RU2586066C2 - Полиэпигалогидриновые обратные деэмульгаторы - Google Patents

Полиэпигалогидриновые обратные деэмульгаторы Download PDF

Info

Publication number
RU2586066C2
RU2586066C2 RU2013127147/04A RU2013127147A RU2586066C2 RU 2586066 C2 RU2586066 C2 RU 2586066C2 RU 2013127147/04 A RU2013127147/04 A RU 2013127147/04A RU 2013127147 A RU2013127147 A RU 2013127147A RU 2586066 C2 RU2586066 C2 RU 2586066C2
Authority
RU
Russia
Prior art keywords
oil
water
value
demulsifier
composition
Prior art date
Application number
RU2013127147/04A
Other languages
English (en)
Other versions
RU2013127147A (ru
Inventor
Томас Н. ТЕКАВЕЦ
ДжиЭр Маркус Д. ФАУСТ
Original Assignee
Налко Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Налко Компани filed Critical Налко Компани
Publication of RU2013127147A publication Critical patent/RU2013127147A/ru
Application granted granted Critical
Publication of RU2586066C2 publication Critical patent/RU2586066C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/28Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having one amino group and at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the carbon skeleton, e.g. ethers of polyhydroxy amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/10Saturated ethers of polyhydroxy compounds
    • C07C43/11Polyethers containing —O—(C—C—O—)n units with ≤ 2 n≤ 10
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • C08L71/03Polyepihalohydrins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/602Compositions for stimulating production by acting on the underground formation containing surfactants
    • C09K8/604Polymeric surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/885Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/04Dewatering or demulsification of hydrocarbon oils with chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/12Swell inhibition, i.e. using additives to drilling or well treatment fluids for inhibiting clay or shale swelling or disintegrating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Polyethers (AREA)
  • Colloid Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к вариантам композиции обратного деэмульгатора для разделения водных внешних эмульсий воды и нефти, а также к способу разделения эмульсии воды и нефти. Композиция обратного деэмульгатора содержит, по меньшей мере, один полиэпигалогидрин формулы (1), где X выбирают из группы, включающей хлорид, бромид, йодид, трифторметилсульфонат, толуолсульфонат, метилсульфонат, их комбинации, а также N+R1R2R3, где R1, R2, R3 представляют собой алкил, или арил, или водород, y1 имеет значение от 2 до 20, y2 имеет значение от 2 до 20, y3 имеет значение от 2 до 20. Способ разделения эмульсии воды и нефти заключается в том, что к эмульсии добавляют вышеуказанную композицию обратного деэмульгатора в эффективном количестве. Изобретение позволяет получить экономически эффективный деэмульгатор, имеющий хорошие вязкостные показатели и высокую производительность. 5 н. и 3 з.п. ф-лы, 4 ил., 3 табл., 4 пр.

Description

Область техники
Настоящее изобретение в целом относится к деэмульгаторным композициям и способам разделения эмульсий воды и нефти. Более конкретно изобретение относится к структурно модифицированным полиэпигалогидринам для разделения эмульсий воды и нефти. Настоящее изобретение имеет особое значение для разветвленных и линейных полиэпигалогидринов и его полиэлектролитов для разделения эмульсий типа масло-в-воде и комплексных водных внешних эмульсий.
Предпосылки создания изобретения
Сырая нефть, добываемая из геологических формаций, содержит различные количества воды. Вода и сырая нефть обычно не смешиваются. Когда присутствуют природные межфазные активные соединения, эти соединения могут агрегировать на поверхности воды и нефти и вызывать диспергирование капель нефти в водную фазу. Такие двухфазные системы с внешней водой и внутренним маслом обычно называют обратными нефтяными эмульсиями, и они могут быть довольно стабильными. В процессе подъема сырой нефти через производственные трубы вода и масло сталкиваются с повышенной энергией смешения от быстрого потока в сужениях и изгибах. Эта дополнительная энергия смешения может также эмульгировать воду и нефть. Присутствие сырой нефти в воде может влиять на очистку воды и/или системы повторного введения воды. В частности, не содержащая нефть вода требуется для применений, где воду выпускают в окружающую среду, таких как забортная вода на морских платформах, или используют при производстве пара, такие как пар для гравитационного дренирования.
Обычно используемые химические вещества в качестве обратных деэмульгаторов или осветлителей воды включают следующие вещества: тридитиокарбаминовые кислоты (патент US 5152927); соли дитиокарбаминовой кислоты (патент US 5247087); диметиламиноэтилакрилатметилхлоридные и/или бензилхлоридные четвертичные соли (патент US 5643460), полимерные четвертичные аммониевые бетаины (патент US 3929635), а также соли металлов (хлорид цинка, хлорид алюминия). Также используют полимерные четвертичные аммониевые соли и сополимеры акриловой кислоты и акриламида. Эти соединения, однако, не могут обеспечить удовлетворительную работу во всех случаях. В частности, при очень холодной погоде (например, -40°C и ниже) известны различные проблемы. Эти активные ингредиенты обычно являются вязкими и требуют подходящего растворителя для снижения вязкости смеси обратного деэмульгатора.
Главной задачей в производстве месторождений является разделение эмульсий масло-в-воде, иначе известных как обратные эмульсии. Многочисленные обратные деэмульгаторы также имеют небольшой диапазон доз для обработки, что делает необходимый контроль разделения тяжелым и сложным. Комплексные или множественные эмульсии обычно требуют наличия обратного и стандартного деэмульгатора для разделения на чистую воду и сухое масло. Эти два продукта традиционно несовместимы, так что каждый обычно вводят отдельно.
Таким образом, существует постоянная потребность в новых, экономичных и эффективных химических веществах и способах разделения обратных эмульсий и комплексных эмульсий на составные компоненты воды и масла.
Сущность изобретения
Настоящее изобретение, соответственно, обеспечивает композицию обратного деэмульгатора для разделения внешних эмульсий на воду и нефть. В одном варианте осуществления настоящего изобретения композиция включает один или несколько полиэпигалогидринов в эффективном количестве. В другом варианте осуществления один или несколько полиэпигалогидринов представляют собой полиэлектролит. В способе разделения обратной эмульсии или комплексной водной внешней эмульсии на воду и нефть изобретение включает добавление одного или нескольких полиэпигалогидринов в эффективном количестве, их полиэлектролитов и любых их комбинаций.
Преимуществом настоящего изобретения является создание нового деэмульгатора. для разделения эмульсий типа масло-в-вводе, связанных с обработкой нефти.
Еще одним преимуществом настоящего изобретения является создание новых деэмульгаторов, которые имеют превосходную производительность и гораздо более экономически эффективны по сравнению с известными в данной области в настоящее время деэмульгаторами.
Еще одним преимуществом настоящего изобретения является создание нового деэмульгатора для разделения эмульсий типа масло-в-воде, вызванного введением поверхностно-активных веществ, связанных с повышением нефтеотдачи.
Еще одним преимуществом изобретения является создание производственного преимущества в части более легкого контроля температуры из-за большей массы материала для абсорбции тепла реакции, что повышает безопасность.
Дополнительное преимущество настоящего изобретения заключается в создании производственного преимущества, которое позволяет использовать меньшее количество эпигалогидрина на партию вследствие более высокой молекулярной массы глицеринового инициатора.
Вышесказанное описывает довольно широко признаки и технические преимущества настоящего изобретения для того, чтобы лучше понять последующее подробное описание изобретения. Дополнительные особенности и преимущества настоящего изобретения будут описаны ниже, образуя объект формулы изобретения. Специалисту в данной области техники очевидно, что раскрытые концепции и конкретные варианты осуществления могут легко использоваться в качестве основы для модификации или разработки других вариантов осуществления для достижения тех же целей, что и настоящее изобретение. Специалистам в данной области техники также ясно, что такие эквивалентные варианты осуществления не отклоняются от сущности и объема изобретения, изложенного в прилагаемой формуле изобретения.
Краткое описание фигур
На фиг.1 показана общая структура полиэпигалогидриновых соединений по изобретению.
На фиг.2 показана общая структура кватернизованных и разветвленных полиэпигалогидриновых соединений по изобретению.
На фиг.3 показан вариант осуществления синтеза разветвленного полиэпихлоргидрина.
На фиг.4 показан вариант осуществления кватернизации разветвленного полиэпихлоргидрина.
Подробное описание изобретения
Используемый здесь термин "обратный деэмульгатор" обозначает класс химических соединений, используемых для облегчения разделения эмульсий (включая простую эмульсию масло-в-воде и множественные/комплексные эмульсии, такие как вода-в-масле-в-воде). Химические соединения, используемые для обработки эмульсий типа масло-в-воде, также обычно называют осветлителями воды. Они широко используются для обработки сырой нефти, которую обычно получают со значительными количествами воды. Во многих случаях сырую нефть можно диспергировать или эмульгировать в водной фазе и ее нужно удалять из воды до повторного введения, обработки или слива воды.
В одном варианте осуществления настоящее изобретение относится к композиции обратного деэмульгатора, содержащей один или несколько полиэпигалогидринов, и к способу применения композиции для разделения эмульсий нефти и воды. На фиг.1 показана общая структура таких полимеров, и на фиг.2 показан вариант осуществления, в котором полимеры являются кватернизованными и разветвленными. На фигуре 1 X представляет собой уходящую группу, такую как хлорид, бромид, йодид, трифторметилсульфонат, толуолсульфонат, метилсульфонат и им подобные и их комбинации. Уходящая группа предпочтительно представляет собой хлорид, бромид, йодид или их комбинации. Кислотами Льюиса являются кислоты Бренстеда, предпочтительно BF3 и/или AlMe3. y1, y2 и y3 независимо имеют значение от около 2 до около 20. В предпочтительном варианте осуществления y1, y2 и y3 независимо имеют значение от около 3 до около 15. В более предпочтительном варианте осуществления y1, y2 и y3 независимо имеют значение от около 5 до около 10. Большие соотношения эпигалогидрина и глицерина, например, приводят к более высоким значениям y. Например, соотношение 5:1 эпи: спирт (например, глицерин), y=2-3, для соотношения 10:1 y=6-7, для 20:1 y=14-15 и т.д. На фиг.2 X представляет собой уходящую группу, как описано выше. R1, R2 и R3 независимо представляют собой любую алкильную или арильную группу или водород. Предпочтительными являются метил и/или этил.
"Алкил" обозначает моновалентную группу, полученную из линейного или разветвленного насыщенного углеводорода путем удаления одного атома водорода. Представители алкильных групп включают метил, этил, н- и изо-пропил, цетил и им подобные. Предпочтительными алкилами являются метил и этил.
"Арил" обозначает ароматическую моноциклическую или полициклическую кольцевую систему, содержащую от около 6 до около 10 атомов углерода. Арил необязательно замещен одним или несколькими C1-C20алкилами, алкоксигруппами или галогеналкильными группами. Представители арильных групп включают фенил, или нафтил, или замещенный фенил, или замещенный нафтил.
В другом варианте осуществления композиция включает по меньшей мере один полиэпигалогидрин, по меньшей мере один его полиэлектролит и любую их комбинацию.
Согласно варианту осуществления раскрытые обратные деэмульгаторы могут использоваться отдельно или в комбинации с любым из группы других агентов, разрушающих эмульсии, или деэмульгаторов, известных в данной области. Типичные деэмульгаторы для разрушения нефтяных эмульсий, которые могут найти применение в составах настоящего изобретения, описаны, например, в патентах US 2470829; 2944978, 3576740, 5152927 и 5643460. Другие обратные деэмульгаторы, которые могут быть полезны в сочетании с раскрытой композицией, описаны в патентах US 5032085, "Reverse Emulsion Breaking Method Using Amine Containing Polymers", и 5643460, "Method for Separating Oil from Water in Petroleum Production".
В альтернативных вариантах осуществления описанная композиция для обратного деэмульгатора обычно зависит от свойств эмульсии полученных жидкостей. В частности, композицию обратного деэмульгатора получают из эффективного количества одного или нескольких полиэпигалогидринов. Композиция может содержать любое количество композиции, достаточное для достижения очистки воды. Композиция обратного деэмульгатора может быть получена в различных концентрациях, включая от следовых количеств до около 100 масс.%, или от около 1 масс.% до около 99 масс.% композиции, или от около 10 масс.% до около 90 масс.% композиции. Более конкретно обратный деэмульгатор может добавляться в количестве, равном от около 20 масс.% до около 80 масс.% композиции или от около 40 масс.% до около 70 масс.% в композицию обратного деэмульгатора. Более предпочтительно, обратный деэмульгатор добавляют в количестве, равном от около 25 масс.% до около 50 масс.% в композицию обратного деэмульгатора.
В альтернативном варианте осуществления другие растворители могут включаться с полиэпигалогидриновым обратным деэмульгатором по изобретению, когда растворитель может добавляться в количестве от около 1 масс.% до около 10 масс.% на композицию. В целом композиция обратного деэмульгатора может включать количество полиэпигалогидрина в диапазоне от следового количества или от около 1 масс.% до около 99 масс.% или 100 масс.% на композицию деэмульгатора. Типичные растворители включают воду и/или низкомолекулярные спирты.
Количество используемой композиции обратного деэмульгатора зависит от конкретной обрабатываемой водной внешней эмульсии. Обычно эффективное количество композиции обратного деэмульгатора составляет от около 1 части на миллион до около 5000 частей на миллион активного вещества в расчете на общий объем эмульсии. Более предпочтительно диапазон дозировки составляет от около 1 части на миллион до около 1000 частей на миллион активного вещества в расчете на общий объем эмульсии. В другом варианте осуществления дозировка составляет от около 10 частей на миллион до около 1000 частей на миллион активного вещества в расчете на общий объем эмульсии.
Введение композиции, обратного деэмульгатора в эмульсию может осуществляться любым подходящим способом. Например, композиция может вводиться в сырую нефть вверху скважины или вводиться в сырую нефть восходящим потоком в сосуды для отделения воды (такие как отделитель свободной воды или аппараты для термообработки). Обратный деэмульгатор также может вводиться в нефтьсодержащий водяной восходящий поток в флотационные ячейки для воды или восходящий поток съемного бака. Композиция обратного деэмульгатора может вводиться непрерывным или периодическим способом. Стадию введения предпочтительно осуществляют с использованием электрического или газового насоса, но могут использоваться также любые подходящие насосные устройства.
Очищенная водная внешняя эмульсия сырой нефти затем подвергается разделению на отдельные слои воды и нефти. После осуществления разделения на отдельные слои воды и нефти различные способы, известные в данной области техники, могут использоваться для извлечения свободной воды и отделения сырой нефти. В типичном процессе очистки получаемой воды обеспечивают резервуар для удержания композиции по изобретению в разбавленной или неразбавленной форме рядом с точкой химического введения. Роль обратного деэмульгатора обычно заключается в очистке и выгрузке несодержащей нефти воды. Следует иметь в виду, что изобретение имеет равные применения для всех процессов нефтяной промышленности.
Предпочтительные полиэпигалогидрины по изобретению включают полиэпихлоргидрин, полиэпибромгидрин, полиэпийодгидрин и т.п. и их комбинации. Диапазон молекулярной массы этих полимеров обычно составляет от около 400 до около 20000 M (среднечисленная молекулярная масса).
При синтезе полиэпигалогидринов по изобретению для инициирования реакции может использоваться широкий ряд полиолов с катализатором кислоты Льюиса, а также их алкоксилированные (например, этоксилированные или пропоксилированные) аналоги. Представители полиолов включают триметилолпропан, глицерин, полиглицерин, пентаэритрит, сорбит и им подобные и их комбинации. В альтернативных вариантах осуществления любой полиол, известный в данной области техники, или его эквиваленты могут использоваться для инициирования реакции синтеза. Представители кислот Льюиса включают алкилалюмосоединения (например, триизобутилалюминий, триэтилалюминий, диизобутилалюмохлорид, моноизобутилалюмохлорид и изопропилат алюминия), BF3, HPF6 и SnCl4 и им подобные и их комбинации. В альтернативных вариантах осуществления любая кислота Льюиса, известная в данной области техники, или ее эквиваленты могут использоваться в реакционной последовательности. Представители кислот Бренстеда включают, но не ограничиваются ими, HCl, H2SO4, HClO, HBr или их комбинации. В альтернативных вариантах осуществления любые кислоты Льюиса или Бренстеда, известные в данной области техники, или их эквиваленты могут использоваться в реакционной последовательности.
Предпочтительным полиэпихлоргидрином для применения в качестве обратного деэмульгатора по изобретению является кватернизованный разветвленный полиэпихлоргидрин. На фиг.3 показано, что полимеризация эпихлоргидрина в присутствии полиола и катализатора кислоты Льюиса приводит к получению предпочтительно разветвленного полиэпихлоргидрина по изобретению. Молекулярная масса полиэпихлоргидрина обычно контролируется путем отношения эпихлоргидрина к полиолу в реакционной смеси. Изменяя это соотношение от около 5:1 до около 20:1 можно получать полимеры с молекулярной массой от около 400 до около 3000 M.
На второй стадии реакции при получении разветвленного полиэпихлоргидрина первичный, вторичный и/или третичный амин используют для получения конечного полиэлектролита, как показано на фиг.4. Примеры таких аминов включают аммиак, метиламин, триметиламин, триэтиламин, диметиламин, диизопропилэтиламин, пиперидин, пиридин и им подобные, и их комбинации. Кроме того, на этой стадии также могут использоваться полиамины для получения перекрестно-сшитых полиэлектролитов и полиэлектролитов с более высокой молекулярной массой. Представители полиаминов включают этилендиамин, диэтилентриамин, тетраметилэтилендиамин, тетраэтиленпентаамин и им подобные и их комбинации.
В одном варианте осуществления в любое время до функционализации центральное ядро полиола имеет 3 или более доступных спиртовых функциональных групп, как показано на общей формуле (1) ниже:
Figure 00000001
где R1 и R2 выбраны из H, алкила, OH, CH2OH, C4H9O4, сорбита, других сахарных спиртов и им подобных. R3 выбран из OH, CH2OH, C4H9O4, сорбита, других сахарных спиртов, полиглицерина, полиэтиленоксида, полипропиленоксида и им подобных.
В варианте осуществления полиол обрабатывают, как показано ниже, где R4 является таким, как показано на общей формуле (2) ниже. X имеет значение от около 2 до около 20, предпочтительно от около 3 до около 15, и более предпочтительно от около 5 до около 10.
Figure 00000002
В одном варианте осуществления обрабатывают глицериновое ядро, где R4 является таким, как показано на общей формуле (3) ниже. Продукт этой реакции показан на общей формуле (4) ниже, где x, y и z независимо имеют значения от около 2 до около 20, предпочтительно от около 3 до около 15, более предпочтительно от около 5 до около 10, снова в зависимости от отношения эписоединения к спирту.
Figure 00000003
Figure 00000004
В вариантах осуществления композицию обратного деэмульгатора по изобретению используют для разделения эмульсий, полученных путем щелочь-поверхностно-активное вещество-полимерных или поверхностно-активное вещество-полимерных усовершенствованных методов нефтеотдачи. В таких вариантах осуществления полученные эмульсии обычно содержат по меньшей мере воду, сырую нефть, поверхностно-активные вещества и полимеры. Добавление композиции обратного деэмульгатора по изобретению к полученной эмульсии позволяет разделить нефть и водную фазу. В некоторых вариантах осуществления разделение является чистым разделением нефти и воды. Чистое разделение обычно обозначает сухую нефть, содержащую менее около 1% суммарного осадка и воды, хорошую поверхность с ярко выраженным разделением нефти и воды и чистую воду с содержанием менее около 300 частей на миллион (м.д.) остаточной нефти. Композицию добавляют к эмульсии любым подходящим способом. Например, примеры подходящих способов включают способы, описанные в статье Z. Ruiquan и др., "Characterization and demulsification of produced liquid from weak base ASP flooding". Colloids and Surfaces, T.290, cc.164-171, (2006), и в патентах US 4374734 и 4444654.
В другом варианте осуществления композиция обратного деэмульгатора по изобретению может найти применение для стабилизации глины во время гидроразрыва подземного резервуара. В процессе гидроразрыва подземных резервуаров глина из резервуара часто набухает при контакте с закачиваемой водой, снижая эффективность процесса гидроразрыва. Продукты, стабилизирующие глину, смешивают с жидкостью гидроразрыва (например, водой) перед введением для предотвращения набухания глины, что позволяет повысить общую эффективность процесса гидроразрыва.
Вышеизложенное может быть более ясным со ссылкой на следующие примеры, которые предназначены для иллюстративных целей и не предназначены для ограничения объема настоящего изобретения.
Пример 1
Реакционная схема 1: В четырехгорлую колбу объемом 250 мл добавляют 16,8 г триметилолпропана. Колбу продувают N2 и нагревают до 60°C при перемешивании. Затем добавляют один мл BF3·OEt2, и 231,3 г эпихлоргидрина добавляют по каплям в течение часа, поддерживая температуру от 85°C до 95°C. После окончания добавления полученную смесь перемешивают при 95°C в течение одного часа. Затем температуру повышают до 110°C и смесь продувают N2 в течение одного часа, получая триметилолпропан/эпихлоргидриновый сополимер.
Реакционная схема 2: В четырехгорлую колбу объемом 250 мл добавляют 33,5 г триметилолпропана. Колбу продувают N2 и нагревают до 60°C при перемешивании. Затем добавляют один мл BF3·OEt2, и 231,3 г эпихлоргидрина добавляют по каплям в течение одного часа, поддерживая температуру от 85°C до 95°C. После окончания добавления полученную смесь перемешивают при 95°C в течение одного часа. Затем температуру повышают до 110°C и смесь продувают N2 в течение одного часа, получая триметилолпропан/эпихлоргидриновый сополимер.
Реакционная схема 3: В четырехгорлую колбу объемом 250 мл добавляют 92,1 г глицерина. Колбу продувают N2 и нагревают до 60°C при перемешивании. Затем добавляют один мл BF3·OEt2, и 231,3 г эпихлоргидрина добавляют по каплям в течение часа, поддерживая температуру от 85°C до 95°C. После окончания добавления полученную смесь перемешивают при 95°C в течение одного часа. Затем температуру повышают до 110°C и смесь продувают N2 в течение одного часа, получая глицерин/эпихлоргидриновый сополимер.
Реакционная схема 4: В автоклав из сплава хастеллой объемом 500 мл добавляют 50,3 г триметилолпропан/эпихлоргидринового сополимера из реакционной схемы 1. Затем в автоклав добавляют 66,5 г 45% водного раствора триметиламина, и автоклав затем закрывают. Затем смесь нагревают до 100°C и перемешивают при этой температуре в течение 24 часов. Через 24 ч автоклав продувают N2 и охлаждают до комнатной температуры, получая четвертичную соль триметиламина с триметилолпропан/эпихлоргидриновым сополимером.
Реакционная схема 5: В автоклав из сплава хастеллой объемом 500 мл добавляют 49,2 г глицерин/эпихлоргидринового сополимера из реакционной схемы 1. Затем в автоклав добавляют 63,5 г 45% водного раствора триметиламина (ТМА), и автоклав затем закрывают. Затем смесь нагревают до 100°C и перемешивают при этой температуре в течение 24 часов. Через 24 ч автоклав продувают N2 и охлаждают до комнатной температуры, получая четвертичную соль триметиламина с глицерин/эпихлоргидриновым сополимером.
Пример 2
Этот пример иллюстрирует эффективность обратного деэмульгатора по изобретению, приведенного на фиг.4. Из таблицы 1 можно увидеть, что кватернизованные разветвленные полиэпихлоргидриновые полиэлектролиты приводят к получению более чистой воды при более низких количествах обработок по сравнению с традиционно используемыми химическими веществами. Более того, различия наблюдаются между разветвленными и линейными полиэпихлоргидриновыми (PECH) полиэлектролитами. Хотя они оба являются эффективными обратными деэмульгаторами и входят в объем настоящего изобретения, разветвленный вариант имеет преимущество в том, что может растворить эмульсию в более низкой дозе и привести к получению более чистой воды (таблица 1, образцы 5 и 6) по сравнению с линейными эквивалентами (таблица 1, образцы 3, 4, 7 и 8). Также установлено, что разветвленные молекулы являются менее вязкими по сравнению с их линейными аналогами, что делает их более удобными для применения.
Таблица 1
Образец Химическое наименование Доза (частей на миллион) Обратная эмульсия (разделяемая/неразделяемая) Мутность (NTU)
1 MeCl кватернизированный политриэтаноламин 160 неразделяемая NA
2 полиDADMAC 160 неразделяемая NA
3 Линейный низкомолекулярный PECH.TMA, кватернизированный 160 неразделяемая NA
4 Линейный высокомолекулярный PECH.TMA, кватернизированный 160 неразделяемая NA
5 Разветвленный низкомолекулярный РЕСН.TMA, кватернизированный 160 разделяемая 363
6 Разветвленный высокомолекулярный РЕСН.TMA, кватернизированный 160 разделяемая 295
7 Линейный низкомолекулярный PECH.TMA, кватернизированный 180 разделяемая 455
8 Линейный высокомолекулярный PECH.TMA, кватернизированный 180 разделяемая 370
Пример 3
Этот пример иллюстрирует эффективность обратного деэмульгатора по изобретению в отношении разделения обратных эмульсий, стабилизированных анионными поверхностно-активными полимерами. Обратную эмульсию получают путем смешения 30 мл сырой нефти с 70 мл раствора анионного поверхностно-активного вещества в емкостях для приготовления. Затем емкости помещают на механическую мешалку на 10 минут. Полученную смесь затем обрабатывают указанными химическими веществами и встряхивают в течение дополнительных 3 минут. Емкости удаляют из мешалки, и наблюдают за разделением нефти и воды наряду с качеством полученной нефти и воды. Из таблиц 2a и 2b видно, что разветвленные полиэпихлоргидриновые кватернизированные молекулы обеспечивают получение более быстрых капель воды по сравнению с их линейными аналогами, а также более чистой воды.
Таблица 2a
Образец Химическое наименование Доза (частей на миллион) Капля воды (мл) Качеств о воды
1' 5' 10' 40' 1 ч 3 ч Мутность (NTU)
1 Разветвленный PECH.TMA, кватернизированный 450 18 63 65 68 70 70 552
2 Линейный PECH.TMA, кватернизированный 450 5 25 50 68 70 70 580
3 Разветвленный PECH.TMA, кватернизированный 600 60 68 68 68 70 70 404
4 Линейный PECH.TMA, кватернизированный 600 50 67 68 68 70 70 446
5 Необработанный - 0 10 12 40 50 60 857
Таблица 2b
Образец Химическое наименование Доза (частей на миллион) Остаток
Всего % H2O % BS Тяжелый остаток
1 Разветвленный PECH.TMA, кватернизированный 450 0,4 следы 0,4 0,3
2 Линейный PECH.TMA, кватернизированный 450 0,4 следы 0,4 0,4
3 Разветвленный PECH.TMA, кватернизированный 600 0,4 следы 0,4 0,3
4 Линейный PECH.TMA, кватернизированный 600 0,4 следы 0,4 0,4
5 Необработанный - 10 0,8 9,2 10
Пример 4
Этот пример иллюстрирует эффективность изобретения в качестве агента для стабилизации глины. Эффективность химических веществ измеряют с помощью теста на время капиллярного всасывания (CST) путем взвешивания 250 г деионизированной воды в пластиковом стакане объемом 500 мл. Затем смесь перемешивают на ридере Variac 40 с подвесной мешалкой. Кандидат в качестве стабилизатора глины оценивают добавлением (0,25 мл; lgpt) к воде при перемешивании на этой стадии. 30 г предварительно смешанной глины (83/17 кварцевой муки/бентонит натрия) затем добавляют к раствору и перемешивают при 50 Variac в течение 1 мин. Перемешивание прекращают и глину оставляют в течение 5 мин, чтобы дать время гидратироваться. В конце этого интервала суспензию перемешивают при 40 Variac, и 1cc часть образца отбирают и впрыскивают через вход инструмента CST. Значения CST считываются с дисплея и записывают. Три таких считывания берут последовательно и определяют среднее значение для определения значения CST для конкретной добавки стабилизатора глины при исследуемой дозировке. В целом, чем ниже значение CST, тем выше эффективность в отношении стабилизации глины.
Образец Химическое наименование CST
1 Линейный PECH.TMA, кватернизированный 35
2 Разветвленный PECH.TMA, кватернизированный 31
3 Сополимер эпихлоргидрин/диметиламина 42
4 Метилхлорид, кватернизированный холин 97
5 Хлорид триметиламмония 112
Все композиции и способы, описанные и заявленные здесь, могут быть получены и осуществлены без излишних экспериментов в свете настоящего описания. Хотя настоящее изобретение может быть воплощено во многих различных формах, здесь подробно описаны конкретные предпочтительные варианты осуществления настоящего изобретения. Настоящее описание является иллюстрацией принципов изобретения и не предназначено для ограничения изобретения конкретными проиллюстрированными вариантами осуществления.
Любые диапазоны, приведенные в абсолютном выражении или в приблизительных значениях, охватывают любые определения, используемые здесь, и предназначены для разъяснения, а не для ограничения. Несмотря на то что числовые диапазоны и параметры, представляющие широкий объем изобретения, являются приблизительными, числовые значения, изложенные в конкретных примерах, приведены настолько точно, насколько это возможно. Любое числовое значение, однако, по сути содержит некоторые ошибки, неизбежно приводя к стандартным отклонениям, обнаруживаемым при их соответствующих измерениях. Более того, следует понимать, что все описанные здесь диапазоны охватывают любые и все входящие в него поддиапазоны (включая все дробные и целые значения).
Кроме того, изобретение охватывает любые и все возможные комбинации некоторых или всех различных описанных здесь вариантов осуществления. Любые и все патенты, заявки на патенты, научные публикации и другие ссылки, приведенные в данной заявке, а также любые ссылки, приведенные в них, включены в данное описание полностью в качестве ссылки. Следует также понимать, что различные изменения и модификации описанных здесь предпочтительных вариантов осуществления будут очевидны специалисту в данной области техники. Такие изменения и модификации могут быть сделаны без отступления от сущности и объема изобретения, а также не уменьшая присущих ему преимуществ. Следовательно, предполагается, что такие изменения и модификации охватываются прилагаемой формулой изобретения.

Claims (8)

1. Композиция обратного деэмульгатора для разделения водных внешних эмульсий воды и нефти, в которой по крайней мере один полиэпигалогидрин имеет следующую структуру:
Figure 00000005

где X выбран из хлорида, бромида, йодида, трифторметилсульфоната, толуолсульфоната, метилсульфоната и их комбинаций;
где y1 имеет значение от 2 до 20;
где y2 имеет значение от 2 до 20 и
где y3 имеет значение от 2 до 20.
2. Композиция обратного деэмульгатора для разделения водных внешних эмульсий воды и нефти, в которой по крайней мере один полиэпигалогидрин имеет следующую структуру:
Figure 00000006

где R1 выбран из алкила, или арила, или водорода;
где R2 выбран из алкила, или арила, или водорода;
где R3 выбран из алкила, или арила, или водорода;
где y1 имеет значение от 2 до 20;
где y2 имеет значение от 2 до 20 и
где y3 имеет значение от 2 до 20.
3. Композиция обратного деэмульгатора для разделения водных внешних эмульсий воды и нефти, где по крайней мере один полиэпигалогидрин имеет следующую структуру:
Figure 00000007

где y1 имеет значение от 2 до 20;
где y2 имеет значение от 2 до 20 и
где y3 имеет значение от 2 до 20.
4. Композиция обратного деэмульгатора для разделения водных внешних эмульсий воды и нефти, в которой по крайней мере один полиэпигалогидрин имеет следующую структуру:
Figure 00000008

где y1 имеет значение от 2 до 20;
где y2 имеет значение от 2 до 20 и
где y3 имеет значение от 2 до 20.
5. Способ разделения эмульсии воды и нефти, который включает добавление композиции обратного деэмульгатора по любому из пп. 1-4 в эффективном количестве.
6. Способ по п. 5, в котором нефть выбрана из группы, состоящей из сырой нефти, нефтепродуктов, битума, конденсата, отстойного масла, дистиллятов, топлив, соляных растворов и их смесей.
7. Способ по п. 5, дополнительно включающий добавление от около 1 части на миллион до около 5000 частей на миллион указанной композиции, основываясь на активных веществах и общем объеме эмульсии.
8. Способ по п. 5, в котором эмульсия представляет собой эмульсию, полученную путем щелочь-поверхностно-активное вещество-полимерных или поверхностно-активное вещество-полимерных усовершенствованных методов нефтеотдачи.
RU2013127147/04A 2010-12-14 2011-12-13 Полиэпигалогидриновые обратные деэмульгаторы RU2586066C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/967,811 2010-12-14
US12/967,811 US8697615B2 (en) 2010-12-14 2010-12-14 Polyepihalohydrin reverse emulsion breakers
PCT/US2011/064520 WO2012082671A2 (en) 2010-12-14 2011-12-13 Polyepihalohydrin reverse emulsion breakers

Publications (2)

Publication Number Publication Date
RU2013127147A RU2013127147A (ru) 2015-01-20
RU2586066C2 true RU2586066C2 (ru) 2016-06-10

Family

ID=46199960

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013127147/04A RU2586066C2 (ru) 2010-12-14 2011-12-13 Полиэпигалогидриновые обратные деэмульгаторы

Country Status (7)

Country Link
US (1) US8697615B2 (ru)
EP (1) EP2651527B1 (ru)
BR (1) BR112013014917B1 (ru)
CA (1) CA2821709C (ru)
MX (1) MX352334B (ru)
RU (1) RU2586066C2 (ru)
WO (1) WO2012082671A2 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9505707B2 (en) * 2010-12-22 2016-11-29 Nalco Company Composition and method for reducing hydrate agglomeration
TWI713605B (zh) 2015-10-12 2020-12-21 美商藝康美國公司 分解在乙烯製造過程中形成的乳化液之方法
WO2018095881A1 (en) * 2016-11-24 2018-05-31 Shell Internationale Research Maatschappij B.V. Process for oil recovery
US11292734B2 (en) 2018-08-29 2022-04-05 Ecolab Usa Inc. Use of multiple charged ionic compounds derived from poly amines for waste water clarification

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2105788C1 (ru) * 1992-05-30 1998-02-27 Хехст АГ Способ разделения нефтяных эмульсий типа вода-в-нефти

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2470829A (en) 1946-08-02 1949-05-24 Petrolite Corp Processes for breaking oil-in-water emulsions
US2944978A (en) 1957-07-29 1960-07-12 Petrolite Corp Process for breaking emulsions of the oil-in-water class
US3576740A (en) 1965-10-22 1971-04-27 Petrolite Corp Cyclic amidine polymers as water clarifiers
US3591520A (en) * 1968-01-17 1971-07-06 Nalco Chemical Co Quaternary adducts of polyepihalohydrin and use thereof
US3746678A (en) 1971-09-13 1973-07-17 Dow Chemical Co Amine-modified polyalkylene oxides
US3929635A (en) 1972-02-17 1975-12-30 Petrolite Corp Use of polymeric quaternary ammonium betaines as water clarifiers
US3864288A (en) 1973-10-15 1975-02-04 Goodrich Co B F Quaternized polyepihalohydrin thickening agent
US4316007A (en) * 1979-04-23 1982-02-16 Petrolite Corporation Thiazine quaternary ammonium salts of polyepihalohydrin
JPS59625B2 (ja) * 1979-05-09 1984-01-07 東洋ゴム工業株式会社 繊維接着用組成物
US4384977A (en) * 1981-06-11 1983-05-24 Marathon Oil Company Polyalkyloxyamines as demulsifying agents
US4374734A (en) 1981-06-19 1983-02-22 Cities Service Co. Emulsion breaking of surfactant stabilized crude oil in water emulsions
US4444654A (en) 1983-09-01 1984-04-24 Exxon Research & Engineering Co. Method for the resolution of enhanced oil recovery emulsions
US4828726A (en) 1987-09-11 1989-05-09 Halliburton Company Stabilizing clayey formations
US5152927A (en) 1990-01-31 1992-10-06 Chemlink, Inc. Water clarifier
US5032085A (en) 1990-02-26 1991-07-16 Gte Products Corp. Electrical connector, and housing and contacts therefor
US5247087A (en) 1992-05-13 1993-09-21 Baker Hughes Incorporated Epoxy modified water clarifiers
US5643460A (en) 1994-01-14 1997-07-01 Nalco/Exxon Energy Chemicals, L. P. Method for separating oil from water in petroleum production
JPH08183854A (ja) * 1994-12-28 1996-07-16 Japan Energy Corp 含フッ素ポリエーテル、その製法、及びそれを含むイオン伝導体
US5667727A (en) 1995-06-26 1997-09-16 Baker Hughes Incorporated Polymer compositions for demulsifying crude oil
US6172123B1 (en) 1999-07-30 2001-01-09 Henkel Corporation Demulsifiers for separating oil and water mixtures
US7703531B2 (en) * 2004-05-13 2010-04-27 Baker Hughes Incorporated Multifunctional nanoparticles for downhole formation treatments
US20060062753A1 (en) * 2004-09-17 2006-03-23 Ali Naraghi Polymeric quaternary ammonium salts useful as corrosion inhibitors and biocides
US20080078545A1 (en) * 2006-09-28 2008-04-03 Halliburton Energy Services, Inc. Treatment fluids viscosifield with modified xanthan and associated methods for well completion and stimulation
US20110315604A1 (en) 2010-06-24 2011-12-29 Nguyen Duy T Method for resolving emulsions in enhanced oil recovery operations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2105788C1 (ru) * 1992-05-30 1998-02-27 Хехст АГ Способ разделения нефтяных эмульсий типа вода-в-нефти

Also Published As

Publication number Publication date
EP2651527B1 (en) 2019-04-10
BR112013014917B1 (pt) 2021-07-20
EP2651527A4 (en) 2015-09-30
CA2821709A1 (en) 2012-06-21
WO2012082671A3 (en) 2012-09-27
RU2013127147A (ru) 2015-01-20
US20120149609A1 (en) 2012-06-14
EP2651527A2 (en) 2013-10-23
MX2013006946A (es) 2013-07-15
BR112013014917A2 (pt) 2020-08-11
WO2012082671A2 (en) 2012-06-21
MX352334B (es) 2017-11-21
CA2821709C (en) 2017-02-28
US8697615B2 (en) 2014-04-15

Similar Documents

Publication Publication Date Title
Grenoble et al. Mechanisms, performance optimization and new developments in demulsification processes for oil and gas applications
Ezzat et al. Synthesis and application of poly (ionic liquid) based on cardanol as demulsifier for heavy crude oil water emulsions
RU2577267C2 (ru) Извлечение и отделение сырой нефти и воды из эмульсий
US8459360B2 (en) Di-functional surfactants for enhanced oil recovery
Ezzat et al. Synthesis and application of new surface active poly (ionic liquids) based on 1, 3-dialkylimidazolium as demulsifiers for heavy petroleum crude oil emulsions
Abdullah et al. Demulsification of arabian heavy crude oil emulsions using novel amphiphilic ionic liquids based on glycidyl 4-nonylphenyl ether
BRPI0613810B1 (pt) método de clarificação de água residual oleosa
RU2586066C2 (ru) Полиэпигалогидриновые обратные деэмульгаторы
TW200948950A (en) Methods for breaking crude oil and water emulsions
US9663705B2 (en) Method for resolving emulsions in enhanced oil recovery operations
US20140202927A1 (en) Method of breaking oil-water micellar emulsions
FR2507613A1 (fr) Polyalkyloxyamines en qualite d'agents de desemulsionnement
Wei et al. Synthesis and study of a new type of fluorinated polyether demulsifier for heavy oil emulsion demulsification
Ezzat et al. New amphiphilic tricationic imidazolium and pyridinium ionic liquids for demulsification of arabic heavy crude oil brine emulsions
US8741130B2 (en) Method for resolving emulsions in enhanced oil recovery operations
Elsharaky et al. The influence of newly synthesized demulsifiers on the interfacial rheological properties of a naturally occurring water/oil emulsion
BRPI0710498B1 (pt) uso de um polímero à base de ortoéster, processo para desemulsificação de uma emulsão água-em-óleo, polímero à base de ortoéster, e método para produção de um polímero ou mistura de polímeros
RU2278146C1 (ru) Способ обезвоживания и обессоливания нефти
PL243759B1 (pl) Biodegradowalny deemulgator do rop naftowych
NO161979B (no) Micellulaer tynnfilmspredemiddelblanding samt anvendelse av denne til nedbrytning av petroleieum- eller bitumenemulsjoner.
NO162567B (no) Micellulaer tynnfilmspredende blanding.
NO162566B (no) Fremgangsmaate ved nedbrytning av emulsjoner