. Последующая формула изобретения подробно указывает некоторые комбинации и подкомбинации, рассматриваемые в качестве новых и неочевидных.

Claims (21)

1. Нагнетающая установка для транспортировки продукции нефтяных скважин с высоким газовым фактором, содержащая:
открыто-вихревой насосный агрегат самовсасывающего типа, выполненный с возможностью нагнетания текучей среды, представляющей собой газожидкостную смесь,
байпасную линию, впуск которой расположен выше по потоку от насосного агрегата, а выпуск расположен ниже по потоку от насосного агрегата,
по меньшей мере одну задвижку, расположенную в байпасной линии,
эжектор, расположенный в байпасной линии ниже по потоку от по меньшей мере одной задвижки, расположенной в байпасной линии, и выполненный с возможностью регулирования потока текучей среды через байпасную линию и через насосный агрегат, причем нагнетающий впуск эжектора соединен по текучей среде посредством участка байпасной линии с основной линией в местоположении ниже по потоку от насосного агрегата и выше по потоку от места соединения основной линии и выпуска байпасной линии, всасывающий впуск эжектора соединен по текучей среде посредством участка байпасной линии с впуском байпасной линии, а выпуск эжектора соединен по текучей среде посредством участка байпасной линии с выпуском байпасной линии,
средство измерения параметров текучей среды, расположенное в основной линии для текучей среды ниже по потоку от насосного агрегата,
блок управления, выполненный с возможностью управления задвижками в ответ на параметры текучей среды, измеренные средством измерения параметров текучей среды.
2. Установка по п. 1, в которой участок байпасной линии, присоединенный к нагнетающему впуску эжектора, выполнен в виде трубы диаметром не менее 60 мм.
3. Установка по п. 2, в которой участок байпасной линии, присоединенный к всасывающему впуску эжектора, выполнен в виде трубы диаметром, составляющим не более половины диаметра участка байпасной линии, присоединенного к нагнетающему впуску эжектора.
4. Установка по п. 3, в которой участок байпасной линии, присоединенный к всасывающему впуску эжектора, выполнен в виде трубы диаметром 26 мм.
5. Установка по п. 3, в которой участок байпасной линии, присоединенный к выпуску эжектора, выполнен в виде трубы диаметром, составляющим не менее полутора диаметров участка байпасной линии, присоединенного к всасывающему впуску эжектора, и не более двух диаметров участка байпасной линии, присоединенного к всасывающему впуску эжектора.
6. Установка по п. 5, в которой участок байпасной линии, присоединенный к выпуску эжектора, выполнен в виде трубы диаметром 48 мм.
7. Установка по любому из пп. 1-6, в которой насосный агрегат выполнен с возможностью работы при производительности не менее 2,4 м3/час.
8. Установка по любому из пп. 1-6, в которой насосный агрегат выполнен с возможностью работы при производительности до 40 м3/час.
9. Установка по любому из пп. 1-6, в которой насосный агрегат потребляет не более 10 КВт электроэнергии.
10. Установка по любому из пп. 1-6, в которой насосный агрегат выполнен с возможностью нагнетания текучей среды, подаваемой при давлении до 25 атм.
11. Установка по любому из пп. 1-6, в которой насосный агрегат выполнен с возможностью создания давления нагнетаемой текучей среды не менее 20 атм.
12. Установка по любому из пп. 1-6, в которой насосный агрегат содержит одно или более рабочих колес, причем насосный агрегат выполнен с возможностью вращения одного или более рабочих колес со скоростью до 1450 об/мин.
13. Установка по любому из пп. 1-6, в котором средствами измерения параметров текучей среды является одно или более из датчика температуры, датчика давления, манометра, расходомера.
14. Установка по любому из пп. 1-6, выполненная с возможностью нагнетания текучей среды с газосодержанием от 100 до 1500 и более м3 на тонну текучей среды.
15. Установка по любому из пп. 1-6, выполненная с возможностью нагнетания текучей среды с процентным содержанием газа до 60%.
16. Способ работы нагнетающей установки по любому из пп. 1-15, включающий в себя этапы, на которых:
направляют текучую среду в насосный агрегат и
одновременно направляют текучую среду в байпасную линию,
регулируют поток текучей среды посредством блока управления для одновременной работы насосного агрегата и байпасной линии с эжектором.
17. Способ по п. 16, в котором регулирование потока текучей среды включает в себя этапы, на которых:
увеличивают поток текучей среды через байпасную линию при увеличении содержания газа в нагнетаемой текучей среде;
уменьшают поток текучей среды через байпасную линию при уменьшении содержания газа в нагнетаемой текучей среде.
18. Способ по п. 16 или 17, в котором регулирование потока текучей среды включает в себя этап, на котором регулируют степень открывания задвижки, установленной на участке байпасной линии, присоединенном к всасывающему впуску эжектора.
19. Способ по п. 18, в котором увеличивают степень открывания задвижки, установленной на участке байпасной линии, присоединенном к всасывающему впуску эжектора, для увеличения потока текучей среды, и уменьшают степень открывания задвижки, установленной на участке байпасной линии, присоединенном к всасывающему впуску эжектора, для уменьшения потока текучей среды.
20. Способ по п. 16 или 17, в котором определяют уменьшение и/или увеличение содержания газа в нагнетаемой текучей среде средствами измерения параметров текучей среды, установленными перед впуском насосного агрегата.
21. Способ по п. 20, в котором используют средства измерения параметров текучей среды, представляющие собой одно или более из датчика давления и манометра.
RU2014154369/06A 2014-12-30 2014-12-30 Нагнетающая установка для транспортировки продукции нефтяных скважин с высоким газовым фактором и способ ее работы RU2586225C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014154369/06A RU2586225C1 (ru) 2014-12-30 2014-12-30 Нагнетающая установка для транспортировки продукции нефтяных скважин с высоким газовым фактором и способ ее работы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014154369/06A RU2586225C1 (ru) 2014-12-30 2014-12-30 Нагнетающая установка для транспортировки продукции нефтяных скважин с высоким газовым фактором и способ ее работы

Publications (1)

Publication Number Publication Date
RU2586225C1 true RU2586225C1 (ru) 2016-06-10

Family

ID=56115320

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014154369/06A RU2586225C1 (ru) 2014-12-30 2014-12-30 Нагнетающая установка для транспортировки продукции нефтяных скважин с высоким газовым фактором и способ ее работы

Country Status (1)

Country Link
RU (1) RU2586225C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715297C1 (ru) * 2019-09-10 2020-02-26 Акционерное общество "Новомет-Пермь" Установка для поверхностной перекачки газожидкостной смеси

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2403448C1 (ru) * 2009-06-02 2010-11-10 Общество С Ограниченной Ответственностью "Вниибт-Буровой Инструмент" Способ и устройство защиты мультифазного насоса
CN203067275U (zh) * 2012-12-13 2013-07-17 重庆明珠机电有限公司 油气混输泵组系统
RU2521183C1 (ru) * 2012-12-11 2014-06-27 Общество с ограниченной ответственностью "ЛУКОЙЛ-ПЕРМЬ" Станция перекачки и сепарации многофазной смеси

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2403448C1 (ru) * 2009-06-02 2010-11-10 Общество С Ограниченной Ответственностью "Вниибт-Буровой Инструмент" Способ и устройство защиты мультифазного насоса
RU2521183C1 (ru) * 2012-12-11 2014-06-27 Общество с ограниченной ответственностью "ЛУКОЙЛ-ПЕРМЬ" Станция перекачки и сепарации многофазной смеси
CN203067275U (zh) * 2012-12-13 2013-07-17 重庆明珠机电有限公司 油气混输泵组系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715297C1 (ru) * 2019-09-10 2020-02-26 Акционерное общество "Новомет-Пермь" Установка для поверхностной перекачки газожидкостной смеси

Similar Documents

Publication Publication Date Title
US9784075B2 (en) Gas compression system
RU2378032C2 (ru) Установка для разделения смеси нефти, воды и газа
AU2009280364B2 (en) Device for separating and collecting fluid in gas from a reservoir
US20200088201A1 (en) Multiphase pump
US20160138595A1 (en) Subsea fluid processing system with intermediate re-circulation
RU2586225C1 (ru) Нагнетающая установка для транспортировки продукции нефтяных скважин с высоким газовым фактором и способ ее работы
RU2578553C1 (ru) Насосный узел, групповая замерная установка и способ ее эксплуатации
CN202954970U (zh) 超大抽气量高效水环真空泵成套装置
RU2236639C1 (ru) Система сбора и транспортирования продукции нефтяных скважин
NO168965B (no) Fremgangsmaate og apparat for pumping av fluid med vaeske og gassfase
AU2015202860B2 (en) Combined multi-phase pump and compressor unit and gas compression system
RU2406917C2 (ru) Способ сбора и транспортирования продукции нефтяных скважин с высоким газовым фактором и система для его осуществления
RU158480U1 (ru) Насосное устройство для перекачки продукции нефтяных скважин с высоким газовым фактором
CN205422673U (zh) 一种三相分离器的供气稳压装置
RU2046931C1 (ru) Устройство для разработки нефтяного месторождения (варианты)
RU2521183C1 (ru) Станция перекачки и сепарации многофазной смеси
CN206458583U (zh) 一种联动开停机控制装置
CN201671840U (zh) 抽取地下液体装置
CA2972928C (en) Wet gas compression
CN205782015U (zh) 一种双螺杆混输泵回流系统
RU2741165C2 (ru) Станция перекачки многофазной смеси
CN204435469U (zh) 一种农田水利灌溉泵站抽水系统
RU2739963C2 (ru) Мультифазная насосная станция
RU2640141C1 (ru) Насосная станция для перекачки многофазных сред
RU113796U1 (ru) Устройство защиты мультифазного насоса

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171231