RU2582219C2 - Плазмозамещающий раствор - Google Patents

Плазмозамещающий раствор Download PDF

Info

Publication number
RU2582219C2
RU2582219C2 RU2014120621/15A RU2014120621A RU2582219C2 RU 2582219 C2 RU2582219 C2 RU 2582219C2 RU 2014120621/15 A RU2014120621/15 A RU 2014120621/15A RU 2014120621 A RU2014120621 A RU 2014120621A RU 2582219 C2 RU2582219 C2 RU 2582219C2
Authority
RU
Russia
Prior art keywords
blood
solution
treatment
volume
plasma
Prior art date
Application number
RU2014120621/15A
Other languages
English (en)
Other versions
RU2014120621A (ru
Inventor
Александр Викторович Чечеткин
Ольга Владимировна Свинцова
Андрей Юрьевич Иванов
Наталия Николаевна Алексеева
Мария Леонидовна Герасимова
Original Assignee
Открытое акционерное общество "Фирма Медполимер" ОАО "Фирма Медполимер"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Фирма Медполимер" ОАО "Фирма Медполимер" filed Critical Открытое акционерное общество "Фирма Медполимер" ОАО "Фирма Медполимер"
Priority to RU2014120621/15A priority Critical patent/RU2582219C2/ru
Publication of RU2014120621A publication Critical patent/RU2014120621A/ru
Application granted granted Critical
Publication of RU2582219C2 publication Critical patent/RU2582219C2/ru

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к медицине, а именно к плазмозамещающим растворам, и может найти применение в трансфузиологии, при лечении гиповолемических состояний различной этиологии. Предложенный плазмозамещающий раствор включает гидроксиэтилкрахмал и натрий фумаровокислый в качестве электролита при следующем соотношении компонентов: гидроксиэтилкрахмал 58-62 г/л, натрий фумаровокислый 15-17 г/л, вода для инъекций до 1000 мл и имеет значение осмолярности 280-320 мосм/л. Изобретение обеспечивает восполнение объема циркулирующей жидкости и восстанавление гемоциркуляции и реологических показателей крови, а также оказывает специфический кардиотонический эффект, то есть резко увеличивает минутный объем кровообращения и ударный объем сердца в короткий срок после начала лечения, что эффективно улучшает сердечную деятельность и восстанавливает показатели кислотно-основного состояния организма. 2 табл.

Description

Заявляемое изобретение относится к медицине, а именно к плазмозамещающим растворам, и может найти применение в трансфузиологии, при лечении гиповолемических состояний различной этиологии.
При геморрагическом, травматическом, ожоговом или септическом шоке, при массивных кровопотерях используются средства волемического действия - плазмозамещающие растворы, в том числе растворы на основе гидроксиэтилированного крахмала (ГЭК). Плазмозамещающие растворы, содержащие ГЭК, известны в медицине более 20 лет [см., например, US 4167622, 1979; US 5218108, 1993; RU 2136293, 1999; WO 200047629; RU 2245714, 2005]. Они широко применяются в инфузионной терапии. С их помощью решаются проблемы восполнения объема циркулирующей жидкости, восстановления гемодинамики и реологических показателей крови при кровопотере и шоке. Нормализация кровообращения способствует ослаблению кислородной недостаточности. В последние годы фармацевтические разработки направлены на модификацию растворов ГЭК таким образом, чтобы решать узкие специфические проблемы.
Так, известна фармакологическая композиция, включающая гидроксиэтилкрахмал и физиологически приемлемый электролитный раствор, а также поверхностно-активное вещество - блок-сополимер окиси этилена и пропилена - взятое в соотношении с ГЭК от 1/1 до 1/10 [RU 2461383, МПК A61K 31/718, 2011]. В качестве физиологически приемлемого электролитного раствора композиция содержит 5,0-5,9 г/л хлорида натрия, 0,35-0,45 г/л хлорида калия, 0,20-0,60 г/л фосфата натрия и 0,35-0,70 г/л гидрокарбоната натрия. Приведены примеры получения растворов, содержащих от 2 мас.% до 20 мас.% ГЭК; концентрация блок-сополимера приведена в таком же диапазоне. Состав заявлен как плазмозамещающее средство, подобное проксанолам, имеющее широкий спектр действия, но указанный состав не применяется в случае кровопотери и шока.
Также известно плазмозамещающее средство на основе ГЭК со средней молекулярной массой (ММ) 130000 Да (дальтон), растворенного в гипертоническом изоонкотическом 7,2%-ном растворе хлорида натрия [RU 2431488, МПК A61K 31/718, 2010], который может быть успешно использован на догоспитальном этапе при инфузии небольшого объема, как правило, 4 мл/кг массы тела. Авторы считают, что быстрое восполнение объема циркулирующей крови, быстрый и стойкий волемический и гемодинамический эффект при инфузии небольшого объема указанного раствора достигается за счет возникновения временного градиента осмотического давления между плазмой крови и интерстициальными пространствами, вызывающего перемещение жидкости во внутрисосудистое русло. Примеры конкретного использования плазмозамещающего раствора в RU 2431488 не приводятся.
Однако клиническая практика использования гипертонических растворов (или, что то же, растворов с высокой осмолярностью) в настоящее время не является общепринятой. Вопрос о безопасности введения гиперосмолярных растворов на фоне острой почечной недостаточности, неизбежно развивающейся при шоке и массивной кровопотере, остается дискуссионным.
Кроме того, известно, что отягощающим следствием гиповолемии является кислородная недостаточность с последующими нарушениями окислительного метаболизма в тканях с развитием энергодефицита. Установлено, что эффективность лечения повышается, если величины таких гемодинамических показателей, как минутный объем кровообращения и ударный объем сердца, не только достигают исходных значений, но и превосходят их в наиболее ранние сроки лечения. В этих случаях повышается степень оксигенации тканей, позволяющая покрыть высокие метаболические потребности организма в кислороде. Исследования показали, что раннее достижение превышающих норму показателей сердечного выброса, доставки и потребления кислорода приводит к снижению летальности больных и уменьшает число послеоперационных осложнений [Shoemaker W.C. et al., Crit. Care Medicine, 1989, 977-993; 1988, 16, 1117; 1993, 21, 977].
Результат, на достижение которого направлено заявляемое изобретение, заключается в разработке плазмозамещающего раствора на основе ГЭК, обладающего, помимо способности восполнять объем циркулирующей жидкости и восстанавливать гемоциркуляцию и реологические показатели крови, способностью оказывать специфический кардиотонический эффект, то есть быстро и стойко увеличивать минутный объем кровообращения и ударный объем сердца в короткий срок после начала лечения.
Указанный результат достигается тем, что плазмозамещающий раствор, включающий гидроксиэтилкрахмал и электролит, в качестве электролита содержит натрий фумаровокислый при следующем соотношении компонентов:
гидроксиэтилкрахмал 58-62 г/л
натрий фумаровокислый 15-17 г/л
вода для инъекций до 1000 мл
и имеет значение осмолярности 280-320 мосм/л.
Известен полифункциональный плазмозамещающий раствор «Полиоксифумарин» [RU 2136291, МПК A61K 35/14, 1999], включающий растворенные в воде полиэтиленгликоль с ММ 20000±3000 Да и натрия фумарат в количестве 13,0-16,5 г/л, а также 5,4-6,6 г/л натрия хлорида, 0,108-0,132 г/л магния хлорида и 0,45-0,55 г/л калия иодида. «Полиоксифумарин» обладает гемодинамическим действием, восполняет минутный и ударный объем сердца до уровня нормы, а также обладает выраженным антигипоксантным действием и способен в силу этого к коррекции постгеморрагического ацидоза.
Полиоксифумарин, созданный на основе ПЭГ со сравнительно низкой ММ, уступает по своим гемодинамическим свойствам растворам гидрооксиэтилкрахмала, имеющим существенно большую молекулярную массу (130-200 тыс. Да). Поэтому в случаях массивной кровопотери для восполнения объема циркулирующей крови клиницисты предпочитают использовать растворы ГЭК. Кроме того, полиоксифумарин имеет высокую осмолярность (410 мосм/л) и в силу этого имеет ограничения по применению. Введение препарата противопоказано при черепно-мозговой травме и внутричерепной гипертензии. В условиях шока и кровопотери, когда снижен органный кровоток и обеспечение органов кислородом, избыточная осмонагрузка может сорвать реакции осморегуляции в организме. Поэтому, согласно инструкции по медицинскому применению, полиоксифумарин следует применять с особой осторожностью при хронической почечной недостаточности и хронических заболеваниях печени.
Однако снижение осмолярности плазмозамещающего раствора снижает скорость восполнения кровопотери за счет эндогенной жидкости, в то время как восстановление объема циркулирующей крови является одним из решающих факторов успешности проводимого лечения. Поэтому нельзя с уверенностью утверждать, что простое снижение осмолярности кровезаменителя повысит его лечебную эффективность. С другой стороны, хотя благоприятное влияние фумарата натрия на работу сердца известно из RU 2136291, включение его в плазмозамещающий раствор на основе ГЭК не очевидно, так как сам раствор ГЭК может оказывать гиперволюмический эффект, тем самым ослабляя производительность миокарда при лечении геморрагического шока.
В силу указанных причин способность заявляемого раствора быстро и стойко улучшать показатели работы сердца при лечении геморрагического шока оказалась неожиданной.
Все компоненты заявляемого раствора выпускаются промышленностью. В качестве ГЭК используется гидроксиэтилкрахмал с ММ 130000-200000 Да, отвечающий статье 07 Европейской фармакопеи. Натрий фумаровокислый можно использовать в виде соли, но возможно получение его гидроксида натрия и фумаровой кислоты в процессе приготовления плазмозамещающего раствора.
Исследование лечебной эффективности заявляемого плазмозамещающего раствора проводили на модели кровопотери, вызванной у животных кровопусканиями. Геморрагический шок у кроликов воспроизводили дробными кровопусканиями до снижения артериального давления до уровня 40-50 мм рт.ст. Состояние гипотензии поддерживали в течение 60 минут, после чего начинали внутривенное вливание заявляемого плазмозамещающего раствора в объеме, равном объему кровопотери.
Контрольной группе вводили тот же объем раствора ГЭК в 0,9%-ном растворе натрия хлорида.
До кровопотери, после нее и через 10 и 90 минут после окончания лечения определяли показатели системной гемодинамики кислородного режима, кислотно-основного состояния (таблица 1) и окислительного метаболизма (таблица 2).
Из таблицы 1 видно, что после кровопотери у животных как в основной, так и в контрольной группе минутный объем кровообращения (МОК) составлял в среднем 40% от уровня нормы. Ударный объем сердца (УО) снижался на 50%, а рабочий индекс левого желудочка сердца (РИЛЖ) не превышал 40% исходного. Компенсаторная вазоконстрикция в ответ на кровопотерю вызывала повышение общего периферического сопротивления сосудов (ОПС) кровотоку в среднем в 1,2-1,5 раза. В соответствии с нарушениями гемодинамики более чем в 2 раза снижался системный транспорт кислорода (Qo2) и его потребление (Vo2) организмом. У животных в состоянии геморрагического шока наблюдалось изменение буферных систем крови. Уменьшалось содержание стандартного бикарбоната (BS), нарастал дефицит буферных оснований (BE), снижался pH крови. Таким образом, к началу инфузионной терапии у кроликов развивались гипоксия и метаболический ацидоз.
Инфузии раствора ГЭК на фоне тяжелого геморрагического шока способствовали увеличению МОК и УО (табл. 1, серия 1). Наибольшее значение этих показателей наблюдались через 10 мин после окончания введения кровезаменителя. Однако затем МОК и УО начинали падать и через 90 мин после завершения инфузии эти показатели имели те же значения, как в период до лечения. Не достигали исходных значений и показатели РИЛЖ. В ответ на введение указанного раствора pH крови практически не изменялся. Дефицит буферных оснований и содержание стандартного бикарбоната продолжали увеличиваться, и к концу эксперимента их значения оказались ниже, чем в период до лечения (табл. 1, серия 1).
При введении ГЭК с фумаратом натрия (заявляемый раствор) величины МОК и УО через 10 мин после окончания инфузии на 20% превышали исходные значения. К 90-й минуте действие кровезаменителя начинало ослабевать, но оказалось более выраженным, чем при введении ГЭК без фумарата натрия (табл. 1, серия 2). Лечение заявляемым раствором благоприятно влияло на функцию сердечной мышцы: значения РИЛЖ увеличивались более чем в 2 раза и достигали исходных величин. У животных, леченных ГЭК без фумарата натрия, этот показатель увеличивался в 1,3 раза, что составляло чуть более 50% исходного.
В экспериментах с введением заявляемого раствора уже к 10 мин после окончания инфузии наблюдалось существенное снижение дефицита буферных оснований и увеличение pH крови (табл. 1, серия 2). Значение этих показателей сохранялись и через 90 мин наблюдения за животными. Лучшая коррекция показателей кислотно-основного состояния под действием раствора ГЭК с фумаратом натрия, по сравнению с введением раствора ГЭК, происходила в условиях равнозначно не восстановленного транспорта кислорода в организме. Эти данные позволяют предположить, что при лечении заявляемым раствором в условиях гипоксии более эффективно используется доставляемый к клетке кислород.
Общеизвестно, что сократительная способность миокарда - функция энергозависимая и определяется интенсивностью реакций окислительного фосфорилирования в митохондриях кардиомиоцитов. Поэтому, наряду с гемодинамическими характеристиками заявляемого раствора, оценивали его влияние на состояние энергообразования в митохондриях сердечной мышцы при лечении геморрагического шока.
Figure 00000001
Figure 00000002
Анализ изменений окислительного метаболизма митохондрий миокарда показал, что геморрагический шок вызывает снижение всех показателей митохондриального метаболизма (табл. 2). Наряду с уменьшением скорости активного дыхания (V3) отмечалось существенное подавление фосфорилирующей функции органелл, при этом скорость генерации энергии АДФ/t снижалась на 40-43%. Достоверное уменьшение коэффициента АДФ/О свидетельствовало об ухудшении сопряженности процессов окисления и фосфорилирования. Таким образом, снижение производительности сердца при постгеморрагической ишемии действительно сопровождалось нарушениями окислительного метаболизма и расстройствами энергетического обмена в кардиомиоцитах.
Адекватное возмещение кровопотери раствором, содержащим только ГЭК, приводило к существенному улучшению гемодинамики по сравнению с периодом до лечения (табл. 1, серия 1), однако при использовании заявляемого раствора ударный объем сердца и сердечный выброс оказались достоверно более высокими (табл. 1, серия 2). Введение раствора, не содержащего фумарата натрия, не улучшало основных показателей энергетического статуса митохондрий сердца. Как видно из табл. 2, коэффициент АДФ/О достоверно снизился на 17%, а АДФ/t, отражающий скорость генерации энергии, на 35%. Следовательно, синтез АТФ в кардиомиоцитах протекал на уровне, не превышающем фосфорилирующие возможности митохондрий животных в состоянии геморрагического шока. При введении животным заявляемого раствора окислительный метаболизм митохондрий восстанавливался практически до уровня нормы (табл. 2).
Представленные результаты позволяют заключить, что в условиях ослабления насосной функции миокарда, вызванной циркуляторной гипоксией при геморрагическом шоке, введение заявляемого раствора способствует поддержанию энергетического потенциала в миокардиоцитах и, таким образом, повышает эффективность работы сердца в постинфузионном периоде.
Таким образом, заявляемый раствор не только восполняет объем циркулирующей жидкости и восстанавливает гемоциркуляцию и реологические показатели крови, но и оказывает специфический кардиотонический эффект, то есть резко увеличивает минутный объем кровообращения и ударный объем сердца в короткий срок после начала лечения, что эффективно улучшает сердечную деятельность и восстанавливает показатели кислотно-основного состояния организма.

Claims (1)

  1. Плазмозамещающий раствор, включающий гидроксиэтилкрахмал и электролит, отличающийся тем, что в качестве электролита он содержит натрий фумаровокислый при следующем соотношении компонентов:
    гадроксиэтилкрахмал 58-62 г/л натрий фумаровокислый 15-17 г/л вода для инъекций до 1000 мл

    и имеет значение осмолярности 280-320 мосм/л.
RU2014120621/15A 2014-05-21 2014-05-21 Плазмозамещающий раствор RU2582219C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014120621/15A RU2582219C2 (ru) 2014-05-21 2014-05-21 Плазмозамещающий раствор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014120621/15A RU2582219C2 (ru) 2014-05-21 2014-05-21 Плазмозамещающий раствор

Publications (2)

Publication Number Publication Date
RU2014120621A RU2014120621A (ru) 2015-11-27
RU2582219C2 true RU2582219C2 (ru) 2016-04-20

Family

ID=54753389

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014120621/15A RU2582219C2 (ru) 2014-05-21 2014-05-21 Плазмозамещающий раствор

Country Status (1)

Country Link
RU (1) RU2582219C2 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2110821C1 (ru) * 1996-08-27 1998-05-10 Александр Владимирович Медведев Способ включения электронно-оптического преобразователя
RU2136291C1 (ru) * 1998-02-02 1999-09-10 Российский научно-исследовательский институт гематологии и трансфузиологии Полифункциональный кровезаменитель для лечения кровопотери и шока

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2110821C1 (ru) * 1996-08-27 1998-05-10 Александр Владимирович Медведев Способ включения электронно-оптического преобразователя
RU2136291C1 (ru) * 1998-02-02 1999-09-10 Российский научно-исследовательский институт гематологии и трансфузиологии Полифункциональный кровезаменитель для лечения кровопотери и шока

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
РЕФОРТАН ГЭК 6% - Энциклопедия РЛС, найдено в Интернет , последняя актуализация описания производителем 13.02.2013. *
СЕЛИВАНОВ Е. А. и др. Фумаратсодержащие инфузионные растворы как средство выбора при оказании неотложной медицинской помощи// Медицина экстремальных ситуаций, 1(39), 2012, с.85-94 - найдено в Интернет < http://www.samsonmed.ru/polioksifumarin?id=77>. *

Also Published As

Publication number Publication date
RU2014120621A (ru) 2015-11-27

Similar Documents

Publication Publication Date Title
KR101076059B1 (ko) 락테이트 함유 약학 조성물 및 그의 용도
US9579384B2 (en) Method of treating bendamustine-responsive conditions in patients requiring reduced volumes for administration
JP2019214592A (ja) ベンダムスチンの製剤
EP0587815B1 (en) Hypertonic isochloremic formulation for circulatory shock
US20090285909A1 (en) Lactate and Calcium Containing Pharmaceutical Composition and Uses Thereof
RU2582219C2 (ru) Плазмозамещающий раствор
RU2708389C1 (ru) Раствор для инфузий
RU2431488C1 (ru) Фармацевтическая композиция на основе гидроксиэтилкрахмала в гипертоническом растворе натрия хлорида для использования в качестве плазмозаменяющего раствора в случаях малообъемной реанимации
Vincent et al. Potentiation of the effects of enoximone by a dobutamine infusion
RU2713532C2 (ru) Способ инфузионной терапии при брахитерапии рака предстательной железы, выполняемой под спинальной анестезией
HAWTHORNE et al. Antihypertensive effect of hypophysectomy in dogs with hypertension following bilateral carotid sinus constriction
EP3016675B1 (en) Protective solution for preventing or reducing reperfusion injury of the brain and the whole body
KR20080109044A (ko) 락테이트 및 칼슘 함유 약학 조성물 및 그의 용도
Gantner Postoperative fluid therapy
Smith et al. Atropine, norepinephrine, and isoproterenol and the cardiac response to experimental lactic acidosis
Bełoğul et al. Oral magnesium prophylaxis provides spontaneous resumption of cardiac rhythm in patients undergoing cardiac surgery
Snyder Jr Management of Refractory Shock
Riley et al. Intravenous Fluids
Boldt Fluid and electrolyte emergency
NZ572358A (en) Lactate and calcium containing pharmaceutical composition and uses thereof
Seliškar Fluid therapy in haemorrhagic shock.

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180522