RU2585655C2 - Геофизический кабель для исследования горизонтальных и восходящих участков скважин - Google Patents

Геофизический кабель для исследования горизонтальных и восходящих участков скважин Download PDF

Info

Publication number
RU2585655C2
RU2585655C2 RU2014121140/07A RU2014121140A RU2585655C2 RU 2585655 C2 RU2585655 C2 RU 2585655C2 RU 2014121140/07 A RU2014121140/07 A RU 2014121140/07A RU 2014121140 A RU2014121140 A RU 2014121140A RU 2585655 C2 RU2585655 C2 RU 2585655C2
Authority
RU
Russia
Prior art keywords
cable
geophysical
horizontal
wells
sections
Prior art date
Application number
RU2014121140/07A
Other languages
English (en)
Other versions
RU2014121140A (ru
Inventor
Евгений Владимирович Шароварин
Original Assignee
Закрытое акционерное общество "Геоптикс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Геоптикс" filed Critical Закрытое акционерное общество "Геоптикс"
Priority to RU2014121140/07A priority Critical patent/RU2585655C2/ru
Priority to PCT/RU2015/000328 priority patent/WO2015183136A1/ru
Priority to US15/313,527 priority patent/US20170154708A1/en
Publication of RU2014121140A publication Critical patent/RU2014121140A/ru
Application granted granted Critical
Publication of RU2585655C2 publication Critical patent/RU2585655C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • H01B7/046Flexible cables, conductors, or cords, e.g. trailing cables attached to objects sunk in bore holes, e.g. well drilling means, well pumps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/182Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments
    • H01B7/183Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments forming part of an outer sheath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • H01B7/221Longitudinally placed metal wires or tapes
    • H01B7/223Longitudinally placed metal wires or tapes forming part of a high tensile strength core

Abstract

Изобретение относится к кабельной технике, а именно к геофизическим кабелям, и предназначено для спуска и подъема геофизических приборов и аппаратов, их питания электроэнергией и осуществления связи между наземной аппаратурой и приборами, использующимися при геофизических исследованиях горизонтальных и восходящих участков нефтяных и газовых скважин. Геофизический кабель для исследования горизонтальных и восходящих участков скважин содержит по меньшей мере одну токопроводящую жилу и наружную оболочку, при этом по меньшей мере одна токопроводящая жила расположена в массе полимерного композиционного материала цилиндрического сечения, армированного стеклянными или углеродными волокнами. Техническим результатом заявленного изобретения является повышение продольной упругости геофизического кабеля для исследования горизонтальных и восходящих участков скважин, обеспечивающей его самовыпрямление при эксплуатации, при одновременном сохранении его прочности и жесткости для проталкивания геофизических приборов в горизонтальных участках скважин. 4 з.п. ф-лы, 2 ил.

Description

Изобретение относится к кабельной технике, а именно к геофизическим кабелям, и предназначено для спуска и подъема геофизических приборов и аппаратов, их питания электроэнергией и осуществления связи между наземной аппаратурой и приборами, использующимися при геофизических исследованиях горизонтальных и восходящих участков нефтяных и газовых скважин.
Из существующего уровня техники известен геофизический кабель для исследования наклонных и горизонтальных скважин, состоящий из токопроводящих жил, электрической изоляции, двухслойного повива брони, при этом поверх этой брони нанесено покрытие из пластичного материала толщиной 1,5-2,5 мм, дополнительная двухслойная броня с промежутками между отдельными проволоками в наружном повиве, поверх которой нанесено общее покрытие, заполняющее промежутки между проволоками (Патент РФ №2087929, G01V 3/18, опубл. 20.08.1997 г.).
Конструкция кабеля имеет зазоры между проволоками наружного повива дополнительной брони, которые заполнены полимерным материалом наружной оболочки, но заполнение промежутков между проволоками только верхнего слоя наружной пары брони не обеспечивает должной адгезионной прочности наружной оболочки к поверхности проволок и, следовательно, не гарантирует длительной работы кабеля в промышленных условиях.
Известен геофизический кабель, содержащий одну или несколько изолированных токопроводящих жил, скрученных в сердечник и помещенных в промежуточную оболочку, поверх которой наложена броня и наружная оболочка. Броня состоит из трех или более повивов. На участке кабеля, предназначенном для работы в наклонной и горизонтальных частях скважины, начиная со второго или третьего повива брони, до 75% проволок отсечены с равномерным смещением мест отсечения по длине участка при переходе от нижнего повива к верхнему, а оставшиеся проволоки образуют армирующий каркас для полимерных оболочек с обеспечением снижения удельной плотности кабеля на данном участке по крайней мере на 20% по отношению к удельной плотности кабеля на участке, предназначенном для работы в вертикальной части скважины, при этом промежутки между проволоками заполнены полимерным материалом в процессе нанесения внешней полимерной оболочки (Патент РФ №2209450, G01V 1/52, 3/18, H01B 7/18, опубл. 27.07.2003 г.).
Данная конструкция кабеля обеспечивает ему гибкость, при этом укладка проволоки с 25% заполняемостью слоя от плотности приводит к значительному снижению прочности кабеля, а в случае использования его в горизонтальных участках скважины к уменьшению его осевой жесткости.
Наиболее близким аналогом является геофизический кабель для исследования наклонных и горизонтальных скважин, конструктивно разделенный на три участка, при этом в верхней и средней части сердечник выполнен путем скрутки вокруг центральной стальной изолированной проволоки изолированных токопроводящих жил и стальных изолированных проволок, а в нижней части, предназначенной для работы в наклонных и горизонтальных частях скважины, сердечник выполняется скруткой вокруг силового стеклопластикового элемента изолированных токопроводящих жил и силовых стеклопластиковых элементов. На сердечник накладывается промежуточная оболочка из полимерного материала. На промежуточную оболочку в верхней части кабеля накладывается два повива брони из стальной оцинкованной проволоки, в средней части повив накладывается с уменьшением количества проволок, а в нижней части часть проволок заменена на силовой стеклопластиковый элемент, близкий по диаметру к диаметру проволок второго повива брони. Поверх брони накладывается наружная оболочка из полимерного материала (Патент РФ №69650, G01V 1/52, опубл. 27.12.2007 г.).
Конструкция данного кабеля имеет постоянный диаметр по длине, который обеспечивает высокое прохождение горизонтальных участков скважин, при этом в нижней части кабеля, предназначенной для работы в горизонтальных участках скважин, упругость достигается за счет сочетания стальных проволок и стеклопластиковых элементов, которые не обеспечивают необходимую жесткость и прочность кабеля.
Задачей, на решение которой направлено изобретение, является разработка конструкции геофизического кабеля для исследования горизонтальных и восходящих участков скважин, лишенной недостатков вышеуказанных аналогов, а также расширение арсенала средств указанного назначения.
Техническим результатом заявленного изобретения является повышение продольной упругости геофизического кабеля для исследования горизонтальных и восходящих участков скважин, обеспечивающей его самовыпрямление при эксплуатации, при одновременном сохранении его прочности и жесткости для проталкивания геофизических приборов в горизонтальных участках скважин.
Заявляемый технический результат достигается за счет того, что геофизический кабель для исследования горизонтальных и восходящих участков скважин содержит по меньшей мере одну токопроводящую жилу и наружную оболочку, при этом по меньшей мере одна токопроводящая жила расположена в массе полимерного композиционного материала, армированного стеклянными или углеродными волокнами.
Целесообразно, чтобы параллельно по меньшей мере одной токопроводящей жиле в массе полимерного композиционного материала был размещен стальной трос.
Целесообразно, чтобы наружная оболочка была выполнена из полимерного материала.
Целесообразно, чтобы наружная оболочка была выполнена из гелькоута.
Параллельно по меньшей мере одной токопроводящей жиле в массе полимерного композиционного материала может быть размещено оптическое волокно.
В отличие от прототипа, для придания необходимых механических свойств в конструкции кабеля используется цельный композитный пруток, вовнутрь которого помещен стальной трос, а не сочетание силовых композитных элементов и проволок. Использование в конструкции кабеля композитного материала обеспечивает высокую прочность, жесткость, износостойкость и легкость кабеля. А наружная оболочка из гелькоута, защищает материал от преждевременного износа. Гелькоут устойчив к химическому воздействию, царапинам, ударам и высокой температуре. Он не подвержен растрескиванию и разрушению при резких перепадах температур.
Изобретение поясняется следующими чертежами.
На фиг. 1 представлена конструкция геофизического кабеля для исследования горизонтальных и восходящих участков скважин, где:
1 - токопроводящие жилы;
2 - полимерный композиционный материал;
3 - стальной трос;
4 - наружная оболочка;
5 - оптическое волокно.
На фиг. 2 представлена технологическая схема исследования скважины с заявленным геофизическим кабелем, где:
6 - заявленный геофизический кабель для исследования горизонтальных и восходящих участков скважин;
7 - барабан с жестким геофизическим кабелем типа КГЖ;
8 - жесткий металлический геофизический кабель типа КГЖ;
9 - кабельный наконечник жесткого геофизического кабеля;
10 - геофизический подъемник;
11 - рольганг;
12 - кабельный наконечник заявляемого геофизического кабеля;
13 - кабельная головка заявляемого геофизического кабеля;
14 - геофизический прибор;
15 - фонтанная арматура;
16 - стопор;
17 - обтюратор.
Геофизический кабель для исследования горизонтальных и восходящих участков скважин включает одну или несколько токопроводящих жил 1, расположенных в массе полимерного композиционного материала 2, армированного стеклянными или углеродными волокнами. Параллельно по меньшей мере одной токопроводящей жиле 1 в массе полимерного композиционного материала 2 размещается стальной трос 3 для аварийного извлечения геофизического прибора из скважины и оптическое волокно 5 для передачи данных. Поверх полимерного композиционного материала 2 нанесена защищающая от преждевременного износа наружная оболочка 4, выполненная из гелькоута или другого полимерного материала. Номинальный диаметр кабеля может быть от 8 до 30 мм, в зависимости от радиуса изгиба скважины и от длины ее горизонтального участка.
Использование предлагаемого кабеля при исследовании горизонтальных и восходящих участков скважин упрощает процесс исследований и заключается в следующем.
В 25-30 метрах от устья скважины устанавливается геофизический подъемник 10 с намотанным на барабане 7 жестким металлическим геофизическим кабелем 8 типа КГЖ. Кабель имеет кабельный наконечник 9 с наружного конца кабеля 8.
В 25-30 метрах от скважины устанавливается барабан с намотанным заявленным геофизическим кабелем 6 для исследования горизонтальных участков скважин. Кабель 6 имеет с наружного (относительно барабана) конца кабельный наконечник 12, а с внутреннего - кабельную головку 13, закрепленную за барабан. К наконечнику 12 прикручивается геофизический прибор 14. Кабель 6 пропускают через рольганг 11, а затем рольганг 11 подвешивают на подъемное устройство.
Прибор 14 на кабеле 6 опускают в скважину, пропуская его в фонтанную арматуру 15 через установленные на фонтанной арматуре 15 стопор 16 и обтюратор 17. Прибор 14 спускают в скважину на всю длину кабеля 6 и закрепляют кабель 6 стопором 16.
Отсоединяют кабельную головку 13 заявленного кабеля 6 от барабана и соединяют с кабельным наконечником 9 геофизического кабеля 8. Делают небольшую натяжку кабеля 8.
Открепляют стопор 16 на фонтанной арматуре 15 и начинают спускать кабель 6 с помощью геофизического подъемника 10.
Спустив прибор 14 до начала горизонтального участка ствола скважины («пятки»), продолжают спускать кабель 6 до конца горизонтального участка скважины («носка»), при этом масса геофизического кабеля 8, находящегося в вертикальной части скважины, является движителем при проталкивании заявленного кабеля 6 до «носка» скважины. Производят регистрацию геофизических параметров скважины на различных режимах ее работы, перемещая прибор 14 от «носка» к «пятке» и обратно. Поднимают прибор 14, наматывая геофизический кабель 8 на барабан 7.
После выхода из скважины соединения кабельного наконечника 9 и кабельной головки 13 заявленного кабеля 6 соединение дотягивают до барабана геофизического подъемника 10 и закрепляют стопор 16 на устье скважины. Раскручивают кабельный наконечник 9 и кабельную головку 13 заявленного самовыпрямляющегося кабеля 6. Кабельную головку 13 закрепляют на барабане. Отпускают стопор 16 на устье скважины и зажимают обтюратор 17 для очистки кабеля 6 от скважинного флюида. С помощью инжектора тянут заявленный кабель 6 к барабану и одновременно наматывают на барабан.
После выхода из скважины геофизического прибора 14 его откручивают от кабельного наконечника 12 заявленного самовыпрямляющегося кабеля 6 и остатки кабеля 6 наматывают на барабан.
Конструкция заявленного геофизического кабеля позволяет доставлять в протяженные горизонтальные участки скважин геофизические приборы методом проталкивания без использования специальных внутрискважинных механизмов.
Таким образом, предлагаемая конструкция изобретения найдет широкое применение в геофизических исследованиях горизонтальных и восходящих участков скважин.

Claims (5)

1. Геофизический кабель для исследования горизонтальных и восходящих участков скважин, содержащий по меньшей мере одну токопроводящую жилу и наружную оболочку, отличающийся тем, что по меньшей мере одна токопроводящая жила расположена в массе полимерного композиционного материала цилиндрического сечения, армированного стеклянными или углеродными волокнами.
2. Геофизический кабель по п. 1, отличающийся тем, что параллельно по меньшей мере одной токопроводящей жиле в массе полимерного композиционного материала расположен стальной трос.
3. Геофизический кабель по п. 1, отличающийся тем, что параллельно по меньшей мере одной токопроводящей жиле в массе полимерного композиционного материала расположено оптическое волокно.
4. Геофизический кабель по п. 1, отличающийся тем, что наружная оболочка выполнена из полимерного материала.
5. Геофизический кабель по п. 4, отличающийся тем, что наружная оболочка выполнена из гелькоута.
RU2014121140/07A 2014-05-26 2014-05-26 Геофизический кабель для исследования горизонтальных и восходящих участков скважин RU2585655C2 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2014121140/07A RU2585655C2 (ru) 2014-05-26 2014-05-26 Геофизический кабель для исследования горизонтальных и восходящих участков скважин
PCT/RU2015/000328 WO2015183136A1 (ru) 2014-05-26 2015-05-26 Геофизический кабель для исследования горизонтальных и восходящих участков скважин
US15/313,527 US20170154708A1 (en) 2014-05-26 2015-05-26 Geophysical cable for surveying horizontal and rising well sections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014121140/07A RU2585655C2 (ru) 2014-05-26 2014-05-26 Геофизический кабель для исследования горизонтальных и восходящих участков скважин

Publications (2)

Publication Number Publication Date
RU2014121140A RU2014121140A (ru) 2015-12-10
RU2585655C2 true RU2585655C2 (ru) 2016-06-10

Family

ID=54699341

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014121140/07A RU2585655C2 (ru) 2014-05-26 2014-05-26 Геофизический кабель для исследования горизонтальных и восходящих участков скважин

Country Status (3)

Country Link
US (1) US20170154708A1 (ru)
RU (1) RU2585655C2 (ru)
WO (1) WO2015183136A1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2087929C1 (ru) * 1996-03-12 1997-08-20 Волго-Уральский хозрасчетный центр научно-технических услуг "Нейтрон" Геофизический кабель для исследования наклонных и горизонтальных скважин и способ его использования
RU2209450C1 (ru) * 2002-01-14 2003-07-27 Волго-уральский центр научно-технических услуг "НЕЙТРОН" Грузонесущий геофизический кабель (варианты) и способ исследования наклонных и горизонтальных скважин
RU69651U1 (ru) * 2007-06-28 2007-12-27 Общество с ограниченной ответственностью "Севгеокабель" Геофизический кабель для исследования наклонных и горизонтальных участков скважин
WO2011033539A1 (en) * 2009-09-18 2011-03-24 Prysmian S.P.A. Electric cable with bending sensor and monitoring system and method for detecting bending in at least one electric cable
RU110805U1 (ru) * 2010-04-08 2011-11-27 Серсель Кабель для передачи геофизических данных

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156104A (en) * 1977-10-11 1979-05-22 Bell Telephone Laboratories, Incorporated Submarine cable for optical communications
US4169657A (en) * 1978-03-02 1979-10-02 Akzona Incorporated Laminated strength members for fiber optic cable
US4469538A (en) * 1981-02-10 1984-09-04 Anaconda-Ericsson, Inc. Process for continuous production of a multilayer electric cable and materials therefor
FR2639973B1 (fr) * 1988-12-02 1991-11-29 Campenon Bernard Dispositif pour reduire l'action du vent sur un hauban
FR2809226B1 (fr) * 2000-05-19 2002-07-26 Sagem Composition semi-conductrice reticulable et cable electrique a pellicule semi-conductrice
CA2520458C (en) * 2003-03-31 2012-08-28 Ceram Polymerik Pty Ltd Cable and article design for fire performance
US8475920B2 (en) * 2004-06-28 2013-07-02 Prysmian Cavi E Sistemi Energia Srl Cable with environmental stress cracking resistance
US7084347B2 (en) * 2004-12-17 2006-08-01 General Electric Company Abrasion resistant electrical wire
EP1905045B1 (en) * 2005-07-15 2016-05-04 Prysmian S.p.A. Cable having expanded, strippable jacket
FR2921511B1 (fr) * 2007-09-21 2010-03-12 Nexans Cable electrique resistant a la propagation d'arc electrique
WO2009143461A2 (en) * 2008-05-23 2009-11-26 Halliburton Energy Services, Inc. Downhole cable
GB2460686B (en) * 2008-06-05 2012-05-16 Tyco Electronics Ltd Uk High performance, high temperature wire or cable
US8901426B2 (en) * 2008-08-05 2014-12-02 Prysmian S.P.A. Flame-retardant electrical cable
US8816205B2 (en) * 2009-04-03 2014-08-26 Ppc Broadband, Inc. Conductive elastomer and method of applying a conductive coating to a cable
JP5668705B2 (ja) * 2011-06-15 2015-02-12 日立金属株式会社 架橋樹脂組成物、及び架橋樹脂組成物を被覆した電線・ケーブル及びモールド加工電線

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2087929C1 (ru) * 1996-03-12 1997-08-20 Волго-Уральский хозрасчетный центр научно-технических услуг "Нейтрон" Геофизический кабель для исследования наклонных и горизонтальных скважин и способ его использования
RU2209450C1 (ru) * 2002-01-14 2003-07-27 Волго-уральский центр научно-технических услуг "НЕЙТРОН" Грузонесущий геофизический кабель (варианты) и способ исследования наклонных и горизонтальных скважин
RU69651U1 (ru) * 2007-06-28 2007-12-27 Общество с ограниченной ответственностью "Севгеокабель" Геофизический кабель для исследования наклонных и горизонтальных участков скважин
WO2011033539A1 (en) * 2009-09-18 2011-03-24 Prysmian S.P.A. Electric cable with bending sensor and monitoring system and method for detecting bending in at least one electric cable
RU110805U1 (ru) * 2010-04-08 2011-11-27 Серсель Кабель для передачи геофизических данных

Also Published As

Publication number Publication date
RU2014121140A (ru) 2015-12-10
US20170154708A1 (en) 2017-06-01
WO2015183136A1 (ru) 2015-12-03

Similar Documents

Publication Publication Date Title
EA010402B1 (ru) Усовершенствованные электрические кабели ствола скважины
US9127793B2 (en) Power umbilical comprising separate load carrying elements of composite material
NO319495B1 (no) Kabel
AU2010325248B2 (en) Vulcanised power umbilical
MY149364A (en) Subsea umbilical
EA010658B1 (ru) Электрические кабели с защитными упрочняющими элементами из скрученных проволок
NO327921B1 (no) Elektrisk signalkabel og umbilical for dypt vann
US9281675B2 (en) Systems and methods for cable deployment of downhole equipment
US20130220665A1 (en) Multicore electrical cable and method of manufacture
CN202394574U (zh) 一种承荷探测电缆
RU2363024C1 (ru) Оптический кабель связи
EP3068191A1 (en) Skin-effect based heating cable, heating unit and method
WO2014047469A3 (en) Downhole wellbore heating system and method
RU2585655C2 (ru) Геофизический кабель для исследования горизонтальных и восходящих участков скважин
RU147382U1 (ru) Геофизический кабель для исследования горизонтальных и восходящих участков скважин
RU2344505C1 (ru) Геофизический бронированный кабель для исследования нефтяных и газовых скважин
EP3798703A1 (en) Cable for downhole use
CN205827999U (zh) 吊装中压电力电缆
US20180023352A1 (en) Carbon fiber based tubing encapsulated cable
CN205542132U (zh) 一种绝缘电力电缆
RU2618251C1 (ru) Устройство для доставки приборов в горизонтальный участок скважины с использованием геофизического кабеля с оболочкой из композитного материала
RU143196U1 (ru) Кабель электрический огнестойкий
CN205751630U (zh) 一种石油天然气井下仪器用多功能电缆
RU69651U1 (ru) Геофизический кабель для исследования наклонных и горизонтальных участков скважин
CN201017721Y (zh) 一种不锈钢铠装承荷电缆

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20171218