RU2585051C1 - Способ контроля данных от спутниковых навигационных систем и устройство для его осуществления - Google Patents

Способ контроля данных от спутниковых навигационных систем и устройство для его осуществления Download PDF

Info

Publication number
RU2585051C1
RU2585051C1 RU2015112868/07A RU2015112868A RU2585051C1 RU 2585051 C1 RU2585051 C1 RU 2585051C1 RU 2015112868/07 A RU2015112868/07 A RU 2015112868/07A RU 2015112868 A RU2015112868 A RU 2015112868A RU 2585051 C1 RU2585051 C1 RU 2585051C1
Authority
RU
Russia
Prior art keywords
control
sna
level
speed
control unit
Prior art date
Application number
RU2015112868/07A
Other languages
English (en)
Inventor
Виктор Федорович Заец
Владимир Сергеевич Кулабухов
Борис Олегович Качанов
Николай Алексеевич Туктарев
Original Assignee
Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика") filed Critical Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика")
Priority to RU2015112868/07A priority Critical patent/RU2585051C1/ru
Application granted granted Critical
Publication of RU2585051C1 publication Critical patent/RU2585051C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/08Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/203Specially adapted for sailing ships
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • G01S19/235Calibration of receiver components

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

Изобретение относится к области радиотехники, а именно к спутниковым навигационным системам (СНС), и может быть использовано для определения целостности информации от СНС. Достигаемый технический результат - повышение достоверности целостности информации непосредственно на объекте потребителя. Указанный результат достигается за счет того, что способ включает измерение данных, поступающих с навигационных спутников, определение местоположения и скоростей потребителя, сравнение с допустимыми пороговыми значениями непосредственно выходных параметров СНС. Контроль выходных параметров СНС производят на двух уровнях, на первом уровне "грубый контроль" определяют широту, долготу и высоту с заданной точностью, при этом пороги по координатам определяют, исходя из области, ограниченной максимально возможной дальностью и высотой полета, а пороги по скорости контролируют по модулю скорости, которая должна находиться в пределах эксплуатационного диапазона. На втором уровне производят контроль на скользящем интервале наблюдений, где осуществляют контроль измерений скорости и вычисление вариации модуля скорости, а также контроль измерения координат и вычисление вариации приращения пути. В случае превышения вариацией модуля скорости или вариацией приращения пути заданного порогового значения формируется признак неисправности Pr=1. Контроль выдачи одних и тех же значений параметров от СНС осуществляют до "n" совпадений, при достижении которого формируется признак неисправности СНС - Pr=1. Устройство для осуществления способа содержит приемники спутниковых сигналов СНС, инерциальную навигационную систему, блок контроля координат первого уровня, блок контроля параметров скорости первого уровня, четыре коммутатора, блок контроля приращений координат второго уровня, блок контроля вариации модуля скорости второго уровня и блок коррекции. 2 н.п. ф-лы, 4 ил.

Description

Изобретение относится к области радиотехники, а именно к спутниковым навигационным системам (СНС), и может быть использовано для определения целостности информации от СНС, т.е. способности радионавигационной системы выдавать своевременное и достоверное предупреждение в тех случаях, когда ее сигналы нельзя использовать по целевому назначению.
В настоящее время контроль целостности спутниковых навигационных систем является наиболее актуальной, сложной и трудноразрешимой задачей, от которой зависит успех их применения.
Численно целостность определяется следующими параметрами:
- пороговое значение ошибки определения места Db потребителя;
- допустимое время оповещения об отказе (допустимая задержка оповещения) tïð;
- вероятность оповещения Р;
- частота выдачи предупреждений fïð.
Например, при заходе летательного аппарата (ЛА) на посадку, эти параметры в соответствии с требованиями ИКАО должны удовлетворять значениям:
Db=0.3-8.5ì, tïð=1-6ñ, Р=1-2.0·10-7.
Очевидно, что для специальных изделий значение задержки tïð=1-6ñ является недопустимо большим и должно соответствовать частоте выдачи навигационной информации от СНС.
С другой стороны, представляется весьма проблематичным обеспечить вероятность P=1-2.0·10-7 при жестких требованиях к задержке выявления нарушения целостности, порядка десятых долей секунды.
Контроль целостности СНС ведется по следующим направлениям:
- внешний контроль с использованием наземных систем. Выявляет неисправный спутник с задержкой до 6 и более часов;
- автономный контроль выполняется в СНС для изоляции неисправного спутника при наличии в зоне видимости более четырех спутников. Однако при наличии 5 или 6 спутников вероятность оповещения оказывается ниже требуемой. При этом значение ошибки определения координат местоположения может достигать сотен метров и более;
- контроль с помощью средств диагностики бортового оборудования спутников. В сигнале спутников ГЛОНАСС-М присутствует признак недостоверности, передаваемый с дискретностью не более 4 с, что обеспечивает задержку оповещения в пределах 10 с;
- орбитальный контроль целостности - реализуется путем комплексной обработки сигналов нескольких спутников с помощью дополнительного оборудования, устанавливаемого на каждом из спутников системы.
Из приведенных данных следует необходимость сокращения задержки оповещения до 1-4 с.
Ни один из перечисленных видов контроля целостности не удовлетворяет требованиям, предъявляемым к специальным летательным аппаратам. При этом наиболее критичным является требование к малой задержке оповещения, которое состоит в том, чтобы ни один из неисправных сигналов СНС не поступил на обработку в алгоритм навигации и управления изделия.
Решать задачу выявления неисправной работы СНС как задачу оценки достоверности данных нецелесообразно, так как это означало бы ее перевод в плоскость поиска вероятностного решения, нахождение которого на настоящий момент времени проблематично из-за недостаточности располагаемых статистических данных. Также представляется неправомерным рассматривать эту задачу как задачу фильтрации, так как по определению фильтрация предусматривает уточнение измерений, а в данном случае необходимо лишь выявить неисправную работу СНС для перехода на автономный режим навигации.
Рациональной является постановка задачи определения неисправной работы СНС как задачи контроля для выявления сбоев путем порогового анализа измеряемых координат и скоростей с учетом возможных значений на эксплуатационных траекториях изделия. Алгоритм контроля целесообразно строить на основании информации от СНС, без привлечения измерений других датчиков, во избежание внесения ошибок ложного обнаружения неисправной работы СНС при отказах датчиков.
Известны устройство и способ контроля целостности в реальном времени спутниковой навигационной системы, представленные в патенте RU 2501039, МПК G01S 19/08, опубликованном 10.12.2013, принятые нами в качестве прототипов.
Известный способ основан на контроле качества эфемеридной информации навигационных спутников, контроле качества кодовых псевдодальностей, контроле качества фазовых наблюдений и формировании интегральных показателей всего сеанса наблюдений. Чтобы оценить индикацию целостности системы относительно погрешностей определения местоположения, выполняются следующие этапы в реальном времени:
- измерение данных, рассчитанных системой определения местоположения;
- расчет модели распределения Н погрешностей расчета определения местоположения "х" системы;
- определение параметров (а, b, с), характеризующих модель распределения Н, где "а" параметр, определяющий самую вероятную величину распределения, "b" - параметр, указывающий на разброс экстремальных значений, а "с" - параметр, указывающий на значимость экстремальных значений в распределении;
- моделирование в области вероятностей хвоста распределения Н(х) вычислительным средством в зависимости от некоторых параметров, применяемых в теории экстремальных величин;
- сравнение в реальном времени распределения погрешностей определения местоположения с допустимым порогом, позволяющим выдавать индикацию целостности;
- передача в реальном времени индикации целостности системы определения местоположения.
Данный способ имеет ряд ограничений для использования на борту специальных летательных аппаратов из-за большого объема вычислительных процедур и требуемого времени для вероятностных расчетов, а также из-за отсутствия контроля конечных параметров, используемых потребителем. Кроме того, спутниковые системы были сертифицированы на уровне целостности, соответствующем 10-7, для передачи информации в комплекс спутниковой системы и в отдельную систему. Современные технологии не позволяют производить измерение целостности на уровне 10-7 для всего комплекса жизненного цикла спутниковой системы и не учитывают влияние возмущающих факторов, сопутствующих каждому определению местоположения.
Известное устройство, реализующее данный способ, относится к счетным устройствам для расчета вероятностных характеристик ошибок измерений псевдодальностей и эфемеридной информации навигационных спутников, предоставляющих индикацию целостности спутниковой навигационной системы, и предназначено, в частности, для наземной станции расчета типа GBAS спутниковой навигационной системы, снабженной вспомогательной системой, которая, в частности, применяется в аэропортах.
Устройство содержит средство приема данных, систему определения местоположения, средство оценки модели распределения погрешностей определения местоположения, средство оценки параметров, характеризующих модель распределения, вычислительное средство, применяющее теорию экстремальных величин в зависимости от параметров, характеризующих модель распределения, позволяющее смоделировать распределение погрешностей определения местоположения очень низкой вероятности, средство оценки в реальном времени индикации целостности для погрешностей определения местоположения очень низкой вероятности, средство передачи в реальном времени индикации целостности.
Недостатками данного устройства являются затруднительность его использования на борту специальных летательных аппаратов из-за большого объема средств вычислительных процедур и большого требуемого времени для вероятностных расчетов, а также отсутствие контроля конечных параметров, используемых потребителем.
Целью изобретения является разработка способа контроля данных от СНС и устройства для его осуществления на скользящем интервале наблюдения для выявления неисправной работы по конечным результатам измерений координат и скоростей, и, тем самым, повышения достоверности целостности информации непосредственно на объекте потребителя, и определения момента перехода на автономный режим навигации, позволяющий сократить задержку оповещения до шага дискретизации по времени отсчетов измерений, поступающих от приемника спутниковой навигационной системы. Таким образом, решается проблема по выполнению требований к малой задержке оповещения, которые состоят в том, чтобы ни один из недостоверных сигналов от СНС не поступил на обработку в алгоритм коррекции параметров БИНС, используемых для навигации и управления ЛА.
Для достижения поставленной цели предлагается способ контроля данных от спутниковых навигационных систем (СНС), включающий измерение данных, поступающих с навигационных спутников, определение местоположения и скоростей потребителя, при котором осуществляют сравнение с допустимыми пороговыми значениями непосредственно выходных параметров СНС, а именно координат широты В, долготы L и высоты Н и модуля скорости |V|, причем контроль выходных параметров СНС производят на двух уровнях, на первом уровне "грубый контроль" определяют широту, долготу и высоту с заданной точностью, при этом пороги по координатам определяют, исходя из области, ограниченной максимально возможной дальностью и высотой полета, а пороги по скорости контролируют по модулю скорости, которая должна находиться в приделах эксплуатационного диапазона, на втором уровне производят контроль на скользящем интервале наблюдений, где осуществляют контроль измерений скорости, используя сдвигающий буфер BV типа «бегущей строки», в котором хранятся последние N измерений модуля скорости и при поступлении нового измерения происходит сдвиг содержимого и вычисление вариации модуля скорости, при этом, в случае превышения вариацией модуля скорости заданного порога δ|V|>Por(V), формируется признак неисправности Pr = 1, контроль измерения координат осуществляют путем определения приращения пути, используя сдвигающий буфер BD типа «бегущий строки», в котором хранятся последние N измерений приращения пути и при поступлении нового измерения происходит сдвиг содержимого и вычисление вариации приращения пути, при этом, в случае превышения вариацией приращения пути заданного порога δD>Por(D), формируется признак неисправности Pr = 1, контроль выдачи одних и тех же их значений параметров от СНС осуществляют до "n" совпадений, при достижении которого формируется признак неисправности Pr = 1.
Для реализации данного способа предлагается устройство контроля данных от спутниковых навигационных систем (СНС), содержащее приемники спутниковых сигналов СНС, которое включает в себя инерциальную навигационную систему, первый блок контроля первого уровня, обеспечивающий контроль полученных от СНС значений координат потребителя по одному текущему отсчету измерений, второй блок контроля первого уровня, обеспечивающий контроль полученных от СНС значений скорости потребителя по модулю скорости, первый блок контроля второго уровня, обеспечивающий контроль полученных от СНС значений приращений координат по множеству измерений на скользящем интервале наблюдений, второй блок контроля второго уровня, обеспечивающий контроль полученных от СНС значений вариации модуля скорости по множеству измерений на скользящем интервале наблюдений, четыре коммутатора и блок коррекции, связанный через шину информационного обмена с инерциальной навигационной системой, выходы СНС по сигналам координат широты, долготы и дальности подключены к соответствующим входам первого блока контроля первого уровня и к сигнальным входам первого коммутатора, а выходы СНС по сигналам параметров скорости по направлениям «север», «восток», «вертикаль-вверх» подключены к соответствующим входам второго блока контроля первого уровня и к сигнальным входам второго коммутатора, выходы первого и второго блоков контроля первого уровня подключены к управляющим входам первого и второго коммутаторов соответственно и к соответствующим входам блока коррекции, при этом выходы первого коммутатора подключены к соответствующим входам первого блока контроля второго уровня и к сигнальным входам третьего коммутатора, выходы второго коммутатора подключены к соответствующим входам второго блока контроля второго уровня и к сигнальным входам четвертого коммутатора, выходы первого и второго блоков контроля второго уровня подключены к управляющим входам третьего и четвертого коммутаторов соответственно и к соответствующим входам блока коррекции, к другим входам которого подключены выходы третьего коммутатора по сигналам координат широты, долготы и дальности и выходы четвертого коммутатора по сигналам параметров скорости.
Сущность изобретения поясняется чертежами, где на фиг. 1 представлена структурная схема заявляемого устройства, на фиг. 2, 3 и 4 приведены графики, иллюстрирующие соответственно зависимость приращений пути между отсчетами измерений СНС с шагом 0.1 с, зависимость максимальной вариации приращения пути от времени полета между отсчетами 0.1 с на скользящем интервале 1.5 с и зависимость максимальной вариации модуля скорости между отсчетами 0.1 с на скользящем интервале 1.5 с от времени полета.
Устройство контроля данных от СНС (фиг. 1) содержит приемники спутниковых сигналов СНС 1, инерциальную навигационную систему 2, блок 3 контроля координат первого уровня, блок 4 контроля параметров скорости первого уровня, первый коммутатор 5, второй коммутатор 6, блок 7 контроля приращений координат второго уровня, блок 8 контроля вариации модуля скорости второго уровня, третий коммутатор 9, четвертый коммутатор 10 и блок 11 коррекции.
Сущность заявленного способа контроля данных от СНС заключается в следующем. Назначаются два уровня контроля выходных параметров, поступающих от СНС. Первый уровень - контроль по одному текущему отсчету измерений СНС («грубый» контроль), проверяющий правильность данных с точностью до максимальной дальности полета изделия. Очевидно, что измерения координат текущего местоположения должны находиться в пределах возможной дальности полета. Тогда имеют место простые соотношения:
Figure 00000001
B, L, H - текущие измерения координат от СНС.
Здесь Bmin, Bmax, Lmin, Lmax определяют область, ограниченную максимально возможной дальностью полета при произвольном направлении полета; Hmin, Hmax определяют границы возможных высот.
Данные параметры рассчитываются с учетом координат В0, L0 точки старта специального летательного аппарата.
Здесь достаточно ограничиться сферической моделью Земли:
Bmin0-ΔBmax, Bmax0+ΔBmax, ΔBmax=Dmax/R,
Lmin=L0-ΔLmax, Lmax=L0+ΔLmax, ΔLmax=Dmax/R,
Hmin=-1000ì, Hmax=+15000ì,
R=6371210+Hmax, Dmax=60000ì.
Измерения составляющих скорости контролируются по модулю скорости, который должен находиться в пределах эксплуатационного диапазона:
Figure 00000002
VN, VE, VH - текущие измерения скорости от СНС по направлениям «север», «восток», «вертикаль-вверх».
Vmin=50ì/с, Vmax=500ì/ñ.
Приведенные пороговые значения могут быть уточнены с учетом ТТХ изделия. При невыполнении хотя бы одного из неравенств (1), (2) формируется признак неисправности.
Pr=1.
Второй уровень - контроль по множеству измерений СНС на скользящем интервале наблюдений («точный» контроль), проверяющий правильность данных по месту положения изделия с точностью до ста метров. При выдерживании частоты измерений 10 Гц при условии отсутствия «залипания» измерений точность такого контроля может быть повышена до десятков метров.
«Точный» контроль формирует признак неисправности, если он не был сформирован на этапе «грубого» контроля и осуществляет контроль данных СНС по множеству отсчетов измерений. Идея «точного» контроля состоит в проверке изменения данных, поступающих от СНС. Если в момент пуска изделия СНС работала правильно, то и координаты измерялись правильно, что является условием применения изделия, тогда достаточно исследовать их относительное изменение. При этом следует избавиться от необходимости учета направления полета, что можно сделать, если контролировать не изменение самих координат, а изменение пути, преодолеваемого изделием. Предполагая, что ошибки СНС случайны, а не организованы намеренно, они неизбежно отразятся на ошибках счисления пути.
Так как необходимо выявлять ошибки в данных СНС в темпе их поступления, то контролировать движение изделия надо на каждом кванте Δt измерений СНС.
Еще одним важным требованием к алгоритму контроля является защита от ложных и частых срабатываний. Для этого предлагается использовать множество предыдущих измерений на скользящем интервале наблюдения. Учитывая относительную плавность траекторий данного изделия, вновь поступившее измерение в случае сбоя должно заметно отличаться от измерений, сделанных ранее.
Суммируя сказанное, предлагается контролировать правильность измерений координат по изменениям (вариациям) приращений пути, а правильность измерений скорости по изменениям (вариациям) модуля скорости на скользящем интервале наблюдения.
Из графика (фиг. 2) следует, что, как и ожидалось, изделие, двигающееся со скоростью 200-300 м/с, за один квант времени Δt=0.1ñ преодолевает расстояние порядка 20-30 метров. При правильной работе СНС данные вариации более стабильны и, следовательно, больше подходят для контроля. Из графиков, представленных на фиг. 3 и 4, следует, что вариации приращения пути и модуля скорости между отсчетами Δt=0.1 с на скользящем интервале длиной 1.5 с ограничены величинами 3-6 м/с для модуля скорости и 0.3-1 м для приращений пути.
Будем контролировать эти вариации с помощью введения для них допустимых порогов. При назначении порогов необходимо учитывать следующие факторы:
1. Располагаемую точность измерений.
2. Реальную частоту измерений.
Назначение порогов должно предусматривать полное исключение ложного срабатывания при осуществлении контроля. При точности измерений 3-5 м порог для вариаций приращения пути надо увеличить до величины 6-10 м. Однако более критичным является возможное снижение частоты выдачи данных от СНС. Так, если имеют место повторы измерений типа «залипания», которые потом «догоняются» правильными измерениями, то максимальные вариации приращений пути увеличиваются на величину самих приращений, то есть до величин порядка 25-30 м. Соответственно, при трехкратном повторении измерений вариации приращений увеличатся до 50-60 м. Значения порогов принимаются следующими: 100-200 м для вариаций приращений пути и 10-20 м/с для вариаций модуля скорости. Эти значения могут быть уточнены по характеристикам реальных летательных аппаратов.
Для контроля измерений скорости используется сдвигающий буфер BV типа «бегущей строки», в котором хранятся последние N измерений модуля скорости:
BV={|Vi|}, i=1, 2…N,
Figure 00000003
Δt=0.1 c - шаг измерений СНС.
При поступлении нового измерения содержимое буфера сдвигается и вычисляется вариация изменения модуля скорости:
Figure 00000004
Признак неисправности Pr=1 формируется при превышении заданного порога Por(V) вариацией модуля скорости:
Figure 00000005
Для контроля измерений координат используется сдвигающий буфер BD типа «бегущей строки», в котором хранятся последние N измерений приращений пути δD:
BD={|Di|}, i=1, 2…N,
Figure 00000006
Figure 00000007
Xi=(Bi-B0)R, Zi=(Li-L0)R, Yi=Hi.
Figure 00000008
Признак неисправности Pr=1 формируется при превышении заданного порога Por(D) вариацией приращения пути:
Figure 00000009
Важным является защита измерений координат от сбоев типа «залипания», то есть повторения выдачи от СНС одних и тех же измерений. При этом следует учитывать свойства измерений СНС при его нормальной работе. Если повтор измерений допускается, то должна быть известна его кратность.
Так, если при нормальной работе СНС возможно n-кратное повторение одних и тех же измерений координат, то признак неисправности Pr=1 формируется в случае обнаружения n+1 совпадений последних по времени измерений координат.
Для контроля «залипания» измерений используются три сдвигающих буфера, в которых хранятся последние измерения В, L, Н:
Figure 00000010
Здесь n на единицу больше допустимой кратности повтора измерений.
Признак неисправности Pr=1 формируется при совпадении всех n значений в каждом из буферов.
Контроль «залипания» измерений скоростей не требуется, так как они изменяются медленно, и даже четырехкратное повторение не оказывает заметного влияния на точность навигации.
Устройство контроля данных от спутниковых навигационных систем работает следующим образом.
В блоке 3 контроля первого уровня полученные значения координат от СНС проходят первый уровень контроля по одному текущему отсчету измерений СНС («грубый» контроль), проверяющий правильность данных по широте, долготе и высоте с точностью до максимальной дальности полета изделия, согласно выражениям (1). Пороги определяются приделами возможной дальности и высоты полета.
В блоке 4 контроля первого уровня полученные значения скоростей от СНС контролируются по модулю скорости, который должен находиться в пределах эксплуатационного диапазона, согласно соотношениям (2).
При невыполнении хотя бы одного из неравенств (1) или (2) формируется признак неисправности Pr=1 и подается сигнал первому 5 или второму 6 коммутатору, который блокирует соответствующие сигналы, поступающие от СНС 1.
В блоке 7 контроля приращений координат второго уровня осуществляется контроль по множеству измерений СНС на скользящем интервале наблюдений («точный» контроль). Используется сдвигающий буфер BD типа «бегущей строки», в котором хранятся последние N измерений приращений пути, согласно выражениям (6), (7), (8). Признак неисправности Pr=1 формируется при превышении заданного порога Por(D) вариацией приращения пути:
Pr=1 при δD>Por(D).
В блоке 8 контроля вариации модуля скорости второго уровня осуществляется контроль по множеству измерений СНС на скользящем интервале наблюдений («точный» контроль). При выполнении контроля измерений модуля скорости используется сдвигающий буфер BV, типа «бегущей строки», в котором хранятся последние N измерений модуля скорости (3). При поступлении нового измерения буфер сдвигается и вычисляется вариация модуля скорости (4). Здесь же осуществляется защита от повторения выдачи от СНС одних и тех же измерений более чем n раз (9). Признак неисправности Pr=1 формируется при превышении заданного порога Por(V) вариацией модуля скорости (5) и при появлении недопустимой кратности повтора измерений.
При невыполнении хотя бы одного из неравенств (8), (10) или (5) формируется признак неисправности Pr=1 и подается сигнал третьему 9 или четвертому 10 коммутатору, который блокирует соответствующие сигналы, поступающие от СНС.
В блоке 11 коррекции, в случае отсутствия сигнала Pr=1, осуществляется коррекция сигналов от ИНС 2 по сигналам СНС 1 методами статистической или частотной фильтрации. Скорректированные значения углов крена γ, тангажа ϑ и курса ψ по информационной шине обмена поступают обратно в ИНС 2. При наличии признака неисправности Pr=1 в блоке 11 коррекции, ИНС 2 переключается в автономный режим работы до исчезновения признака неисправности СНС.
Устройство обнаруживает как сбои, так и «залипание» измерений.
Технический результат заключается в разработке способа контроля данных от СНС и устройства для его осуществления на скользящем интервале наблюдения для выявления неисправной работы по конечным результатам измерений координат и скоростей, и, тем самым, повышения достоверности целостности информации непосредственно на объекте потребителя, и определения момента перехода на автономный режим навигации, позволяющий сократить задержку оповещения до шага дискретизации по времени отсчетов измерений, поступающих от приемника спутниковой навигационной системы. Таким образом, решена проблема по выполнению требования к малой задержке оповещения, которое состоит в том, чтобы ни один из недостоверных сигналов от СНС не поступил на обработку в алгоритм коррекции параметров ИНС, используемых для навигации и управления ЛА.
Реализация способа может быть осуществлена с помощью устройства, описанного выше. В качестве входных сигналов устройства могут быть использованы выходные сигналы бортовых СНС и БИНС, а вычислительная часть устройства может быть выполнена на стандартных элементах вычислительной техники.
Данные способ и устройство могут быть использованы в бортовых СНС всех видов летательных аппаратов, а также могут найти свое применение в любой системе расчета целостности спутниковой навигационной системы.

Claims (2)

1. Способ контроля данных от спутниковых навигационных систем (СНС), включающий измерение данных, поступающих с навигационных спутников, определение местоположения и скоростей потребителя, отличающийся тем, что осуществляют сравнение с допустимыми пороговыми значениями непосредственно выходных параметров СНС, а именно координат широты В, долготы L и высоты Н и модуля скорости |V|, причем контроль выходных параметров СНС производят на двух уровнях, на первом уровне "грубый контроль" определяют широту, долготу и высоту с заданной точностью, при этом пороги по координатам определяют, исходя из области, ограниченной максимально возможной дальностью и высотой полета, а пороги по скорости контролируют по модулю скорости, которая должна находиться в приделах эксплуатационного диапазона, на втором уровне производят контроль на скользящем интервале наблюдений, где осуществляют контроль измерений скорости, используя сдвигающий буфер BV типа «бегущей строки», в котором хранятся последние N измерений модуля скорости и при поступлении нового измерения происходит сдвиг содержимого и вычисление вариации модуля скорости, при этом, в случае превышения вариацией модуля скорости заданного порога δ|V|>Por(V), формируется признак неисправности Pr = 1, контроль измерения координат осуществляют путем определения приращения пути, используя сдвигающий буфер BD типа «бегущий строки», в котором хранятся последние N измерений приращения пути и при поступлении нового измерения происходит сдвиг содержимого и вычисление вариации приращения пути, при этом, в случае превышения вариацией приращения пути заданного порога δD>Por(D), формируется признак неисправности Pr = 1, контроль выдачи одних и тех же их значений параметров от СНС осуществляют до "n" совпадений, при достижении которого формируется признак неисправности Pr = 1.
2. Устройство контроля данных от спутниковых навигационных систем (СНС), содержащее приемники спутниковых сигналов СНС, отличающееся тем, что оно включает в себя инерциальную навигационную систему, первый блок контроля первого уровня, обеспечивающий контроль полученных от СНС значений координат потребителя по одному текущему отсчету измерений, второй блок контроля первого уровня, обеспечивающий контроль полученных от СНС значений скорости потребителя по модулю скорости, первый блок контроля второго уровня, обеспечивающий контроль полученных от СНС значений приращений координат по множеству измерений на скользящем интервале наблюдений, второй блок контроля второго уровня, обеспечивающий контроль полученных от СНС значений вариации модуля скорости по множеству измерений на скользящем интервале наблюдений, четыре коммутатора и блок коррекции, связанный через шину информационного обмена с инерциальной навигационной системой, выходы СНС по сигналам координат широты, долготы и дальности подключены к соответствующим входам первого блока контроля первого уровня и к сигнальным входам первого коммутатора, а выходы СНС по сигналам параметров скорости по направлениям «север», «восток», «вертикаль-вверх» подключены к соответствующим входам второго блока контроля первого уровня и к сигнальным входам второго коммутатора, выходы первого и второго блоков контроля первого уровня подключены к управляющим входам первого и второго коммутаторов соответственно и к соответствующим входам блока коррекции, при этом выходы первого коммутатора подключены к соответствующим входам первого блока контроля второго уровня и к сигнальным входам третьего коммутатора, выходы второго коммутатора подключены к соответствующим входам второго блока контроля второго уровня и к сигнальным входам четвертого коммутатора, выходы первого и второго блоков контроля второго уровня подключены к управляющим входам третьего и четвертого коммутаторов соответственно и к соответствующим входам блока коррекции, к другим входам которого подключены выходы третьего коммутатора по сигналам координат широты, долготы и дальности и выходы четвертого коммутатора по сигналам параметров скорости.
RU2015112868/07A 2015-04-08 2015-04-08 Способ контроля данных от спутниковых навигационных систем и устройство для его осуществления RU2585051C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015112868/07A RU2585051C1 (ru) 2015-04-08 2015-04-08 Способ контроля данных от спутниковых навигационных систем и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015112868/07A RU2585051C1 (ru) 2015-04-08 2015-04-08 Способ контроля данных от спутниковых навигационных систем и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2585051C1 true RU2585051C1 (ru) 2016-05-27

Family

ID=56095889

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015112868/07A RU2585051C1 (ru) 2015-04-08 2015-04-08 Способ контроля данных от спутниковых навигационных систем и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2585051C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2783480C1 (ru) * 2022-04-13 2022-11-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Автоматизированная система навигации с контролем аномальных измерений координат от спутниковых радионавигационных систем

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831576A (en) * 1994-06-02 1998-11-03 Trimble Navigation Limited Integrity monitoring of location and velocity coordinates from differential satellite positioning systems signals
US6782330B1 (en) * 2001-03-22 2004-08-24 Lockheed Martin Corporation Satellite signal waveform monitor
RU2411533C1 (ru) * 2008-11-05 2011-02-10 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Способ и устройство контроля целостности спутниковой навигационной системы
US20110050497A1 (en) * 2009-08-26 2011-03-03 Maenpa Jon E System and method for correcting global navigation satellite system carrier phase measurements in receivers having controlled reception pattern antennas
UA60974U (ru) * 2010-09-10 2011-06-25 Национальный Авиационный Университет Способ контроля целостности спутниковой навигационной системы в контрольно-коррегирующей станции
RU2501039C2 (ru) * 2008-03-11 2013-12-10 Таль Устройство и способ контроля целостности в реальном времени спутниковой навигационной системы
RU2541691C1 (ru) * 2013-08-12 2015-02-20 Олег Иванович Завалишин Способ повышения целостности выходных сигналов бортовых спутниковых навигационных приемников

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831576A (en) * 1994-06-02 1998-11-03 Trimble Navigation Limited Integrity monitoring of location and velocity coordinates from differential satellite positioning systems signals
US6782330B1 (en) * 2001-03-22 2004-08-24 Lockheed Martin Corporation Satellite signal waveform monitor
RU2501039C2 (ru) * 2008-03-11 2013-12-10 Таль Устройство и способ контроля целостности в реальном времени спутниковой навигационной системы
RU2411533C1 (ru) * 2008-11-05 2011-02-10 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Способ и устройство контроля целостности спутниковой навигационной системы
US20110050497A1 (en) * 2009-08-26 2011-03-03 Maenpa Jon E System and method for correcting global navigation satellite system carrier phase measurements in receivers having controlled reception pattern antennas
UA60974U (ru) * 2010-09-10 2011-06-25 Национальный Авиационный Университет Способ контроля целостности спутниковой навигационной системы в контрольно-коррегирующей станции
RU2541691C1 (ru) * 2013-08-12 2015-02-20 Олег Иванович Завалишин Способ повышения целостности выходных сигналов бортовых спутниковых навигационных приемников

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2783480C1 (ru) * 2022-04-13 2022-11-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Автоматизированная система навигации с контролем аномальных измерений координат от спутниковых радионавигационных систем
RU2804931C1 (ru) * 2022-07-25 2023-10-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Способ контроля и повышения целостности измерений авиационных бортовых спутниковых навигационных приемников с применением метода курсовоздушного счисления координат

Similar Documents

Publication Publication Date Title
US10408942B2 (en) Systems and methods to detect GPS spoofing
US7479923B2 (en) Airspace separation control and collision avoidance
RU2501039C2 (ru) Устройство и способ контроля целостности в реальном времени спутниковой навигационной системы
US9648579B2 (en) Systems and methods for driver and vehicle tracking
US20110118979A1 (en) Automotive location data integrity
US8909471B1 (en) Voting system and method using doppler aided navigation
US20150233730A1 (en) Method of sensor data fusion
CN109471143B (zh) 自适应容错的列车组合定位方法
WO1998043107A1 (en) Satellite-based collision avoidance system and method therefor
RU2513551C2 (ru) Способ определения положения движущегося объекта в данный момент и контроля достоверности положения упомянутого движущегося объекта
CN108364372B (zh) 一种车辆行驶状态检测方法及装置
CN103884339A (zh) 配置运载工具导航参数值的设备
US9377306B2 (en) Device and method for prediction on the ground of characteristics of the position of an aircraft along a path
TW201543058A (zh) 衛星測位用電波干涉偵測機構、衛星測位用電波干涉偵測方法以及具有該衛星測位用電波干涉偵測機構之補強資訊發送系統
CN105758424A (zh) 一个或多个惯性测量单元中的姿态故障检测的系统和方法
CN110203253A (zh) 一种非固定式虚拟应答器实现方法
CN108507590B (zh) 定速评估方法及系统、车载终端
US9562788B1 (en) System and method for doppler aided navigation using weather radar
CN110203254A (zh) 列车定位系统中卡尔曼滤波器的安全检测方法
US8416100B2 (en) Method and device for monitoring a horizontal position of an aircraft rolling on the ground
RU2585051C1 (ru) Способ контроля данных от спутниковых навигационных систем и устройство для его осуществления
US10670396B2 (en) Multi-sensor target location registration
RU2668597C1 (ru) Способ выявления неисправностей и отказов бортовых измерителей параметров движения и спутниковых навигационных систем движущихся объектов
US8436770B2 (en) Method and system for verifying the precision performance of a satellite navigation system
US8514127B2 (en) Method and system of calculation for the evaluation of the precision performance of a satellite navigation system