RU2582624C1 - Гидроакустический способ обработки рыбопромысловой информации - Google Patents

Гидроакустический способ обработки рыбопромысловой информации Download PDF

Info

Publication number
RU2582624C1
RU2582624C1 RU2015100615/28A RU2015100615A RU2582624C1 RU 2582624 C1 RU2582624 C1 RU 2582624C1 RU 2015100615/28 A RU2015100615/28 A RU 2015100615/28A RU 2015100615 A RU2015100615 A RU 2015100615A RU 2582624 C1 RU2582624 C1 RU 2582624C1
Authority
RU
Russia
Prior art keywords
fish
trawl
sonar
cluster
fishing
Prior art date
Application number
RU2015100615/28A
Other languages
English (en)
Inventor
Валерий Григорьевич Тимошенков
Станислав Алексеевич Смирнов
Original Assignee
Акционерное Общество "Концерн "Океанприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Концерн "Океанприбор" filed Critical Акционерное Общество "Концерн "Океанприбор"
Priority to RU2015100615/28A priority Critical patent/RU2582624C1/ru
Application granted granted Critical
Publication of RU2582624C1 publication Critical patent/RU2582624C1/ru

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Использование: изобретение относится к области морского рыболовного промысла и может повысить эффективность процесса вылова рыбы с использованием гидроакустических средств. Сущность: гидроакустический способ обработки рыбопромысловой информации содержит обнаружение рыбного скопления гидролокатором, прием и отображение данных автономных датчиков акустической связи, установленных на трале, наведение трала на рыбное скопление, в качестве антенны гидролокатора используется сферическая антенна, на основе которой формируется сферическая совокупность характеристик направленности, обеспечивающая одновременное освещение пространства относительно положения корпуса рыболовного судна, обнаружение рыбного скопления осуществляется носовыми характеристиками направленности с упреждением по ходу движения рыболовного судна, измеряется автоматически дистанция до рыбного скопления, измеряется пространственное положение рыбного скопления относительно направления движения гидролокатора, измеряется дистанционно глубина погружения рыбного скопления, определяется тыльными характеристиками направленности сферической антенны пространственное положение трала и отображается одновременно положение гидролокатора и рыбного скопления, сравнивается глубина погружения рыбного скопления с глубиной погружения трала и устанавливается глубина погружения трала равной глубине погружения рыбного скопления, и направление движения трала совмещается с направлением движения гидролокатора на пространственное положение рыбного скопления. Технический результат: повышение точности наведения тралов на рыбное скопление. 1 ил.

Description

Настоящее изобретение относится к сфере морского рыболовного промысла, основанного на использовании гидроакустики для обнаружения и вылова рыбной продукции с использованием траловых орудий лова. Основными техническими средствами в мировой практике, которые обеспечивают получение наиболее полной и всесторонней информации об объектах промысла, являются рыбопоисковые приборы и комплексы, основанные на использовании акустических принципов и метода гидролокации. Значительное число вариантов построения гидролокаторов иностранного и отечественного производства, используемых для обнаружения рыбных скоплений, отличающихся методами технической реализации, обработки гидроакустической информации, способами локации, методами обзора, типами решаемых задач, рассмотрено в монографии Ю.С. Кобяков, Н.Н. Кудрявцев, В.И. Тимошенко. «Конструирование гидроакустической рыбопоисковой аппаратуры». Л.: Судостроение, 1986, стр. 5-50. После обнаружения рыбного скопления осуществляется лов рыбы, который производится различными орудиями лова. Одним из основных и наиболее эффективных орудий лова являются тралы, которые могут выставляться на глубине до 2000 м и на удалении до 4000 м (там же, стр. 27-30). Таким образом, гидролокатор, как источник информации о наличии рыбного скопления, и орудие лова разнесены на большое расстояние и работают они независимо друг от друга, что требует определенных действий для обеспечения точного наведения трала на рыбное скопление. Для этого разработаны методы комплексирования аппаратуры, которая обеспечивает наведение трала на рыбное скопление (там же, стр. 30-36). Аппаратура обеспечивает обработку информации от гидроакустических и навигационных приборов и представление результатов обработки на экран дисплея с отображением взаимного положения судна, орудий лова и обнаруженных скоплений рыбы. Этот способ последовательного комплексирования информации содержит получение и отображения на общем индикаторе информации от гидролокатора, получение информации от эхолота, получение информации от параметров контроля положения трала, от доплеровского гидроакустического лага, гирокомпаса, определение параметров отклонения положения трала по курсовому углу, изменение положения трала в соответствии с выработанными ошибками (А.И. Тикунов. «Рыбопоисковые приборы и комплексы». Л.: Судостроение, 1989, стр. 156-164). Аппаратура предназначена для отображения промысловой ситуации на экране общего дисплея, поступающей от гидролокатора, эхолота, лага, гирокомпаса, и управления работой гидролокатора и тралом. Задачей использования комплекта аппаратуры является управление работой гидролокатора и тралом. Этот способ последовательных действий может быть взят нами за прототип.
Гидроакустический способ обработки рыбопромысловой информации содержит излучение сигнала гидролокатором, прием эхосигнала однолепестковой характеристикой направленности (там же, стр. 111), сканирование ХН в горизонтальной и вертикальной плоскостях, отображение на самописце или индикаторе гидролокатора эхосигналов и визуальное обнаружение рыбного скопления, определение координат положения обнаруженного рыбного скопления и дистанции до него по положению эхосигналов на самописце и передача данных на аппаратуру отображения промысловой ситуации, прием автономной антенной данных датчиков акустической связи, которые установлены на трале и определяют положение трала по глубине, и отображение положения трала на дисплее аппаратуры рыбопромысловой ситуации, при достижении местоположения рыбного скопления измерение эхолотом глубины рыбного скопления и наведение трала по глубине на рыбное скопление.
Информация, поступающая от гидролокатора прототипа, да и большинства используемых гидролокаторов (там же, стр. 110-140, а также Долгов А.Н., Раскита М.А. «Разработка структуры ГАК и требований к алгоритмам для обнаружения и подсчета рыб». Труды 10 Всероссийской конференции «Прикладные технологии гидроакустики и гидрофизики» СПб.: Наука, 2010, стр. 134-136), отображает положение рыбного скопления непосредственно в момент обнаружения и регистрирует его на дисплее или самописце, который и хранит изображение относительно положения направления движения рыболовного судна. Это обеспечивается наведением антенны на рыбное скопление. После достижения рыбного скопления судном эхолотом, антенна которого направлена вертикально вниз, измеряется глубина нахождения рыбного скопления. Глубина положения трала определяется по датчикам, установленным на трале и величине вытравленного тралового троса, что фиксируется в системе расчетов, где происходит сопоставление положения судна и положение трала. В прототипе все эти данные выводятся на единый дисплей отображения рыбопромысловой информации, обрабатываются и вычисляются прогнозные оценки положения рыболовецкого судна, положение трала и смещение положения рыбного скопления относительно рыболовецкого судна и трала. Таким образом, оценивается прошлое положение трала и прошлое положение рыболовецкого судна и вырабатывается ошибка отклонения относительно прогнозируемых положений. За время сбора рыбопромысловой информации может измениться положение рыбного скопления и сместиться положение рыболовецкого судна и положение трала, что приведет к ошибкам в наведении трала на рыбное скопление.
Таким образом, недостатком этого способа обработки рыбопромысловой информации является необходимость использования большого числа источников информации, разнесенных по пространству и по времени, что не всегда может обеспечить надежное наведение трала на рыбное скопление.
Задачей изобретения является повышение эффективности работы гидролокатора рыболовного судна.
Техническим результатом использования предлагаемого изобретения является повышение точности наведения рыболовного трала на обнаруженное рыбное скопление и сокращение времени наведения трала.
Для достижении указанного технического результата в гидроакустический способ обработки рыбопромысловой информации, содержащий обнаружение рыбного скопления гидролокатором, прием и отображение данных автономных датчиков акустической связи, установленных на трале и наведение трала на рыбное скопление, введены новые признаки, а именно в качестве антенны гидролокатора используют сферическую антенну, на основе которой формируют сферическую совокупность характеристик направленности (ХН), обеспечивающую одновременное всестороннее освещение водного пространства относительно положения корпуса рыболовного судна, обнаружение рыбного скопления осуществляют носовыми ХН сферической антенны с упреждением по ходу движения рыболовного судна, автоматически измеряют дистанцию до рыбного скопления, измеряют пространственное положение рыбного скопления относительно направления движения гидролокатора, дистанционно измеряют глубину погружения рыбного скопления, определяют кормовыми ХН сферической антенны пространственное положение трала и отображают одновременно положение гидролокатора и рыбного скопления, сравнивают измеренную глубину погружения рыбного скопления с глубиной погружения трала и устанавливают глубину погружения трала равной глубине погружения рыбного скопления, и направление движения трала совмещают с направлением движения гидролокатора на пространственное положение рыбного скопления
Поясним достижение положительного результата.
Использование сферической антенны и формирование на ее основе картины освещения окружающего пространства существенно меняет процедуру обнаружения рыбных скоплений и процедуру обработки рыбопромысловой ситуации. Рыбные скопления могут быть обнаружены задолго до подхода рыболовного судна к ним по информации, полученной при обработке характеристик направленности, ориентированных в сторону направления движения. Одновременно с этим кормовыми характеристиками направленности можно обнаруживать эхосигналы от трала и наблюдать положение и движение трала и сравнивать с реальным положением рыбного скопления. Эти положения можно наблюдать в реальном масштабе времени и своевременно проводить корректировку положения трала относительно рыбного скопления. Особой задачей стоит необходимость измерения глубины погружения рыбного скопления, обнаруженного носовыми характеристиками направленности впереди по курсу движения. Обычно измеряют глубину погружения рыбного скопления расположенного непосредственно под рыболовным судном по эхосигналам, отраженным от дна и от рыбного скопления с использованием отдельного гидролокатора - эхолота. В предлагаемом техническом решении для этой задачи можно использовать патент РФ №2350983, который позволяет определять глубину погружения малоподвижного объекта с упреждением впереди движения гидролокатора по нескольким циклам излучения - прием. Для реализации этого способа достаточно измерения дистанции и измерения собственной скорости с использованием стандартной аппаратуры. Гидроакустическая антенна сферической формы для гидролокатора является известным устройством, которое может быть выполнено на основании патента РФ №2460092. Сферическая антенна может обеспечить сканирование трехмерного подводного пространства в максимально широком диапазоне телесных углов, что позволит отслеживать положение рыбного скопления и положение трала в течение длительного времени и обеспечивать необходимую точность наведения трала на рыбное скопление. Кроме того, можно наблюдать сам процесс захвата рыбного скопления тралом и оценивать качество наведения.
Сущность изобретения поясняется фиг. 1, на которой приведена блок-схема устройства, реализующего предлагаемый гидроакустический способ обработки рыбопромысловой информации
На фиг. 1 гидролокатор 1, содержащий сферическую антенну 2, через блок 7 излучения и коммутации соединенную с системой 3 формирования характеристик направленности, блоком 4 обнаружения и пороговой обработки, первый выход которого соединен через блок 5 обработки сигналов рыбного скопления с первым входом спецпроцессора 8 управления положением трала, а второй выход через блок 6 измерения положения трала по кормовым характеристикам направленности со вторым входом блока 8, выход которого соединен со входом спецпроцессора 12 отображения общей обстановки и выдачи команд управления, выход которого соединен со вторым входом блока 7 излучения и коммутации. Блок 9 автономных датчиков определения положения трала по глубине и направлению соединен с третьим входом спецпроцессора 8, четвертый вход спецпроцессора 8 соединен с блоком 10 измерения собственной скорости, а пятый вход спецпроцессора 8 соединен блоком 11 определения глубины дна.
Предложенный способ с помощью представленного выше устройства реализуется следующим образом. Сигнал о начале работы поступает из блока12 спецпроцессора отображения общей обстановки и выдачи команд управления на блок 7 излучения и коммутации, который формирует зондирующий сигнал и через сферическую антенну 2 и систему 3 формирования характеристик направленности излучается в промысловую водную среду. Отраженные эхосигналы через сферическую антенну 2 поступают на систему 3 формирования характеристик направленности, где происходит пространственная селекция принятых сигналов. Временная информация по каждому пространственному каналу передается в блок 4 обнаружения и пороговой обработки. В блоке 4 производится выбор порога и обнаружение превышения амплитуды сигнала выбранного порога в каждом пространственном канале. Эти операции являются известными, и они используются во всех современных гидролокаторах (Ю.С. Кобяков, Н.Н. Кудрявцев, В.И. Тимошенко. «Конструирование гидроакустической рыбопоисковой аппаратуры». Л.: Судостроение, 1986). Наибольший интерес для работы представляют носовые пространственные каналы, которые обрабатывают в блоке 5 обработки сигналы рыбного скопления. По кормовым характеристикам направленности, которые обрабатываются в блоке 6, можно определить положение трала и измерить до него дистанцию. Полученная информация в виде амплитудных и временных отсчетов поступает через спецпроцессор 8 управления положением трала на спецпроцессор 12 отображения общей обстановки и выдачи команд управления. Кроме того, в блок 8 поступают текущие измеренные координаты рыбного скопления и текущие измеренные координаты положения трала из блока 9. В спецпроцессоре 8 управления положением трала по измеренным текущим координатам отслеживается положение трала относительно рыбного скопления. Для точного расчета команд управления движением трала используется дополнительная информация, которая поступает от блока 9 автономных датчиков определения положения трала по глубине и по направлению от блока 10 измерения собственной скорости и от блока 11 определения глубины дна под тралом. В настоящее время практически вся гидроакустическая аппаратура выполняется на спецпроцессорах, которые преобразуют акустический сигнал в цифровой вид и производят в цифровом виде формирование характеристик направленности, многоканальную обработку и обнаружение сигнала. Вопросы реализации спецпроцессоров достаточно подробно рассмотрены в книге Ю.А. Корякин, С.А. Смирнов, Г.В. Яковлев «Корабельная гидроакустическая техника» Санкт-Петербург: «Наука», 2004, стр. 281. Гидроакустические измерители скорости движения являются известными устройствами, которые выпускаются серийно и устанавливаются на всех современных судах (А.В. Богородский, Д.Б. Островский. Гидроакустические навигационные и поисково-обследовательские средства. Санкт Петербург, 2009. Изд. ЛЭТИ, стр. 40-81). Определение глубины дна производится с использованием известных навигационных и многолучевых эхолотов, которые выпускаются серийно во всех развитых странах (Д.Е Левашев. «Современные суда и судовое оборудование для промысловых исследований». М.: Изд. ВНИРО, 2010, стр. 84-90). Там же приведены конкретные приборы дистанционного контроля орудий лова на стр 80-84, которые имеют цифровой выход и могут сопрягаться практически со всеми цифровыми спецпроцессорами обработки информации. Таким образом, в блоке 12 отображается вся текущая информация по положению рыбного скопления и положению трала, все измеренные координаты по рыбному скоплению и тралу и прогнозируемое положение трала относительно рыбного скопления и соответствующие команды управления из блока 8. Для решения наших задач будут использоваться текущие измерения по каждой посылке по упрежденным измерениям рыбного скопления, упрежденному измерению положения рыбного скопления по глубине и по направлению и реальному положению трала. По этим данным могут вырабатываться ошибки положения трала по глубине и по направлению и вырабатываться команды на изменение положения трала для точного совмещения с положением рыбного скопления.
Таким образом, на общем экране отображается промысловая ситуация с одновременным отображением положения рыбного скопления, промыслового судна и трала и их взаимное перемещение в реальном масштабе времени, что позволяет обеспечить решение поставленной задачи.

Claims (1)

  1. Гидроакустический способ обработки рыбопромысловой информации, содержащий обнаружение рыбного скопления гидролокатором, прием и отображение данных автономных датчиков акустической связи, установленных на трале, и наведение трала на рыбное скопление, отличающийся тем, что в качестве антенны гидролокатора используют сферическую антенну, на основе которой формируют сферическую совокупность характеристик направленности (ХН), обеспечивающую одновременное всестороннее освещение водного пространства относительно положения корпуса рыболовного судна, обнаружение рыбного скопления осуществляют носовыми ХН сферической антенны с упреждением по ходу движения рыболовного судна, автоматически измеряют дистанцию до рыбного скопления, измеряют пространственное положение рыбного скопления относительно направления движения гидролокатора, дистанционно измеряют глубину погружения рыбного скопления, определяют кормовыми ХН сферической антенны пространственное положение трала и отображают одновременно положение гидролокатора и рыбного скопления, сравнивают измеренную глубину погружения рыбного скопления с глубиной погружения трала и устанавливают глубину погружения трала равной глубине погружения рыбного скопления, и направление движения трала совмещают с направлением движения гидролокатора на пространственное положение рыбного скопления.
RU2015100615/28A 2015-01-12 2015-01-12 Гидроакустический способ обработки рыбопромысловой информации RU2582624C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015100615/28A RU2582624C1 (ru) 2015-01-12 2015-01-12 Гидроакустический способ обработки рыбопромысловой информации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015100615/28A RU2582624C1 (ru) 2015-01-12 2015-01-12 Гидроакустический способ обработки рыбопромысловой информации

Publications (1)

Publication Number Publication Date
RU2582624C1 true RU2582624C1 (ru) 2016-04-27

Family

ID=55794549

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015100615/28A RU2582624C1 (ru) 2015-01-12 2015-01-12 Гидроакустический способ обработки рыбопромысловой информации

Country Status (1)

Country Link
RU (1) RU2582624C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111820194A (zh) * 2020-06-01 2020-10-27 中国水产科学研究院东海水产研究所 基于虾群密度探知的南极磷虾拖网瞄准捕捞方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2242021C2 (ru) * 2002-07-15 2004-12-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Гидролокационный способ обнаружения подводных объектов, движущихся с малой радиальной скоростью в контролируемой акватории, и гидролокационная станция кругового обзора, реализующая этот способ
WO2006133304A2 (en) * 2005-06-08 2006-12-14 Massachusetts Institute Of Technology Continuous, continental-shelf-scale monitoring of fish populations and behavior
RU2460092C1 (ru) * 2011-05-27 2012-08-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Гидроакустическая антенна сферической формы для гидролокатора

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2242021C2 (ru) * 2002-07-15 2004-12-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Гидролокационный способ обнаружения подводных объектов, движущихся с малой радиальной скоростью в контролируемой акватории, и гидролокационная станция кругового обзора, реализующая этот способ
WO2006133304A2 (en) * 2005-06-08 2006-12-14 Massachusetts Institute Of Technology Continuous, continental-shelf-scale monitoring of fish populations and behavior
RU2460092C1 (ru) * 2011-05-27 2012-08-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Гидроакустическая антенна сферической формы для гидролокатора

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FURUNO ELECTRIC CO, LTD,, Installation Manual? Color Scanning Sonar FSV-30/FSV-30S, JAPAN, 13.12.2010. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111820194A (zh) * 2020-06-01 2020-10-27 中国水产科学研究院东海水产研究所 基于虾群密度探知的南极磷虾拖网瞄准捕捞方法

Similar Documents

Publication Publication Date Title
US9354314B2 (en) Underwater detection device
US7663974B2 (en) Fishfinder
CA2924151C (en) System for detecting and locating submerged objects having neutral buoyancy such as moored mines and associated method
RU2634787C1 (ru) Способ обнаружения локального объекта на фоне распределенной помехи
RU2461020C1 (ru) Способ автоматической классификации
RU136899U1 (ru) Устройство для съемки рельефа дна акватории
RU137126U1 (ru) Гидроакустический комплекс надводного корабля
JP2009222414A (ja) 魚群探知機
JPWO2017163904A1 (ja) 水中探知装置、水中探知方法、および水中探知プログラム
RU2697430C1 (ru) Гидроакустический комплекс для мониторинга рыбы в садках предприятий индустриальной аквакультуры
JP2012225667A (ja) 超音波送受信装置、定量検出方法、および魚量検出方法
EP3064958B1 (en) Systems and associated methods for producing a 3d sonar image
EP2849560B1 (en) Trawl height indicator
RU2582624C1 (ru) Гидроакустический способ обработки рыбопромысловой информации
US11022687B2 (en) Wading staff with a sonar transducer
RU127945U1 (ru) Навигационная гидроакустическая станция освещения ближней обстановки
JP2022500648A (ja) 平均音速プロファイルに基づく深度又は水深プロファイルの特定方法、かかる速度プロファイルの特定方法、及び関連するソナーシステム
RU2593824C1 (ru) Гидролокационный способ обнаружения подводных объектов в контролируемой акватории
RU99887U1 (ru) Автоматизированная система управления движением рыболовного судна
JPH0385476A (ja) 海底探索装置
RU2660292C1 (ru) Способ определения глубины погружения объекта
RU2534731C1 (ru) Система автоматической классификации гидролокатора ближнего действия
RU2725517C1 (ru) Способ обработки и классификации гидролокационной информации
CN111239748A (zh) 一种提高水平探鱼仪航向分辨率的方法及其装置
RU2516602C1 (ru) Способ определения глубины погружения объекта