RU2582805C9 - Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия и способ измерения расхода газа с использованием этого устройства - Google Patents

Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия и способ измерения расхода газа с использованием этого устройства Download PDF

Info

Publication number
RU2582805C9
RU2582805C9 RU2014138220/13A RU2014138220A RU2582805C9 RU 2582805 C9 RU2582805 C9 RU 2582805C9 RU 2014138220/13 A RU2014138220/13 A RU 2014138220/13A RU 2014138220 A RU2014138220 A RU 2014138220A RU 2582805 C9 RU2582805 C9 RU 2582805C9
Authority
RU
Russia
Prior art keywords
gas
cylinder
pressure
piston
enthalpy
Prior art date
Application number
RU2014138220/13A
Other languages
English (en)
Other versions
RU2582805C2 (ru
RU2014138220A (ru
Inventor
Валентин Витальевич Шумский
Михаил Иванович Ярославцев
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ)
Priority to RU2014138220/13A priority Critical patent/RU2582805C9/ru
Publication of RU2014138220A publication Critical patent/RU2014138220A/ru
Publication of RU2582805C2 publication Critical patent/RU2582805C2/ru
Application granted granted Critical
Publication of RU2582805C9 publication Critical patent/RU2582805C9/ru

Links

Images

Abstract

Изобретение относится к технике исследования свойств и состава рабочего газа в высокоэнтальпийных установках кратковременного действия. Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия содержит герметично соединенные собственно пробоотборник с заостренной передней кромкой и расширяющимся внутренним каналом. Устройство включает также пироклапан, в корпусе которого размещены поршень клапана, узел подключения управляющих высоковольтных проводов для подрыва порохового заряда и выполнено перепускное отверстие в баллон для сбора и хранения пробы газа. Баллон для сбора пробы снабжен поршнем, а в канале пробоотборника установлена теплопроводная вставка с развитой площадью внутренних поверхностей. При этом узел подключения управляющих высоковольтных проводов для подрыва порохового заряда установлен в аэродинамической тени пироклапана и дополнительно снабжен двухэлектродной системой, а в корпусе пироклапана выполнено дренажное отверстие для сброса давления пороховых газов. Способ определения расхода газа с использованием данного устройства заключается в том, что проводят вакуумирование газодинамического тракта и полостей устройства до давления 10-2 мм рт.ст. и через перепускное отверстие пробоотборника заполняют газом баллон для отбора пробы. При этом поршень баллона стопорят в крайнем правом положении, а затем герметично закрывают перепускное отверстие. Наполнившему баллон газу дают возможность остыть до комнатной температуры Тб, измеряют давление в баллоне с помощью манометра или датчика давления. Зная величину объема V баллона и перепускного отверстия, давление рб в полости баллона, время tб = tб2 - tб1 пребывания в открытом состоянии перепускного отверстия, определяют массу газа (Gб)э, поступившего в баллон за время tб
(Gб)э=Vpб/(RTб),
где R - удельная газовая постоянная, tб1, tб2 - время начала и окончания наполнения баллона, вычисляют расчетное значение массы, которая должна натечь в баллон за время tб. Изобретение обеспечивает повышение достоверности отобранной пробы газа, наполнившей баллон, а также обеспечивает возможность одновременного измерения расхода газа. 2 н. и 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к технике исследования свойств и состава рабочего газа в высокоэнтальпийных установках кратковременного действия.
Для ряда работ, выполняемых, например, в импульсных высокоэнтальпийных установках, требуется знать состав рабочего газа, обтекающего модели.
Так, при исследованиях газодинамических моделей с горением возникает вопрос о содержании в обтекающем модель воздухе кислорода, поскольку при электродуговом нагреве в форкамере уменьшается его доля за счет окисления элементов конструкции. При использовании химической энергии для увеличения энергетики установки требуется знать, насколько полно завершены химические реакции в форкамере и какой состав имеет рабочий газ на срезе сопла. При исследованиях различных схем прямоточных двигателей с тепломассоподводом желательно знать состав продуктов горения на выходе из сопла и др.
Кроме того, имея экспериментальные данные по расходу газа в рабочей части высокоэнтальпийной аэродинамической трубы кратковременного действия (продолжительность рабочего режима ~100 мс) и сопоставляя их с расчетными результатами, можно повысить надежность и точность проводимых исследований.
Известны устройства для получения информации о составе газа путем отбора пробы из движущейся со сверхзвуковой скоростью потенциально химически активной среды с помощью расширяющегося канала для замораживания пробы и дальнейшего ее химического анализа (Рожицкий С.И., Строкин В.Н. К методике отбора газовой пробы из сверхзвукового реагирующего потока. // Физика горения и взрыва. 1974. Т. 10, №4. С. 492-498) [1]; (Авторское свидетельство СССР №463029, кл. G01n 1/22,1972 г.) [2].
Недостатками этих устройств является невозможность их использования в аэродинамических установках с кратковременными рабочими режимами ~100 мс по следующим причинам:
- при продолжительности работы аэродинамической трубы ~100 мс время на отбор газа и запирание его в баллоне составляет несколько десятков миллисекунд, чего явно недостаточно для использования этих устройств;
- для привязки пробы к изменяющимся параметрам потока требуется жесткая синхронизация работы системы отбора с режимом установки;
- объем баллона, в который набирается проба, не является произвольным, а определяется компромиссом между давлением в баллоне, которое должно быть много меньше полного давления в канале пробоотборника для предотвращения запирания и срыва втекания в пробоотборник, временем отбора и минимально необходимой для химического анализа массой газа в баллоне;
- из-за малого времени режима давление отобранной пробы в баллоне получается значительно меньше атмосферного, что создает серьезные проблемы при отборе пробы газа.
При испытаниях в высокоэнтальпийных установках кратковременного действия для определения параметров рабочего газа, обтекающего модель, имеется ограниченное количество измеряемых величин. Этот ограниченный набор величин не позволяет экспериментальным путем определить требуемый набор параметров потока, таких как скорость, статические давление и температура и т.д. Приходится использовать ряд допущений, которые совместно с измеренными величинами позволяют создать замкнутую систему уравнений, обеспечивающую получение в рабочей части расчетных параметров набегающего на модель газа.
Правильность такого подхода к определению параметров рабочего газа в рабочей части (верификация метода определения параметров) проверяется в специальных опытах сравнением какой-либо измеренной характеристики потока с ее расчетным значением. Отклонение расчетной характеристики от ее измеренной величины служит оценкой точности определения параметров рабочего газа в рабочей части установки. Такой характеристикой может являться масса газа, протекшего в рабочей части установки через поперечное сечение F0 за фиксируемое время.
Известно устройство, позволяющие в специфических условиях высокоэнтальпийной установки кратковременного действия определять расход газообразной среды, проходящей через поперечное сечение канала (Королев А.С., Бошенятов Б.В., Друкер И.Г., Затолока В.В. Импульсные трубы в аэродинамических исследованиях. Новосибирск. Наука, Сибирское отделение. 1978. 80 с.) [3], с. 60.
Принципиальными недостатками этого устройства являются следующие.
- необходимость учитывать реальные свойства газа, связанные с высокими температурой и давлением;
- необходимость понижения температуры газа перед мерным соплом с целью уменьшения динамической составляющей погрешности в показаниях термопар, что заставляет устанавливать перед мерным соплом теплообменник-холодильник;
- инерционность в показаниях термопар, измеряющих температуру газа перед мерным соплом, что ставит под сомнение правильность измерения температуры и, следовательно, приводит к грубым ошибкам в измерении расхода.
Наиболее близким, принятым за прототип, является устройство, описанное в статье (Шумский В.В., Ярославцев М.И. Состав рабочего тела в рабочей части высокоэнтальпийной установки // ФГВ. 2012. Т. 48, №1. С. 28-37) [4], для отбора газа из рабочей части импульсной трубы, учитывающее перечисленные выше особенности режима высокоэнтальпийных аэродинамических труб, позволяющее отбирать газ из сверх- или гиперзвукового потока для последующего химического анализа.
Устройство содержит герметично соединенные собственно пробоотборник с заостренной передней кромкой и расширяющимся внутренним каналом, пироклапан, в корпусе которого размещены поршень, узел подключения управляющих высоковольтных проводов для подрыва порохового заряда и выполнено перепускное отверстие в объем для сбора, хранения и отбора из него пробы газа.
Недостатки устройства, изложенного в [4], в случае отбора газа для химического анализа заключаются в следующем:
- при температурах торможения газового потока перед отверстием пробоотборника, больших 2000 К, падение температуры отобранной пробы в сверхзвуковой части пробоотборника (понижение статической температуры при расширении отобранной пробы, теплоотвод в стенки канала) недостаточно для гарантированного отсутствия в каналах устройства вторичных химических реакций;
- значительная часть падения температуры должна происходить при дозвуковой скорости на длине от места перехода сверхзвукового потока в дозвуковой (от псевдоскачка до камеры). В данном устройстве теплоотвод осуществляется только в стенки канала, чего недостаточно;
- большая длина каналов устройства от начала псевдоскачка до баллона не обеспечивает при больших температурах отобранной пробы требования, чтобы время прохождения пробой этой длины было меньше времени индукции возможных вторичных реакций;
- узел подрыва пироклапана находится на лобовой части устройства, что при больших температурах и давлениях газового потока вызывает сбои в работе из-за больших тепловых потоков в районе подключения управляющего проводника к пироклапану.
- наличие одного (положительного) поджигающего электрода (корпус устройства - минус) приводит к появлению электроэррозии на поверхности поршня клапана и корпусе устройства, что нарушает герметичность баллона с отобранным газом.
Задачей изобретения является расширение экспериментальных возможностей устройства за счет увеличения предельных температур и давлений, при которых устройство может применяться в высокоэнтальпийных установках кратковременного действия как устройство для взятия пробы газа с целью определения состава, так и измерения расхода газа.
Поставленная задача достигается тем, что устройство для отбора пробы газа и измерения расхода в высокоэнтальпийных установках кратковременного действия содержит собственно пробоотборник, пироклапан, узел подключения управляющих высоковольтных проводов для подрыва порохового заряда, перепускное отверстие в баллон для сбора и хранения пробы газа.
Новым является то, что в канале пробоотборника установлена теплопроводная вставка с развитой площадью поверхностей, а баллон для сбора и хранения газа снабжен поршнем, благодаря перемещению которого можно изменять давление в баллоне, при этом узел подключения управляющих высоковольтных проводов для подрыва порохового заряда установлен в аэродинамической тени пироклапана и дополнительно снабжен двухэлектродной системой, а в корпусе пироклапана выполнено дренажное отверстие для сброса давления пороховых газов.
Это же устройство позволяет осуществить способ определения расхода газа путем сравнения массы газа (Gб)э, наполнявшего в экспериментах в течение времени tб камеру известного объема, со значением массы (Gб)р, которая должна поступать в камеру за время tб при расчетных значениях скорости Wн и удельного объема vн газа в рабочей части установки. Тем самым косвенно определяется расход газа через трубку с площадью поперечного сечения F.
Технический результат, достигаемый при этом, - увеличение предельных температуры и давления, при которых устройство может применяться в высокоэнтальпийных установках кратковременного действия, например в импульсных трубах, повышение достоверности отобранной пробы газа, наполнившей камеру, возможность одновременного измерения расхода.
Схема устройства для отбора пробы газа и измерения расхода в высокоэнтальпийных установках кратковременного действия приведена на чертеже.
Устройство включает в себя: насадок 1 пробоотборника с заостренной передней кромкой и расширяющимся внутренним каналом, пробоотборник 2, вставку 3 из материала с большой теплопроводностью (может быть выполнена из меди) и с развитой площадью внутренних поверхностей (пористой), корпус пироклапана 4, подпружиненный стопор 5 для фиксации поршня 6 пироклапана и дренажное отверстие 7 для сброса давления пороховых газов. Узел подключения управляющих высоковольтных проводов для передачи сигнала на подрыв порохового заряда 8 (пиросостав) установлен в аэродинамической тени за пироклапаном и содержит также поджигающую свечу 9, изолятор свечи 10 и два электрода 11. Дополнительный (отрицательный) электрод 11 обеспечивает контролируемый разряд между электродами, а не на поршень, как было в прототипе. На поверхности поршня и цилиндра после нескольких пусков появлялись следы электроэррозии и нарушалась герметичность системы. В настоящем варианте система не связана с землей. Объем для сбора, хранения и отбора из него пробы газа - баллон 12 содержит поршень 13, винт 14 перемещения поршня баллона, резиновую заглушку 15 для отбора пробы газа и датчик давления 16. Перепускное отверстие 17 между полостью пробоотборника 2 и баллоном 12 перекрывается поршнем 6 пироклапана.
Устройство, приведенное на чертеже, в режиме отбора пробы работает следующим образом.
Перед экспериментом устройство находится в исходном состоянии, как показано на чертеже. При подготовке аэродинамической трубы к пуску проводится вакуумирование газодинамического тракта трубы до давления 10-2 мм рт.ст. Вместе с газодинамическим трактом вакуумируются полости устройства для отбора пробы газа: канал пробоотборника 2, полость корпуса пироклапана 4, перепускное отверстие 17, баллон 12. Поршень 13 с помощью винта 14 отведен в крайнее правое положение и застопорен для предотвращения его смещения из-за разницы давления, действующего на торцы поршня после окончания пуска трубы и разгерметизации рабочей части установки.
После запуска трубы через отверстие d0 происходит натекание газа в пробоотборник. В процессе отбора газа с помощью скоростной видеосъемки контролируется форма скачка уплотнения на острой передней кромке отверстия d0. Сигнал на подрыв пироклапана подается через узел подключения управляющих высоковольтных проводов до момента появления отошедшего скачка уплотнения. Поэтому время подачи импульса на подрыв пироклапана контролируется дополнительно видеокамерой.
После сигнала на подрыв пироклапана из-за быстрого повышения давления в полости 8 поршень 6 через ~50-100 мкс закрывает герметично перепускное отверстие 17 пробоотборника 2, подпружиненный стопор 5 фиксирует поршень 6 в крайнем левом положении.
Таким образом, полость баллона 12 изолируется от газодинамического тракта трубы.
При определении расхода наполнившему баллон газу дают возможность остыть до комнатной температуры Тб. Затем измеряют давление в баллоне с помощью манометра или датчика давления 16. Зная величину объема V баллона 12 и перепускного отверстия 17, давление рб в полости баллона, время tб=tб2-tб1 пребывания в открытом состоянии перепускного отверстия 17, определяют массу газа, поступившего в баллон за время tб
(Gб)э=Vpб/(RTб),
где R - удельная газовая постоянная, tб1 - время начала наполнения баллона, tб2 - время окончания наполнения (срабатывание пироклапана после поступления сигнала на подрыв порохового заряда 8).
Расчетное значение массы, которая должна натечь в баллон за время tб, определяется из выражения
Figure 00000001
где Wн, vн - расчетные значения скорости и удельного объема в рабочей части установки, F0 - площадь входа в пробоотборник.
Величина δ=(Gб р-Gб э)/Gб э характеризует отклонение расчетных значений от экспериментальных и тем самым с точностью, определяемой δ, позволяет определять расход газа G=WнF/υн через площадь поперечного сечения F в рабочей части установки.
При отборе газа с целью определения состава, путем проведения в дальнейшем химического анализа, следует иметь ввиду, что на трех участках происходит замораживание пробы:
1) на участке l1 со сверх- или гиперзвуковой скоростью, на котором за счет теплоотдачи к холодным стенкам пробоотборника 2 происходит уменьшение температуры пробы;
2) на участке l2 с дозвуковой скоростью к развитым холодным поверхностям вставки 3;
3) к холодным стенкам баллона 12 после попадания пробы в баллон.
Общее время охлаждения пробы в процессе прохождения ее от входного отверстия d0 до баллона 12 не должно превышать времени индукции химической реакции, зависящего от давления и температуры в пробе. Этим временем индукции определяется выбор длин l1, l2 и необходимость сведения до минимума длины участка между собственно пробоотборником 2 и баллоном 12.
Заполнение баллона для отбора газа производится, как описано выше, после остывания отобранного газа до комнатной температуры, с помощью винта 14 производится перемещение поршня 13 влево, с целью повышения давления в полости баллона 12 несколько выше атмосферного. При этом давление в баллоне контролируется датчиком давления 16. После этого с помощью шприца прокалывается резиновая заглушка 15 и отбирается проба на химический анализ, что и обеспечивает предлагаемая конструкция пробоотборника газа.
Источники информации
1. Рожицкий С.И., Строкин В.Н. К методике отбора газовой пробы из сверхзвукового реагирующего потока. // Физика горения и взрыва. 1974. Т. 10, №4. С. 492-498.
2. Авторское свидетельство СССР №463029, кл. G01n 1/22, 1972 г.
3. Королев А.С, Бошенятов Б.В., Друкер И.Г., Затолока В.В. Импульсные трубы в аэродинамических исследованиях. Новосибирск. Наука, Сибирское отделение. 1978. 80 с.
4. Шумский В.В., Ярославцев М.И. Состав рабочего тела в рабочей части высокоэнтальпийной установки // ФГВ. 2012. Т. 48, №1. С. 28-37.

Claims (3)

1. Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия, содержащее герметично соединенные собственно пробоотборник с заостренной передней кромкой и расширяющимся внутренним каналом, пироклапан, в корпусе которого размещены поршень клапана, узел подключения управляющих высоковольтных проводов для подрыва порохового заряда и выполнено перепускное отверстие в баллон для сбора и хранения пробы газа, отличающееся тем, что баллон для сбора пробы снабжен поршнем, в канале пробоотборника установлена теплопроводная вставка с развитой площадью внутренних поверхностей, при этом узел подключения управляющих высоковольтных проводов для подрыва порохового заряда установлен в аэродинамической тени пироклапана и дополнительно снабжен двухэлектродной системой, а в корпусе пироклапана выполнено дренажное отверстие для сброса давления пороховых газов.
2. Устройство по п. 1, отличающееся тем, что баллон сбора и хранения газа снабжен винтом перемещения поршня.
3. Способ определения расхода газа в высокоэнтальпийных установках кратковременного действия с использованием устройства по п. 1, отличающийся тем, что проводят вакуумирование газодинамического тракта и полостей устройства до давления 10-2 мм рт.ст., через перепускное отверстие пробоотборника заполняют газом баллон для отбора пробы, при этом поршень баллона стопорят в крайнем правом положении, затем герметично закрывают перепускное отверстие, наполнившему баллон газу дают возможность остыть до комнатной температуры Тб, измеряют давление в баллоне с помощью манометра или датчика давления, зная величину объема V баллона и перепускного отверстия, давление рб в полости баллона, время tб = tб2 - tб1 пребывания в открытом состоянии перепускного отверстия, определяют массу газа (Gб)э, поступившего в баллон за время tб
(Gб)э=Vpб/(RTб),
где R - удельная газовая постоянная, tб1, tб2 - время начала и окончания наполнения баллона, вычисляют расчетное значение массы, которая должна натечь в баллон за время tб.
RU2014138220/13A 2014-09-22 Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия и способ измерения расхода газа с использованием этого устройства RU2582805C9 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014138220/13A RU2582805C9 (ru) 2014-09-22 Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия и способ измерения расхода газа с использованием этого устройства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014138220/13A RU2582805C9 (ru) 2014-09-22 Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия и способ измерения расхода газа с использованием этого устройства

Publications (3)

Publication Number Publication Date
RU2014138220A RU2014138220A (ru) 2016-04-10
RU2582805C2 RU2582805C2 (ru) 2016-04-27
RU2582805C9 true RU2582805C9 (ru) 2016-06-27

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750605C1 (ru) * 2020-11-11 2021-06-29 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ "33 ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИСПЫТАТЕЛЬНЫЙ ИНСТИТУТ" Минобороны России Устройство изоляции зараженного воздуха в статичной ингаляционной камере для пробоотбора

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1577487A1 (ru) * 1988-07-12 1992-06-30 Предприятие П/Я Г-4903 Импульсна аэродинамическа труба с криогенной откачкой рабочего газа и способ испытаний в ней
JPH08178092A (ja) * 1994-09-13 1996-07-12 Aero Systems Eng Inc 自由ピストン衝撃管/トンネル用のピストン解放弁
RU2439523C1 (ru) * 2010-07-16 2012-01-10 Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Импульсная аэродинамическая труба
CN102519704A (zh) * 2011-11-08 2012-06-27 中国科学院力学研究所 脉冲风洞热喷流实验气源供气平台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1577487A1 (ru) * 1988-07-12 1992-06-30 Предприятие П/Я Г-4903 Импульсна аэродинамическа труба с криогенной откачкой рабочего газа и способ испытаний в ней
JPH08178092A (ja) * 1994-09-13 1996-07-12 Aero Systems Eng Inc 自由ピストン衝撃管/トンネル用のピストン解放弁
RU2439523C1 (ru) * 2010-07-16 2012-01-10 Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Импульсная аэродинамическая труба
CN102519704A (zh) * 2011-11-08 2012-06-27 中国科学院力学研究所 脉冲风洞热喷流实验气源供气平台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Шумский В.В., ЯрославцевМ.И. "Состав рабочего тела в рабочей части высокоэнтальпийной установки", Физика горения и взрыва, 2012, т.48, N1,с.28-37. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750605C1 (ru) * 2020-11-11 2021-06-29 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ "33 ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИСПЫТАТЕЛЬНЫЙ ИНСТИТУТ" Минобороны России Устройство изоляции зараженного воздуха в статичной ингаляционной камере для пробоотбора

Similar Documents

Publication Publication Date Title
US7707871B2 (en) Leak detection system with controlled differential pressure
CN108828457B (zh) 电池热失控实验装置及其系统
CN109270117A (zh) 一种裂隙试样渗流-传热过程中的数据测量装置与测量方法
Nagamatsu et al. Hypersonic shock tunnel
CN103091364B (zh) 一种火工药剂高温环境适应性试验方法
RU2582805C9 (ru) Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия и способ измерения расхода газа с использованием этого устройства
RU2582805C2 (ru) Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия и способ измерения расхода газа с использованием этого устройтсва
RU2399783C1 (ru) Стенд для моделирования импульсного газотермодинамического воздействия высокотемпературного газа на элементы тепловой защиты конструкции
CN108872310A (zh) 一种混合气体爆炸极限测定方法及装置
CN116735835A (zh) 一种致密砂岩凝析气藏衰竭开发模拟装置及方法
Zhao et al. Performance of a detonation driven shock tunnel
Ady et al. Leak propagation dynamics for the HIE-ISOLDE superconducting linac
RU2718732C1 (ru) Способ определения относительной детонционной способности газообразных и диспергированных конденсированных горючих материалов и устройство для его реализации
CN111024359B (zh) 一种短时气体喷注流量测量方法
CN114753819B (zh) 一种稠油油藏的火驱装置及系统
CN205404568U (zh) 一种测试低温下炸药爆速的装置
Duffy Experimental study of nonequilibrium expanding flows
KR102344630B1 (ko) 극초음속 통합 실험 장치
Antsygin et al. Determination of gas-flow composition in hot-shot wind tunnels
RU138510U1 (ru) Газодинамический насадок для определения температуры потока нагретого газа
CN112539798A (zh) 电池热失控释放气体的检测方法
Pinto et al. Flow characterization of the T3 hypersonic shock tunnel
Shumskii et al. Composition of the test gas in the test section of a high-enthalpy wind tunnel
Wu et al. Shock propagation in a high temperature gas discharge initiated by ultraviolet laser-induced breakdown
Borovoy et al. HIGH-TEMPERATURE CARBON DIOXIDE FLOW OVER A LONGITUDINAL CYLINDER