RU2585645C2 - Высокоэффективные теплоизоляционные материалы - Google Patents

Высокоэффективные теплоизоляционные материалы Download PDF

Info

Publication number
RU2585645C2
RU2585645C2 RU2012137251/05A RU2012137251A RU2585645C2 RU 2585645 C2 RU2585645 C2 RU 2585645C2 RU 2012137251/05 A RU2012137251/05 A RU 2012137251/05A RU 2012137251 A RU2012137251 A RU 2012137251A RU 2585645 C2 RU2585645 C2 RU 2585645C2
Authority
RU
Russia
Prior art keywords
water
material according
thermal insulation
binder
less
Prior art date
Application number
RU2012137251/05A
Other languages
English (en)
Other versions
RU2012137251A (ru
Inventor
Даниела ПАСКЕРО
Сильва Клод Да
Original Assignee
Сэн-Гобэн Изовер
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сэн-Гобэн Изовер filed Critical Сэн-Гобэн Изовер
Publication of RU2012137251A publication Critical patent/RU2012137251A/ru
Application granted granted Critical
Publication of RU2585645C2 publication Critical patent/RU2585645C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/30Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7604Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only fillings for cavity walls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • C08J2321/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/08Homopolymers or copolymers of acrylic acid esters
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape

Abstract

Изобретение относится к теплоизоляционному материалу, который получают из смеси по меньшей мере следующих компонентов, представляющих собой: пену на водной основе, частицы аэрогеля диоксида кремния, по меньшей мере одно связующее вещество, выбранное из органического связующего вещества и неорганического связующего вещества, по меньшей мере одну соль катионного поверхностно-активного соединения и по меньшей мере одну соль анионного поверхностно-активного соединения. Технический результат - обеспечение теплоизоляционных характеристик при сохранении хороших механических свойств, в частности, в отношении стойкости к сжатию и деформируемости и низкой плотности для облегчения нагрузки, возможность придания любых требуемых форм, в частности, формовкой. 2 н. и 15 з.п. ф-лы, 3 табл., 5 пр.

Description

Настоящее изобретение относится к высокоэффективному теплоизоляционному материалу, к способу его получения, а также к его использованию в области строительства для изоляции стен (наружных, а также внутренних) зданий, а также для заполнения промежутков в строительных материалах.
В настоящее время для целей соответствия техническим условиям сооружения зданий при новом строительстве и реконструкции необходимо разрабатывать новые материалы, являющиеся особенно эффективными в отношении теплоизоляции. Разработка новых материалов, отвечающих такой потребности, переживает в настоящее время беспрецедентный подъем. Однако часто необходимо, чтобы такие строительные материалы с большей изолирующей способностью сохраняли и даже улучшали свойства, требуемые для строительства зданий (жилых зданий и т.п.), в частности, в отношении облегчения нагрузки, механической прочности или, например, звукоизоляции.
С другой стороны, в настоящее время известно большое разнообразие теплоизоляционных материалов. Среди широко используемых изоляционных материалов можно упомянуть, главным образом, волокнистые изоляционные материалы на основе природных или синтетических волокон, таких как стекловата или минеральная вата, ячеистые изоляционные материалы типа вспученного или вспененного полимера, такого как вспученный или экструдированный полистирол или полиуретан, и аэрогелевые маты, то есть пластообразные аэрогели в виде полотна, образованного переплетенными волокнами, которые являются механически прочными, но которым трудно придавать определенную форму.
Аэрогели диоксида кремния представляют собой одни из наиболее эффективных изоляционных материалов. Однако их посредственные механические свойства принуждают использовать их в сочетании с усиливающим агентом. Их применение остается до настоящего времени очень слабо развитым, поскольку их использование в сочетании с традиционными изоляционными материалами (полистирол и т.п.) не позволяло получать приемлемые для эксплуатации материалы, как подчеркнуто в дальнейшем тексте. Аэрогели диоксида кремния, которые могут демонстрировать коэффициенты теплопроводности, доходящие до 12 мВт/м·K, получают из силикагеля, высушенного в особых условиях. Они могут находиться как в виде полупрозрачных гранул, которые должны быть защищены от любых манипуляций, для применения в изолирующем остеклении, так и в виде тонкодисперсного порошка и не могут быть использованы в таком виде для изготовления традиционных изоляционных изделий, таких как изоляционные панели (теплоизоляционные, звукоизоляционные и т.п.) для изоляции стен зданий.
С целью улучшения теплоизоляционных характеристик полистирола ранее было предложено изготовлять композиционные материалы, содержащие смесь полистирола и аэрогеля.
Так, например, в EP 489319 приведены примеры композиционной пены, содержащей от 27 до 47 об.% сверхкритического аэрогеля диоксида кремния в виде частиц размером 2-5 мм и от 53 до 73 об.% пены стирольного полимера. Заявленный коэффициент теплопроводности материалов составляет от 20 до 27 мВт/м·K при 10°C.
Тем не менее, эти композиционные материалы не могут быть произведены в большом количестве, необходимом для изготовления материалов в промышленном масштабе, поскольку аэрогель является хрупким и не выдерживает трения, возникающего во время смешивания с полимерными шариками. Кроме того, механическая прочность таких материалов остается недостаточной и значительно ухудшается с увеличением содержания аэрогеля.
Из US 20080287561 и WO 03097227 известно также прямое введение полимерного связующего вещества в частицы аэрогеля. Заявка US 20080287561 более предпочтительно относится к композиционным материалам из аэрогеля диоксида кремния, таким как композиционные материалы, полученные из аэрогелей, связанных с синтактическими пенами без полых микросфер (из стекла или термопластика). Эти синтактические пены получают, в частности, благодаря использованию в смеси полимера на водной основе ("water-based polymer"). Теплоизоляционные характеристики, полученные данным способом, имеют ограничения, причем образцы, полученные способом, описанным в US 20080287561, не позволяют получить коэффициенты теплопроводности менее 60 мВт/м·K.
Заявка WO 03097227 относится также к синтактическим пенам, полученным предпочтительно благодаря использованию полимерного связующего вещества на водной основе ("aqueous binder") в виде пены. В данном случае пены представляют собой синтактические пены, получаемые при использовании полых микросфер (из стекла или термопластика). Такие синтактические пены, включающие в себя упомянутые микросферы, являются очень дорогостоящими. Кроме того, в данном случае теплоизоляционные характеристики, полученные по этому способу, имеют ограничения с учетом того, что использованные микросферы ухудшают высокие теплоизоляционные характеристики, обеспечиваемые аэрогелем.
В настоящем изобретении предлагается новый тип изоляционного материала, демонстрирующий превосходные теплоизоляционные характеристики, сохраняя при этом хорошую механическую прочность и низкую плотность для облегчения нагрузки. В настоящем изобретении предлагается также инновационный материал, который легко распределяется при своем затвердевании и которому можно придавать любые требуемые формы, в частности, формовкой.
С этой целью и для смягчения недостатков предшествующего уровня техники настоящее изобретение относится к теплоизоляционному материалу, который может быть получен из смеси по меньшей мере следующих компонентов, представляющих собой пену на водной основе, частицы аэрогеля диоксида кремния, органическое и/или неорганическое связующее вещество.
Авторами неожиданным образом было найдено, что теплоизоляционные материалы, содержащие аэрогели диоксида кремния, полученные из пен на водной основе, обеспечивают получение теплоизоляционных характеристик, близких к характеристикам собственно аэрогелей, с плотностью, приемлемой для использования в качестве облегченного материала. Такой теплоизоляционный материал показывает также очень хорошие механические характеристики, в частности, в отношении стойкости к сжатию и деформируемости. Таким образом, изоляционный материал по настоящему изобретению также хорошо приемлем для использования как в качестве заполняющего материала, так и для использования на поверхности, в частности, на наружных стеновых панелях.
Аэрогели диоксида кремния, используемые в настоящем изобретении, получают из гранул покупного аэрогеля, например аэрогеля, реализуемого компанией Cabot (Nanogel® TLD 302 и т.д.). Они могут быть использованы после измельчения и просеивания или, альтернативным образом, могут быть использованы непосредственно без каких-либо преобразований. Аэрогели в общем случае получают из геля, получаемого, например, гидролизом в присутствии растворителя, каталитического гелеобразования, исходя из органического или неорганического предшественника, выпаривания или экстракции жидкости, образующей гель (например, при высокой температуре и/или под давлением), с целью замены этой жидкости газом (предпочтительно воздухом). Аэрогели могут быть получены предпочтительно в виде пены, гранул, блоков, разделяемых при необходимости.
Кроме пены на водной основе и аэрогелей диоксида кремния, смесь, предназначенная для получения теплоизоляционного материала, содержит органическое и/или неорганическое связующее вещество. Его используют, например, с целью обеспечения связывания частиц между собой и/или связывания частиц с остатком структуры материала на уровне конечного продукта. Термин "связующее вещество", используемый в следующем далее тексте, равным образом относится к неорганическому связующему веществу, органическому связующему веществу или к системе связующих веществ, принадлежащих по меньшей мере к одной из двух этих групп.
Описанный ранее теплоизоляционный материал предпочтительно может быть получен по меньшей мере из следующих компонентов, взятых в количествах, выраженных в массовом процентном отношении по отношению к общей массе смеси (смеси, используемой для получения изоляционного материала), в интервале от 25 до 75% для пены на водной основе, от 5 до 35% для частиц аэрогеля диоксида кремния и от 5 до 35% для связующего вещества.
Количество пены на водной основе варьирует преимущественно от 35 до 65% и предпочтительно от 45 до 55% и может составлять 50%.
Аналогичным образом, количество частиц аэрогеля диоксида кремния варьирует преимущественно от 17 до 25% и предпочтительно от 21 до 23% и может составлять 22%.
Аналогичным образом, количество связующего вещества варьирует преимущественно от 17 до 25% и предпочтительно от 21 до 23% и может составлять 22%.
Возможны также любые комбинации ингредиентов, взятые в интервалах указанных значений.
Термин "пена на водной основе" в смысле настоящего изобретения определяет любой тип пены, получаемой неупорядоченным распределением пузырей газа в водной фазе, в частности в мылоподобной жидкости. Такая мылоподобная жидкость содержит воду и по меньшей мере одно поверхностно-активное вещество.
Пену на водной основе, используемую для получения изоляционного материала по настоящему изобретению, предпочтительно получают из смеси, содержащей:
по меньшей мере одну соль катионного поверхностно-активного соединения, выбранного из одного из следующих соединений общей формулы:
Figure 00000001
,
где: R представляет собой алифатическую цепь, содержащую от 8 до 24 атомов углерода; R1 представляет собой группу, выбранную из алкилов, содержащих от 1 до 16 атомов углерода, гидроксиалкилов, содержащих от 1 до 16 атомов углерода, бензила, группы, которая совместно с атомом азота формулы (I) образует гетероцикл, при необходимости замещенный по меньшей мере одним атомом фтора; R2 и R3 выбраны из групп, представляющих собой алкилы, содержащие от 1 до 6 атомов углерода, гидроксиалкилы, содержащие от 1 до 6 атомов углерода, атомы водорода, бензилы, группы, которые совместно с атомом азота формулы (I) образуют гетероцикл, при необходимости замещенный по меньшей мере одним атомом фтора; X- означает противоанион;
по меньшей мере одну соль анионного поверхностно-активного соединения, выбранного из одного из следующих соединений общей формулы (II):
R-X-,Y+ (II),
где: R представляет собой алифатическую цепь, содержащую от 10 до 24 атомов углерода; X- означает группу, несущую отрицательный заряд и выбранную из карбоксилатных, сульфатных и фосфатных групп; Y+ означает противокатион, выбранный из катионов аммония, натрия и калия.
Соотношение массового содержания соли катионного поверхностно-активного соединения и массового содержания соли анионного поверхностно-активного соединения предпочтительно варьирует от 0,05:1 до 15:1, предпочтительно от 0,2:1 до 5:1 и, возможно, от 0,4:1 до 2,5:1.
Соль катионного поверхностно-активного соединения преимущественно выбирают из солей алкилтриметиламмония, включающих в себя алкилы, содержащие от 10 до 22 атомов углерода, и предпочтительно выбирают по меньшей мере из одного из следующих соединений, представляющих собой бромид (или хлорид) додецилтриметиламмония, бромид (или хлорид) тетрадецилтриметиламмония, бромид (или хлорид) гексадецилтриметиламмония, бромид (или хлорид) октадецилтриметиламмония, бромид (или хлорид) цетилтриметиламмония, хлорид цетилбензилдиметиламмония, бромид цетилтриэтиламмония и хлорид триметиламмонийталлата.
Соль анионного поверхностно-активного соединения предпочтительно представляет собой хлорид триметиламмонийталлата.
Одну или несколько солей анионных поверхностно-активных соединений, упомянутых ранее, предпочтительно выбирают по меньшей мере из одного из следующих соединений, представляющих собой стеарат аммония, стеарат калия и стеарат натрия.
Как альтернативу или дополнение можно использовать также анионные поверхностно-активные соединения, представляющие собой соли щелочного металла с органической кислотой, включающей в себя алифатическую цепь, содержащую от 12 до 24 атомов углерода, и преимущественно соли натрия, калия или аммония (имеющего при необходимости заместители).
Группа X- общей формулы (II) может представлять собой карбоксилатную, сульфатную или сульфонатную группу. Можно упомянуть соли карбоновых кислот, содержащих от 12 до 24 атомов углерода, выбранные например, из солей, представляющих собой миристат, пальмитат, стеарат, олеат или основание, связанное с бегеновой кислотой; в частности, анионы, выбранные из производных мыла, полученных гидролизом триглицеридов (омыление). Можно упомянуть также другие карбоксилаты, такие как соединения, получаемые обработкой жирных кислот животного жира, содержащего предпочтительно пальмитат, стеарат и олеат. Могут быть использованы также другие основания, связанные с жирными кислотами, такие как, например, мыла/гели для душа, содержащие жирные кислоты, получаемые из природных источников, таких как животный жир, кокосовое масло или также пальмовое масло.
Катионные и анионные поверхностно-активные соединения предпочтительно вносят в две разные водные среды и смешивают с указанным ранее соотношением для образования пены.
Получение такой пены на водной основе описано в заявке WO 96/25475.
Пена на водной основе также может быть получена из двухупаковочных наборов, реализуемых компанией Allied Foam (позиции по каталогу 425A и 510B). Такие наборы включают в себя первую смесь на водной основе, содержащую анионное поверхностно-активное вещество, и вторую смесь на водной основе, содержащую катионное поверхностно-активное вещество и латекс.
Авторами показано, что эти пены на водной основе, содержащие катионное поверхностно-активное вещество и анионное поверхностно-активное вещество, обладают преимуществом в виде способности оставаться особенно стабильными при введении частиц аэрогеля диоксида кремния. При этом становится достаточно легко контролировать количество аэрогеля диоксида кремния, подлежащего введению в смесь для получения изоляционного материала по настоящему изобретению. Этот аспект представляется особенно интересным, поскольку он обеспечивает путь к широкой гамме различных продуктов. На практике, поскольку аэрогели диоксида кремния достаточно дороги, то представляется предпочтительным иметь возможность регулировать их содержание, чтобы иметь возможность получать более доступные по стоимости продукты без излишнего снижения термических свойств и механической прочности. Увеличение соотношения "пена/аэрогель" позволяет также получать системы, более воздухонаполненные и, следовательно, более сжимаемые в случае сочетания с собственной гибкостью материала, что требуется для некоторых случаев применения, например, для изоляции полов (предпочтительно для звукоизоляции) или для заполнения структур пористого типа. Применение стабильных пен позволяет также получать материал, который сохраняет низкую плотность, в том числе при более низком содержании аэрогеля диоксида кремния.
В рамках настоящего изобретения могут быть использованы другие пены на водной основе, например, пена Gillette Foam Regular.
Также можно использовать пены на водной основе, содержащие смесь "вода/глицерин", одно или несколько поверхностно-активных соединений (таких, как определено ранее) и одно или несколько цвиттерионных соединений. Среди цвиттерионных соединений можно упомянуть аминокислоты или их производные или также соединения, синтезированные из аминокислот. Также можно упомянуть бетаины, такие как бетаины фосфора и/или бетаины аммония.
Такие пены на водной основе предпочтительно содержат смесь от 25 до 55% глицерина (в пересчете на массовое процентное содержание по отношению к общей массе пены).
Также предпочтительно эти пены на водной основе содержат менее 5%, преимущественно менее 2% и, возможно, менее 1% поверхностно-активного вещества предпочтительно анионного типа.
Также предпочтительно эти пены на водной основе содержат менее 5%, преимущественно менее 2% и, возможно, менее 1% цвиттерионного соединения, выбранного предпочтительно из бетаинов аммония.
Также возможны любые комбинации этих различных ингредиентов, что позволяет варьировать содержание, в частности, соответственно изложенному ранее.
Такая пена на водной основе более предпочтительно содержит от 35 до 45% и в идеальном случае 40% глицерина, смешанного с додецилполиоксиэтилен-3-сульфатом в количестве менее 0,5%, кокоамидопропилбетаином в количестве менее 0,5% и с миристиновой кислотой в количестве менее 0,05%.
Возможны также любые комбинации пен, упомянутых ранее в рамках настоящего изобретения, при сочетании в смеси, предназначенной для получения теплоизоляционного материала.
Связующее вещество, используемое в композиции, используемой для получения теплоизоляционного материала по настоящему изобретению, предпочтительно представляет собой органическое связующее вещество и предпочтительно латекс.
Теплоизоляционный материал по настоящему изобретению еще более предпочтительно получают из смеси, содержащей по меньшей мере одно органическое связующее вещество и по меньшей мере одно неорганическое связующее вещество. Массовое содержание органического связующего вещества преимущественно составляет менее 25% по отношению к общему массовому содержанию связующего вещества (органического и неорганического), данное содержание предпочтительно составляет менее 15%, более предпочтительно менее 10% и даже 8%.
Наиболее предпочтительно одно или несколько связующих веществ может представлять собой только неорганический материал, что обеспечивает огнестойкость изоляционного материала.
Термин "латекс" в смысле настоящего изобретения означает, в частности, латексные полимеры, традиционно используемые в строительных материалах. Среди полимеров, которые могут входить в композицию такого порошка, можно упомянуть, например, эластомерные латексы, термопластичные латексы и термореактивные латексы.
В рамках настоящего изобретения под латексом предпочтительно понимают водную эмульсию или дисперсию одного или нескольких природных или синтетических полимерных веществ, являющихся в общем случае термопластичными. Один или несколько полимеров могут быть самоэмульгирующимися, или, в противоположном случае, эмульсию или дисперсию стабилизируют посредством приемлемых поверхностно-активных веществ. Латекс, приемлемый в рамках настоящего изобретения, преимущественно имеет температуру стеклования Tg менее 50°C. В идеальном случае Tg должна находиться в интервале от - 50 до 25°C, предпочтительно в интервале от - 20 до 10°C, преимущественно в интервале от - 10 до 0°C и может составлять около -5°C. Такие диапазоны значений Tg позволяют получить жесткость, требующуюся для изоляционных материалов, наносимых на подложку при строительстве зданий, с учетом того, что полученное вещество является гибким и деформирующимся.
Предпочтительно используют полимеры с Tg, которая чуть ниже комнатной температуры, для обеспечения образования полимерной пленки, сохраняющей адекватные свойства полимера в затвердевшем материале. Предпочтительными являются также полимеры, имеющие Tg, которая не является слишком низкой, так, чтобы полимер не был очень мягким, что может сделать материал излишне гибким.
Латекс преимущественно содержит полимер, сополимер или тройной сополимер (или более сложный сополимер) винилового типа, акрилового типа и/или типа производного карбоновой кислоты. Наиболее предпочтительными являются латексы винилового типа, в частности, с боковыми сложноэфирными группами или на основе необязательно силанированного сополимера винилхлорида и олефина. Можно упомянуть, в частности, латексы на основе винилацетата, в частности, на основе гомополимера поливинилацетата или сополимера винилацетата, и, в частности, (мет)акриловой кислоты и/или ее эфира, малеинового эфира, олефина и/или винилхлорида, или на основе сополимера "винилхлорид/этилен". Другие приемлемые латексы могут быть выбраны из латексов, содержащих полимер акрилового и/или метакрилового типа, предпочтительно силанированный сополимер "акрилонитрил/акриловый эфир" или "стирол/акриловая кислота или ее эфир" (то есть сополимеризованный с мономером с ненасыщенной двойной связью, имеющим по меньшей мере одну силильную или силанольную функциональную группу).
Латекс предпочтительно может представлять собой стирол-акриловый сополимер или любой акриловый сополимер (получаемый из различных акриловых мономеров), получаемый радикальной полимеризацией в эмульсии или дисперсии. Эти латексы стабилизируют акриловой кислотой и/или акрилонитрилом. Такие полимеры реализуются компанией BASF в гамме, позиционируемой под названием Acronal®, в частности Acronal® S 400. Альтернативно или в комбинации можно использовать также любой латекс (один или несколько) из гаммы Acronal®.
Преимущественно можно использовать порошки, реализуемые компанией Hexion™, и порошки из гаммы Axilat™ UP, такие как Axilat™ UP 620 E. Axilat™ UP 620 E, а также Axilat™ UP 600 B и Axilat™ UP 820 A представляют собой тройные терполимеры винилацетата, винилверсатата и малеинового эфира.
Коэффициент теплопроводности материала по настоящему изобретению в общем случае меньше или равен 27 мВт/м·K.
Коэффициент теплопроводности материала по настоящему изобретению предпочтительно меньше или равен 25 мВт/м·K и преимущественно меньше или равен 23 мВт/м·K; особо предпочтительно он меньше или равен 20 мВт/м·K и даже меньше или равен 19 мВт/м·K.
Плотность описанных ранее теплоизоляционных материалов, получаемых по настоящему изобретению, в общем случае, менее 250 кг/м3.
Плотность описанных ранее теплоизоляционных материалов, получаемых по настоящему изобретению, как правило, меньше или равна 150 кг/м3 (в порядке сравнения, плотность блока аэрогеля составляет около 150 кг/м3). Плотность изоляционного материала по настоящему изобретению меньше или равна предпочтительно 130 кг/м3 и более предпочтительно 120 кг/м3, плотность преимущественно меньше или равна 100 кг/м3, возможно, меньше или равна 85 кг/м3 и даже меньше или равна 70 кг/м3 или, также, меньше или равна 55 кг/м3.
Также возможны любые комбинации этих диапазонов значений коэффициента теплопроводности и плотности.
Настоящее изобретение относится также к способу получения описанного ранее теплоизоляционного материала, включающего в себя стадии, состоящие в том, что:
a) получают пену на водной основе;
b) прибавляют по меньшей мере одно связующее вещество;
c) прибавляют порошок аэрогеля, перемешивая или вальцуя;
d) дают смеси высохнуть;
e) в ходе высушивания при необходимости осуществляют формование.
Альтернативным образом, связующее вещество можно прибавлять непосредственно на стадии a) во время получения пены на водной основе. Этот вариант зависит от используемого связующего вещества: в случае использования латексов в виде порошка, связующее вещество можно прибавлять после получения стабильной пены на водной основе, то есть на стадии b), в то время как в случае использования латекса в виде дисперсии/суспензии в жидкости (предпочтительно в воде), связующее вещество предпочтительно можно прибавлять на стадии a).
Стадия формования и высушивания может включать в себя операции литья или формовки упомянутой композиции в полости соответствующей формы или сечения. Термин "формовка" имеет значение в широком смысле и охватывает любой способ формования, такой как литье в открытую форму, экструзия через фильеру и разрезание экструдата и т.д. Формовка для получения поверхностного слоя при необходимости может быть осуществлена соэкструзией композиции с полимерной органической фракцией и/или гипсом.
Описанный ранее теплоизоляционный материал по настоящему изобретению может быть использован в виде, по меньшей мере, одного слоя, наносимого, например, на гипсовую штукатурку. Кроме того, такой особенно эластичный и деформирующийся изоляционный материал может быть нанесен для пропитки или распределения на холст (например, на нетканый материал и т.п.).
Предпочтительно пену на водной основе получают следующим образом:
a) осуществляют вспенивание перемешиванием смеси, содержащей катионное поверхностно-активное вещество;
b) затем прибавляют водный раствор, содержащий анионное поверхностно-активное вещество.
Авторами было найдено, что пена на водной основе, полученная таким образом, оставалась стабильной в течение всего процесса получения и даже после введения других ингредиентов (аэрогеля, наполнителей, присадок и т.п.).
Настоящее изобретение и его преимущества могут быть лучше поняты при чтении следующих далее примеров, которые приведены только для пояснения и, в любом случае, не могут рассматриваться как ограничительные.
ПРИМЕРЫ
Для определения коэффициентов теплопроводности в примерах использованы приведенные далее методики.
Определение коэффициента теплопроводности осуществляют по принципу флэш-метода (BALAGEAS D. - Mesure de la diffusivité thermique par la méthode flash, R 2955, Technique de l'Ingénieur, Traité Mesures et Contrôle - 1986), по которому тепловой поток создают плоским греющим резистором соответственно методике, описанной в "Une nouvelle méthode de mesure des propriétés thermophysiques de super-isolants", Yves Jannot & Alain Degiovanni, conférence Thermographie infrarouge pour le bâtiment et les travaux publics, Mesurexpo (Villepinte), 2 octobre 2008.
Температура испытания варьирует от 34 до 37°C, а измерения осуществляют при атмосферном давлении.
Точность измерений составляет 5%.
Коэффициенты теплопроводности определяли также с флюксметром серии HFM 436 компании NETZSCH™ по методикам, определяемым стандартами ASTM C518 и ISO 8301. Испытуемые образцы имели размеры 15×15×5 см3.
Плотность определяют по отношению массы образца к его объему.
Точность данных измерений составляет 3%.
Пример 1
1.1. Получение пены на водной основе
Используют набор, поставляемый компанией Allied Foam (процентное содержание означает массовое содержание, рассчитанное по отношению к общей массе композиции):
коммерчески доступный сравнительный компонент 1 типа 425A:
смесь катионных поверхностно-активных соединений, принадлежащих к группе длинноцепочечных алкилов 50-60%;
смесь феноксильных неионогенных поверхностно-активных соединений 10-20%;
этанол 5-8%;
вода 12-35%;
покупной сравнительный компонент 2 типа 510B:
смесь акриловых полимеров 25-35%;
смесь анионных поверхностно-активных соединений, принадлежащих к группе жирных кислот 15-30%;
вода 35-60%.
Пену получают в пеногенераторе, реализуемом компанией Allied Foam.
Компонент 1 разбавляют из расчета 136 г на 1 л воды.
Компонент 2 вносят непосредственно в емкость, предусмотренную для этой цели.
Альтернативным образом можно использовать пену на водной основе, полученную приведенным далее способом.
Два водных раствора (1 и 2) (процентное содержание означает массовое содержание, рассчитанное по отношению к общей массе растворов после разбавления) получают следующим образом:
раствор 1 (дополняемый до 200 г дистиллированной водой) получают, прибавляя 3,2 мас.% реагента Arquad® T50, реализуемого компанией BASF (49% пропиленгликоля и 51% хлорида триметиламмонийталлата (64% алкилов C18, 31% алкилов C16, 4% алкилов C14 и 1% алкилов C12 в виде суспензии в пропиленгликоле) в виде суспензии в воде), и 0,65 мас.% Triton® X-405, реализуемого компанией Dow Chemical (70% октилфенолэтоксилата);
раствор 2 (дополняемый до 40 г дистиллированной водой) получают, прибавляя 5% стеарата калия.
Раствор 1 вносят в высокоскоростной смеситель (бытовой смеситель-взбиватель Kenwood Major мощностью 1800 Вт). К пене, полученной при этом смешивании, прибавляют раствор 2 и смешивают.
1.2. Преобразование пены на водной основе в конечный продукт
Взвешивают 250 г свежеполученной пены на водной основе и прибавляют к ней 100 г сополимера "стирол-акриловый эфир" (латекс) в виде водного раствора (Acronal® S 400, BASF, с содержанием латекса 57%).
После получения пены, усиленной латексом, к ней прибавляют три порции аэрогелей диоксида кремния (Nanogel® TLD 302), просеянных до крупности, меньшей или равной 250 мкм: 70, 90 и 100 г, что соответствует образцам 2, 3 и 4 в таблице 1 соответственно.
Аэрогели диоксида кремния, используемые для осуществления настоящего изобретения, производит компания Cabot: они представляют собой гранулы миллиметрового размера, что делает необходимым измельчение и просеивание для получения крупности, требуемой для эксперимента. Просеивание осуществляют, измельчая аэрогели в верхней части сита с шириной ячеек сетки 250 мкм. Таким образом, порошок, полученный после просеивания, имеет крупность, меньшую или равную 250 мкм.
Порошок аэрогеля вносят в пену при перемешивании; продолжительность этой операции составляет около 5 мин.
В ходе смешивания пены, усиленной порошком аэрогелей, получают все более плотную пасту в зависимости от количества вносимых аэрогелей, но, однако сохраняющую возможность достаточно легкого распределения и манипулирования для придания ей различных форм.
После высушивания (в течение 48 ч при T окружающей среды или, например, в течение 24 ч в сушильном шкафу при 50°C) паста, потерявшая массу приблизительно на 50%, затвердела и находилась в виде твердого вещества, обладающего некоторой гибкостью, которая зависела, таким образом, от количества аэрогелей, содержащихся в смеси.
Определение плотности и коэффициента теплопроводности осуществляли с порошком аэрогеля в трех полученных образцах (образцы 2, 3 и 4 в таблице 1) после затвердевания. Определенные значения обобщены в таблице 1, для сравнения приведены значения, определенные только для просеянного порошка аэрогеля (позиция 1 в таблице):
Таблица 1
№ образца Плотность [кг/м3] Коэффициент теплопроводности λ [мВт/м·K]
1. Свежепросеянный порошок аэрогеля крупностью до 250 мкм 83 21,6
2. (70 г аэрогелей) 121 18,1
3. (90 г аэрогелей) 125 18,8
4. (100 г аэрогелей) 144 19,7
В образцах 2, 3 и 4 аэрогели содержатся в конечном продукте в количестве приблизительно 50% от общего объема.
Как образец 2, представленный в таблице 1, получают пасту, которая является более гибкой в свежем состоянии и менее жесткой после затвердевания; в то же время, как образец 4 получают пасту, которая является более плотной в свежем состоянии и более жесткой после затвердевания.
Пример 2
Использовали методику примера 1, но аэрогели диоксида кремния (Nanogel® TLD 302) не просеивали. Таким образом, аэрогели без просеивания вносили в смесь в виде гранул миллиметрового размера.
Изменение размера аэрогелей позволяет вносить в пену, усиленную латексом, большее их количество - 140 г. Это происходит потому, что пена не претерпевает оседания и/или разрушения, то есть феномена, наблюдаемого во время изготовления образца при введении аэрогелей крупностью, меньшей или равной 250 мкм.
После формования и высушивания в течение 48 ч при 50°C у образца, обозначенного как образец 5, был определен коэффициент теплопроводности. В случае, когда продукт обладает повышенной гибкостью и степенью наполнения воздухом, было необходимо сдавливать образец между пластинами измерительного прибора для получения значения коэффициента теплопроводности для плотности, соответствующей определенному значению.
Результаты представлены в таблице 2.
Таблица 2
№ образца Плотность [кг/м3] Коэффициент теплопроводности λ [мВт/м·K]
5 98 22,5
Пример 3
3.1. Получение пены на водной основе
Два водных раствора (1 и 2) (процентное содержание означает массовое содержание, рассчитанное по отношению к общей массе растворов после разбавления) получают следующим образом:
раствор 1 получают, прибавляя 3,2 мас.% реагента Arquad® T50, реализуемого компанией BASF (49% пропиленгликоля и 51% хлорида триметиламмонийталлата (64% алкилов C18, 31% алкилов C16, 4% алкилов C14 и 1% алкилов C12 в виде суспензии в пропиленгликоле) в виде суспензии в воде), и 0,65 мас.% Triton® X-405, реализуемого компанией Dow Chemical (70% октилфенолэтоксилата), затем смесь прибавляют к дистиллированной воде для получения 200 г водного раствора;
раствор 2 получают, прибавляя 5 мас.% стеарата калия к дистиллированной воде для получения 40 г водного раствора.
Раствор 1 вносят в высокоскоростной смеситель (бытовой смеситель-взбиватель Kenwood Major мощностью 1800 Вт) и осуществляют вспенивание перемешиванием при максимальной скорости в течение двух минут. К полученной при этом пене прибавляют раствор 2. Смесь перемешивают при максимальной скорости в течение двух минут для получения стабильной пены на водной основе.
3.2. Преобразование пены на водной основе в конечный продукт
Получение образцов 1 и 2
Взвешивают 230 г стабильной пены на водной основе, свежеполученной по методике, описанной в разделе 3.1, и прибавляют к ней неорганическое связующее вещество, полученное из гипсового замеса, полученного из порошка гипса, при необходимости порошка силиката натрия (NaO/SiO2·3H2O) и порошка органического латекса типа тройного винилового сополимера (Axilat® UP 620 E, компания Hexion, с содержанием латекса 90-95%) с соотношением "твердое вещество/вода" в замесе, равном 10:9 по массе. Перемешивание осуществляют в смесителе: речь идет о перемешивании с учетом того, что пена становится все более пастообразной.
Затем в течение 5 мин в ходе перемешивания во вспененную смесь вносят аэрогели диоксида кремния, продаваемые компанией Cabot (Nanogel® TLD 302), в виде фракции, просеянной до крупности, меньшей или равной 250 мкм. В ходе смешивания с течением времени получают все более плотную пасту в зависимости от количества вносимых аэрогелей, однако сохраняющую возможность достаточно легкого распределения и манипулирования для придания ей различных форм.
После высушивания (в течение 48 ч при T окружающей среды или, например, в течение 24 ч в сушильном шкафу при 50°C) паста, потерявшая массу приблизительно на 50%, затвердела и находилась в виде твердого вещества, обладающего некоторой гибкостью, которая зависела, таким образом, от количества аэрогелей, содержащихся в смеси.
Количество использованных реагентов и экспериментальные результаты представлены в таблице 3.
Пример 4
4.1. Получение пены на водной основе
Два водных раствора (1 и 2) (процентное содержание означает массовое содержание, рассчитанное по отношению к общей массе растворов после разбавления) получают следующим образом:
раствор 1 получают, прибавляя 3,2 мас.% реагента Arquad® T50, реализуемого компанией BASF (49% пропиленгликоля и 51% хлорида триметиламмонийталлата (64% алкилов C18, 31% алкилов C16, 4% алкилов C14 и 1% алкилов C12 в виде суспензии в пропиленгликоле) в виде суспензии в воде), и 0,65 мас.% Triton® X-405, реализуемого компанией Dow Chemical (70% октилфенолэтоксилата), затем смесь прибавляют к дистиллированной воде для получения 200 г водного раствора;
раствор 2 получают, готовя 40 г водного раствора (в дистиллированной воде), который содержит 5 мас.% стеарата калия и к которому прибавляют при перемешивании шпателем вручную 25-38 мас.% органического связующего вещества типа сополимера "стирол-акриловый эфир" (латекс) в виде водного раствора (Acronal® S 400, BASF, с содержанием латекса 57%).
Раствор 1 вносят в высокоскоростной смеситель (бытовой смеситель-взбиватель Kenwood Major мощностью 1800 Вт) и осуществляют вспенивание перемешиванием при максимальной скорости в течение двух минут. К полученной при этом пене прибавляют раствор 2. Смесь перемешивают при максимальной скорости в течение двух минут для получения стабильной пены на водной основе.
4.2. Преобразование пены на водной основе в конечный продукт
Получение образцов 3 и 4
В 230 г стабильной пены на водной основе, свежеполученной по методике, описанной в разделе 4.1, вносят неорганическое связующее вещество, полученное из гипсового замеса и при необходимости силиката натрия (NaO/SiO2·3H2O): соотношение "твердое вещество/вода" в замесе составляет 1:1 по массе. Перемешивание осуществляют в смесителе при низкой скорости - речь идет о перемешивании с учетом того, что пена становится все более пастообразной.
Затем в течение 5 мин в ходе перемешивания во вспененную смесь вносят аэрогели диоксида кремния, продаваемые компанией Cabot (Nanogel® TLD 302), в виде фракции, просеянной до крупности, меньшей или равной 250 мкм. В ходе смешивания с течением времени получают все более плотную пасту в зависимости от количества вносимых аэрогелей, однако сохраняющую возможность достаточно легкого распределения и манипулирования для придания ей различных форм.
После высушивания (в течение 48 ч при T окружающей среды или, например, в течение 24 ч в сушильном шкафу при 50°C) паста, потерявшая массу приблизительно на 50%, затвердела и находилась в виде твердого вещества, обладающего некоторой гибкостью, которая зависела, таким образом, от количества аэрогелей, содержащихся в смеси.
Количество использованных реагентов и экспериментальные результаты представлены в таблице 3.
Пример 5
5.1. Получение пены на водной основе
Два водных раствора (1 и 2) (процентное содержание означает массовое содержание, рассчитанное по отношению к общей массе растворов после разбавления) получают следующим образом:
раствор 1 получают, прибавляя 3,2 мас.% реагента Arquad® T50, реализуемого компанией BASF (49% пропиленгликоля и 51% хлорида триметиламмонийталлата (64% алкилов C18, 31% алкилов C16, 4% алкилов C14 и 1% алкилов C12, в виде суспензии в пропиленгликоле) в виде суспензии в воде), и 0,65 мас.% Triton® X-405, реализуемого компанией Dow Chemical (70% октилфенолэтоксилата), затем смесь прибавляют к дистиллированной воде для получения 200 г водного раствора;
раствор 2 получают, прибавляя 5 мас.% стеарата калия к дистиллированной воде для получения 40 г водного раствора.
Раствор 1 вносят в высокоскоростной смеситель (бытовой смеситель-взбиватель Kenwood Major мощностью 1800 Вт) и осуществляют вспенивание перемешиванием при максимальной скорости в течение двух минут. К полученной пене прибавляют раствор 2. Смесь перемешивают при максимальной скорости в течение двух минут для получения стабильной пены на водной основе.
5.2. Преобразование пены на водной основе в конечный продукт
Получение образца 5
В 230 г стабильной пены на водной основе, свежеполученной по методике, описанной в разделе 5.1, вносят неорганическое связующее вещество, полученное из гипсового замеса и при необходимости силиката натрия (NaO/SiO2·3H2O): соотношение "твердое вещество/вода" в замесе составляет 1:1 по массе. Перемешивание осуществляют в смесителе - речь идет о перемешивании с учетом того, что пена становится все более пастообразной.
Затем в течение 5 мин в ходе перемешивания во вспененную смесь вносят аэрогели диоксида кремния, продаваемые компанией Cabot (Nanogel® TLD 302), в виде фракции, просеянной до крупности, меньшей или равной 250 мкм. В ходе смешивания с течением времени получают все более плотную пасту в зависимости от количества вносимых аэрогелей, однако сохраняющую возможность достаточно легкого распределения и манипулирования для придания ей различных форм.
После высушивания (в течение 48 ч при T окружающей среды или, например, в течение 24 ч в сушильном шкафу при 50°C) паста, потерявшая массу приблизительно на 50%, затвердела и находилась в виде твердого вещества, обладающего некоторой гибкостью, которая зависела, таким образом, от количества аэрогелей, содержащихся в смеси.
Количество использованных реагентов и экспериментальные результаты представлены в таблице 3.
Таблица 3
Образец 1 Образец 2 Образец 3 Образец 4 Образец 5
Гипс (масса) 50 г 90 г 70 г 90 г 90 г
NaO/SiO2·3H2O (масса) 50 г - 10 г - -
Латекс (общая масса в покупном реагенте) Axilat UP 820A 20 г Axilat UP 820A 10 г Acronal S 400 10 г Acronal S 400 15 г -
Вода в замесе (до пенообразования) 100 г 90 г 80 г 90 г 90 г
Просеянные аэрогели крупностью до 250 мкм (масса) 35 г 35 г 35 г 35 г 35 г
Непросеянные аэрогели (масса) 50 г 50 г 50 г 50 г 50 г
Плотность [кг/м3] 230 230 204 168 225
Коэффициент теплопроводности λ [мВт/м·K] 25 24 21,8 22 26

Claims (17)

1. Теплоизоляционный материал, полученный из смеси по меньшей мере следующих компонентов, представляющих собой:
пену на водной основе;
частицы аэрогеля диоксида кремния;
по меньшей мере одно связующее вещество, выбранное из органического связующего вещества и неорганического связующего вещества, причем пена на водной основе содержит:
по меньшей мере одну соль катионного поверхностно-активного соединения, выбранного из одного из следующих соединений общей формулы:
Figure 00000002
,
где: R представляет собой алифатическую цепь, содержащую от 8 до 24 атомов углерода; R1 представляет собой группу, выбранную из алкилов, содержащих от 1 до 16 атомов углерода, гидроксиалкилов, содержащих от 1 до 16 атомов углерода, бензила, группы, которая совместно с атомом азота формулы (I) образует гетероцикл, при необходимости замещенный по меньшей мере одним атомом фтора; R2 и R3 выбраны из групп, представляющих собой алкилы, содержащие от 1 до 6 атомов углерода, гидроксиалкилы, содержащие от 1 до 6 атомов углерода, атомы водорода, бензилы, группы, которые совместно с атомом азота формулы (I) образуют гетероцикл, при необходимости замещенный по меньшей мере одним атомом фтора; X- означает противоанион;
по меньшей мере одну соль анионного поверхностно-активного соединения, выбранного из одного из следующих соединений общей формулы (II):
R-X-,Y+ (II),
где: R представляет собой алифатическую цепь, содержащую от 10 до 24 атомов углерода; Х- означает группу, несущую отрицательный заряд и выбранную из карбоксилатных, сульфатных и фосфатных групп; Y+ означает противокатион, выбранный из катионов аммония, натрия и калия, причем указанные компоненты взяты в количествах, выраженных по отношению к общей массе смеси и варьирующих от 25 до 75 мас.% для пены на водной основе, от 5 до 35 мас.% для частиц аэрогеля диоксида кремния и от 5 до 35 мас.% для связующего вещества.
2. Теплоизоляционный материал по п. 1, отличающийся тем, что он может быть получен по меньшей мере из пены на водной основе в количестве от 35 до 65 мас.%, частиц аэрогеля диоксида кремния в количестве от 17 до 25 мас.% и связующего вещества в количестве от 17 до 25 мас.%.
3. Теплоизоляционный материал по п. 1 или 2, в котором соотношение массового содержания соли катионного поверхностно-активного соединения и массового содержания соли анионного поверхностно-активного соединения варьирует от 0,05:1 до 15:1, предпочтительно от 0,2:1 до 5:1 и, возможно, от 0,4:1 до 2,5:1.
4. Теплоизоляционный материал по п. 1, отличающийся тем, что соль катионного поверхностно-активного соединения выбрана по меньшей мере из одного из следующих соединений, представляющих собой бромид додецилтриметиламмония, хлорид додецилтриметиламмония, бромид тетрадецилтриметиламмония, хлорид тетрадецилтриметиламмония, бромид гексадецилтриметиламмония, хлорид гексадецилтриметиламмония, бромид октадецилтриметиламмония, хлорид октадецилтриметиламмония, бромид цетилтриметиламмония, хлорид цетилтриметиламмония, хлорид цетилбензилдиметиламмония, бромид цетилтриэтиламмония и хлорид триметиламмонийталлата.
5. Теплоизоляционный материал по п. 4, отличающийся тем, что соль катионного поверхностно-активного соединения представляет собой хлорид триметиламмонийталлата.
6. Теплоизоляционный материал по п. 1, отличающийся тем, что соль анионного поверхностно-активного соединения выбрана по меньшей мере из одного из следующих соединений, представляющих собой стеарат аммония, стеарат калия и стеарат натрия.
7. Теплоизоляционный материал по любому из пп. 1 и 2, отличающийся тем, что пена на водной основе содержит смесь воды и глицерина, по меньшей мере одно поверхностно-активное соединение и по меньшей мере одно цвиттерионное соединение.
8. Теплоизоляционный материал по п. 7, отличающийся тем, что пена на водной основе содержит от 35 до 45 мас.% и предпочтительно 40 мас.% глицерина, менее 0,5 мас.% додецилполиоксиэтилен-3-сульфата, менее 0,5 мас.% кокоамидопропилбетаина и менее 0,05 мас.% миристиновой кислоты.
9. Теплоизоляционный материал по любому из пп. 1 и 2, отличающийся тем, что связующее вещество представляет собой латекс.
10. Теплоизоляционный материал по п. 9, отличающийся тем, что латекс имеет температуру стеклования Tg менее 50°C.
11. Теплоизоляционный материал по любому из пп. 1, 2, 4, 5, 8 или 10, отличающийся тем, что он имеет коэффициент теплопроводности, меньший или равный 23 мВт/м·K и предпочтительно 20 мВт/м·K.
12. Теплоизоляционный материал по любому из пп. 1, 2, 4, 5, 8 или 10, отличающийся тем, что он имеет коэффициент теплопроводности, меньший или равный 19 мВт/м·K.
13. Теплоизоляционный материал по любому из пп. 1, 2, 4, 5, 8 или 10, отличающийся тем, что он имеет плотность, меньшую или равную 150 кг/м3 и предпочтительно 130 кг/м3.
14. Теплоизоляционный материал по любому из пп. 1, 2, 4, 5, 8 или 10, отличающийся тем, что он имеет плотность, меньшую или равную 100 кг/м3.
15. Способ получения теплоизоляционного материала по любому из предыдущих пунктов, включающий в себя стадии, состоящие в том, что:
а) получают пену на водной основе;
b) прибавляют по меньшей мере одно связующее вещество;
c) прибавляют порошок аэрогеля диоксида кремния, перемешивая или вальцуя;
d) дают смеси высохнуть.
16. Способ получения по п. 15, отличающийся тем, что на стадии d) осуществляют формование в ходе высушивания.
17. Способ получения по п. 15 или 16, отличающийся тем, что пену на водной основе получают следующим образом:
а) осуществляют вспенивание перемешиванием смеси, содержащей катионное поверхностно-активное вещество;
b) затем прибавляют водный раствор, содержащий анионное поверхностно-активное вещество.
RU2012137251/05A 2010-02-03 2011-02-03 Высокоэффективные теплоизоляционные материалы RU2585645C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1050744 2010-02-03
FR1050744A FR2955863B1 (fr) 2010-02-03 2010-02-03 Materiaux d'isolation thermique hautes performances
PCT/FR2011/050222 WO2011095745A1 (fr) 2010-02-03 2011-02-03 Materiaux d'isolation thermique hautes performances

Publications (2)

Publication Number Publication Date
RU2012137251A RU2012137251A (ru) 2014-03-10
RU2585645C2 true RU2585645C2 (ru) 2016-05-27

Family

ID=42635459

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012137251/05A RU2585645C2 (ru) 2010-02-03 2011-02-03 Высокоэффективные теплоизоляционные материалы

Country Status (8)

Country Link
US (2) US9045609B2 (ru)
EP (1) EP2531553A1 (ru)
JP (1) JP6006119B2 (ru)
BR (1) BR112012019417B1 (ru)
FR (1) FR2955863B1 (ru)
RU (1) RU2585645C2 (ru)
WO (1) WO2011095745A1 (ru)
ZA (1) ZA201206096B (ru)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2955863B1 (fr) * 2010-02-03 2012-03-09 Saint Gobain Rech Materiaux d'isolation thermique hautes performances
CA2839587C (en) * 2011-06-17 2021-08-24 Basf Se High performance wall assembly
FR2977888B1 (fr) 2011-07-13 2014-01-10 Saint Gobain Isover Materiaux d'isolation thermique hautes performances.
FR2977889B1 (fr) * 2011-07-13 2014-01-10 Saint Gobain Isover Materiaux d'isolation thermique hautes performances
FR2991315B1 (fr) * 2012-06-05 2014-05-16 Saint Gobain Isover Produits d'isolation thermique hautes performances
FR2991316B1 (fr) * 2012-06-05 2014-05-16 Saint Gobain Isover Produits d'isolation thermique hautes performances
US20130344279A1 (en) * 2012-06-26 2013-12-26 Cabot Corporation Flexible insulating structures and methods of making and using same
KR101804345B1 (ko) * 2013-07-04 2017-12-06 알이엠텍 주식회사 단열 조성물, 이의 제조방법 및 이를 이용한 단열 소재
US9764301B2 (en) * 2013-11-14 2017-09-19 Nanyang Technological University Silica aerogel composite
KR101637270B1 (ko) 2015-03-23 2016-07-07 현대자동차 주식회사 다공성 고분자 수지층 및 그 제조방법
KR102023531B1 (ko) * 2015-04-07 2019-09-24 주식회사 엘지화학 에어로겔 함유 조성물 및 이를 이용하여 제조된 단열 블랑켓
FR3037964B1 (fr) * 2015-06-24 2019-12-20 Saint-Gobain Isover Mousses polyester thermodurcies et procede de fabrication
KR102171649B1 (ko) * 2015-12-15 2020-10-29 애플 인크. 미세다공성 절연체
KR101958014B1 (ko) 2016-03-14 2019-03-13 주식회사 엘지화학 고흡수성 수지의 제조 방법
US10818903B1 (en) 2017-08-15 2020-10-27 Apple Inc. Polypropylene carbonate and catalysts
NL2025711B1 (nl) * 2020-05-29 2022-01-13 Takkenkamp Innovatie Bv Thermisch isolerende slurry samenstelling en werkwijze voor vervaardiging daarvan
CN113527772B (zh) * 2021-06-08 2023-08-22 深圳中凝科技有限公司 一种气凝胶乳胶泡棉及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025475A1 (en) * 1995-02-14 1996-08-22 Allied Foam Tech Corporation Stable and water-resistant aqueous foam composition_____________
RU2161143C2 (ru) * 1994-11-23 2000-12-27 Кэбот Корпорейшн Композиционный материал, содержащий аэрогель, способ его изготовления, а также его применение
WO2003097227A1 (en) * 2002-05-15 2003-11-27 Cabot Corporation Aerogel and hollow particle binder composition, insulation composite, and method for preparing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4038784A1 (de) * 1990-12-05 1992-06-11 Basf Ag Verbundschaumstoffe mit niedriger waermeleitfaehigkeit
US5569513A (en) * 1994-08-10 1996-10-29 Armstrong World Industries, Inc. Aerogel-in-foam thermal insulation and its preparation
WO2003064507A1 (de) * 2001-12-28 2003-08-07 Lefatex Chemie Gmbh Formbare plastische masse, verbundmaterial, verfahren zu ihrer herstellung und ihre verwendung als leichtisoliermaterial
WO2003064025A1 (en) * 2002-01-29 2003-08-07 Cabot Corporation Heat resistant aerogel insulation composite and method for its preparation; aerogel binder composition and method for its preparation
WO2004018919A2 (en) * 2002-08-21 2004-03-04 The Research Foundation Of State University Of New York Process for enhancing material properties and materials so enhanced
US7118801B2 (en) * 2003-11-10 2006-10-10 Gore Enterprise Holdings, Inc. Aerogel/PTFE composite insulating material
KR101423342B1 (ko) 2005-10-21 2014-07-30 캐보트 코포레이션 에어로겔 기재 복합체
US20090029147A1 (en) * 2006-06-12 2009-01-29 Aspen Aerogels, Inc. Aerogel-foam composites
US20120112117A1 (en) * 2009-07-29 2012-05-10 Vo Van-Chau Thermally insulating polymer foam/aerogel composite articles
FR2955863B1 (fr) * 2010-02-03 2012-03-09 Saint Gobain Rech Materiaux d'isolation thermique hautes performances

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2161143C2 (ru) * 1994-11-23 2000-12-27 Кэбот Корпорейшн Композиционный материал, содержащий аэрогель, способ его изготовления, а также его применение
WO1996025475A1 (en) * 1995-02-14 1996-08-22 Allied Foam Tech Corporation Stable and water-resistant aqueous foam composition_____________
WO2003097227A1 (en) * 2002-05-15 2003-11-27 Cabot Corporation Aerogel and hollow particle binder composition, insulation composite, and method for preparing the same

Also Published As

Publication number Publication date
RU2012137251A (ru) 2014-03-10
US20150183947A1 (en) 2015-07-02
US20120326071A1 (en) 2012-12-27
US9045609B2 (en) 2015-06-02
US9249272B2 (en) 2016-02-02
JP2013518961A (ja) 2013-05-23
BR112012019417B1 (pt) 2020-03-10
EP2531553A1 (fr) 2012-12-12
BR112012019417A2 (pt) 2018-03-20
JP6006119B2 (ja) 2016-10-12
WO2011095745A1 (fr) 2011-08-11
FR2955863A1 (fr) 2011-08-05
ZA201206096B (en) 2013-04-24
FR2955863B1 (fr) 2012-03-09

Similar Documents

Publication Publication Date Title
RU2585645C2 (ru) Высокоэффективные теплоизоляционные материалы
DK2731985T3 (en) HIGH-PERFORMANCE THERMO ISOLATION MATERIALS
EP2931677B1 (en) Thermally insulating aerogel based rendering materials
RU2569112C2 (ru) Материал на основе аэрогеля, который является суперизолирующим при атмосферном давлении
KR101938823B1 (ko) 저온 상변화 물질(pcm) 혼입을 위한 경량콘크리트 조성물 및 이를 이용한 경량 콘크리트 패널
US20130280518A1 (en) Building material and building system element as well as method of production thereof
CN113800864B (zh) 一种高稳定性超轻泵送泡沫混凝土及其制备方法
CN102775098A (zh) 一种防火保温材料及其制备方法和应用
US10119775B2 (en) High-performance heat-insulating materials
CN114644473B (zh) 一种超低体密发泡硫氧镁水泥及其制备方法
US9670664B2 (en) High performance thermal insulation products
CN102859094A (zh) 用于屋面系统的聚合物改性的砂浆
CN101244919B (zh) 一种黄土发泡轻质砖的制备方法
DE2853333C2 (de) Verfahren zur Herstellung eines mineralischen Schaumstoffes
CN109912286B (zh) 一种干式地暖模块及其制备方法
KR101722983B1 (ko) 바닥충격음 저감용 기포 콘크리트 조성물, 이를 이용한 기포 콘크리트의 제조방법, 및 이에 의해 제조된 바닥충격음 저감용 기포 콘크리트
CN1216219C (zh) 轻集料混凝土小型空心砌块及其制备方法
CN112225505A (zh) 泡沫混凝土及其制备方法和复合材料
CN104016647B (zh) 一种复合蒸压加气混凝土砌块墙体的建筑方法
RU2091348C1 (ru) Состав для изготовления теплоизоляционного материала
CN110577409B (zh) 一种建筑室内蓄能保温材料及其制备方法
JPS5813509B2 (ja) 軽量骨材とその製造方法
SU1208755A1 (ru) Сырьева смесь дл изготовлени теплоизол ционного материала
CA1070183A (en) Method of coating expanded polymer beads with a mixture of lime and alumina for addition to cement
JP2022538506A (ja) 断熱材料及びその製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210204