RU2580819C1 - Способ вывода из эксплуатации уран-графитового ядерного реактора - Google Patents

Способ вывода из эксплуатации уран-графитового ядерного реактора Download PDF

Info

Publication number
RU2580819C1
RU2580819C1 RU2015105922/07A RU2015105922A RU2580819C1 RU 2580819 C1 RU2580819 C1 RU 2580819C1 RU 2015105922/07 A RU2015105922/07 A RU 2015105922/07A RU 2015105922 A RU2015105922 A RU 2015105922A RU 2580819 C1 RU2580819 C1 RU 2580819C1
Authority
RU
Russia
Prior art keywords
reactor
uranium
graphite
metal structures
structures
Prior art date
Application number
RU2015105922/07A
Other languages
English (en)
Inventor
Андрей Михайлович Изместьев
Елена Васильевна Захарова
Александр Олегович Павлюк
Сергей Геннадьевич Котляревский
Евгений Владимирович Беспала
Владимир Александрович Кузов
Original Assignee
Открытое акционерное общество Опытно-демонстрационный центр вывода из эксплуатации уран-графитовых ядерных реакторов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество Опытно-демонстрационный центр вывода из эксплуатации уран-графитовых ядерных реакторов filed Critical Открытое акционерное общество Опытно-демонстрационный центр вывода из эксплуатации уран-графитовых ядерных реакторов
Priority to RU2015105922/07A priority Critical patent/RU2580819C1/ru
Application granted granted Critical
Publication of RU2580819C1 publication Critical patent/RU2580819C1/ru

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение относится к атомной промышленности, а именно к технологии вывода из эксплуатации уран-графитовых реакторов. После перевода уран-графитового реактора в ядерно-безопасное состояние путем очистки помещений, технологических систем и шахт от просыпей и россыпей ядерного топлива до количеств, не представляющих ядерную опасность, реакторное оборудование демонтируют, основание реактора и нижние металлоконструкции усиливают гидроизоляционным бетоном, пустоты в реакторном пространстве и вспомогательные помещения, в том числе приреакторные хранилища, заполняют засыпкой. В качестве засыпки используют мелкодисперсный глиносодержащий материал. Строительные конструкции дезактивируют и демонтируют надземную часть здания размещения уран-графитового реактора. Создают многослойные инженерные барьеры атмосферному воздействию на объект захоронения. Технический результат - минимизация радиационного воздействия от остановленного уран-графитового реактора на прилегающие территории, население и персонал. 6 з.п. ф-лы, 2 ил.

Description

Изобретение относится к атомной промышленности, а именно к технологии вывода из эксплуатации уран-графитовых реакторов, и может быть использовано для минимизации радиационного воздействия на прилегающие территории, население и персонал.
Известен способ захоронения ядерного реактора [RU 2109356, МПК G21F9/00, G21F9/34, G21C9/00, опубл. 20.04.1998], выбранный в качестве аналога. На дне шахты под реактором изготавливают подземный могильник. С помощью взрывчатых средств отсоединяют реактор от прилегающих конструкций. Опускают реактор в могильник с регулируемой скоростью с помощью средств механического и аэродинамического торможения. Аналогично засыпают шахту слоями пород и материалами, сорбирующими и задерживающими распространение радионуклидов.
Указанный способ имеет недостатки:
- использование взрыва для отсоединения реактора от прилегающих конструкций имеет потенциальную опасность выхода радиоактивных материалов на поверхность;
- при заполнении шахты слоями пород и материалами, сорбирующими и задерживающими распространения радионуклидов, предлагаемым способом будут образовываться полости и места обводнения.
Известен способ хранения уран-графитового реактора [RU 2423744, МПК G21F7/00, опубл. 10.07.2011], выбранный в качестве аналога. По указанному способу доступное реакторное оборудование демонтируют. Технологические отверстия шахты реактора бетонируют. Над реактором и шахтой формируют защитные перекрытия. Основание бетонной шахты реактора усиливают армированным бетоном. Нижнюю металлоконструкцию подкрепляют стойками, установленными на основание бетонной шахты. Стальные трубы, концы которых уплотняют в отверстиях нижней и верхней металлоконструкций, размещают вертикально в графитовой кладке. На верхнюю металлоконструкцию и на защитное перекрытие наносят противопожарные покрытия. Из полости между боковыми металлоконструкциями и стенками шахты удаляют песчаную засыпку и устанавливают дополнительные каналы.
Указанный способ имеет недостатки:
- не рассмотрены варианты вывода из эксплуатации вспомогательных помещений, являющихся неотъемлемой частью уран-графитового реактора;
- подкрепление нижней металлоконструкции стойками с практической точки зрения трудоёмкий процесс, поскольку доступ к нижним металлоконструкциям ограничен высоким радиационным фоном;
- требуется длительный контроль за дальнейшим состоянием подкрепляющих конструкций и их замена в случае потери прочностных характеристик по истечении времени;
- срок безопасной выдержки (хранения) остановленного уран-графитового реактора ограничен 100 годами.
Известен способ вывода из эксплуатации канального уран-графитового ядерного реактора [RU 2444796, МПК G21C11/02, опубл. 10.03.2012], выбранный в качестве прототипа. По указанному способу площадку размещения реакторной установки выбирают таким образом, чтобы окружающие геологические структуры и инженерные сооружения образовывали барьеры безопасности, достаточные для вывода из эксплуатации по варианту захоронения на месте. Доступное реакторное оборудование демонтируют. Основание реактора усиливают армированным гидроизоляционным бетоном. Над реактором и шахтой формируют защитные перекрытия. Сформированный естественными и искусственными барьерами контайнмент используют для захоронения радиоактивных отходов в матрице из мелкодисперсной композиции на основе глинистых минералов.
Указанный способ имеет недостатки:
- не рассмотрены варианты вывода из эксплуатации вспомогательных помещений, являющихся неотъемлемой частью канального уран-графитового реактора;
- нагнетание гелеобразующего раствора в песчаную засыпку препятствует равномерному уплотнению материала за счет обволакивания минеральных частиц гелем, их слипания и потери сыпучести материала;
- прилагаемый чертеж не отражает информацию, необходимую для понимания способа создания барьеров безопасности, поскольку отсутствуют пояснения по позиции 4.
Задачей изобретения является разработка способа вывода из эксплуатации уран-графитового реактора, обеспечивающего его долговременное безопасное захоронение.
Поставленная задача решается за счет того, что для долговременного безопасного захоронения реактора, так же как и в прототипе, выбирают остановленный уран-графитовый реактор, установленный в образованной стенками и основанием бетонной шахте, имеющий верхнюю и нижнюю металлоконструкции с отверстиями, графитовую кладку, боковые металлоконструкции, полость с песчаной засыпкой между боковыми металлоконструкциями и стенками бетонной шахты. Доступное радиоактивное реакторное оборудование демонтируют. Основание реактора и нижние металлоконструкции усиливают гидроизоляционным бетоном. Пустоты в реакторном пространстве и вспомогательные помещения, в том числе приреакторные хранилища, заполняют засыпкой. В качестве засыпки используют мелкодисперсный глиносодержащий материал. Строительные конструкции дезактивируют и демонтируют надземную часть здания размещения уран-графитового реактора. Создают многослойные барьеры атмосферному воздействию на объект захоронения.
Положительный эффект достигается за счет того, что для уменьшения радиационного воздействия остановленный уран-графитовый реактор переводят в ядерно-безопасное состояние. Перевод в ядерно-безопасное состояние осуществляется путем очистки помещений, технологических систем и шахт от просыпей и россыпей ядерного топлива до количеств, не представляющих ядерную опасность.
Для обеспечения сплошности инженерных барьеров безопасности, ограничивающих миграцию радионуклидов из объекта захоронения, проводится полный демонтаж обеспечивающих систем и оборудования, за исключением реакторной установки.
Подреакторное пространство, основание реактора до нижних металлоконструкций, вспомогательные помещения нижних отметок усиливаются бетоном. Бетон выбирается таким образом, чтобы он удовлетворял противомиграционным и гидроизоляционным свойствам в течение длительного времени выдержки.
Для создания внутренних инженерных барьеров безопасности используется технология бесполостного заполнения пустот глиносодержащими материалами. Последовательно осуществляется бесполостное заполнение пустот в шахте уран-графитового реактора. Сначала заполняются пустоты в подреакторных опорных металлоконструкциях и боковое пространство между кожухом реактора и баками боковой биологической защиты. Далее технологические ячейки. В завершение заполняются пустоты надреакторных конструкций и вспомогательные помещения. Создаваемые инженерные барьеры безопасности выбираются таким образом, чтобы они препятствовали проникновению грунтовых вод и атмосферных осадков и обладали достаточной сорбционной способностью, т.е. ограничивали миграцию радионуклидов.
После дезактивации строительных конструкций демонтируют надреакторную часть здания размещения уран-графитового реактора. Создаются инженерные барьеры атмосферному воздействию на объект захоронения. В качестве материалов инженерных барьеров выбираются природные геологические породы различного размера. Создание инженерных барьеров осуществляется послойно до состояния «естественного кургана».
Поэтому вывод из эксплуатации уран-графитового реактора с использованием комплексного подхода, включающего полный демонтаж обеспечивающих систем и оборудования, усиление бетоном подреакторных пространств, бесполостное заполнение реактора и вспомогательных помещений барьерными материалами, демонтаж надземной части здания и создание инженерных барьеров атмосферному воздействию, обеспечивает его долговременное безопасное захоронение на месте.
На фиг.1 представлена схема подготовленного к выводу из эксплуатации промышленного уран-графитового реактора путем безопасного захоронения на месте. Остановленный промышленный уран-графитовый реактор, установленный в образованной стенками и основанием бетонной шахте 1, содержит верхнюю 2 и нижнюю 3 металлоконструкции с технологическими ячейками 4, графитовую кладку 5, боковые металлоконструкции 6, полость с песчаной засыпкой 7 между боковыми металлоконструкциями 6 и стенками бетонной шахты 1. Снизу под нижними металлоконструкциями находится подреакторное пространство 8 и бункер 9 для выгрузки отработавшего ядерного топлива. Вспомогательные помещения 10 располагаются вокруг реактора. Над реактором размещаются бетонные строительные конструкции 11.
На фиг.2 представлена схема реализации способа вывода из эксплуатации промышленного уран-графитового реактора путем безопасного захоронения на месте. После остановки реактора и перевода в ядерно-безопасное состояние производят полный демонтаж обеспечивающих систем и оборудования. Бункер 9 и подреакторное пространство 8 до нижних металлоконструкций 3 усиливают, например, железобетоном. Одновременно бетонируют вспомогательные помещения 10, расположенные на нижних отметках. Формируют внутренние инженерные барьеры безопасности с помощью технологии бесполостного заполнения пустот глиносодержащими материалами 11. Сначала заполняют пустоты в подреакторных опорных металлоконструкциях 12 и боковое пространство 13 между кожухом реактора и баками боковой биологической защиты. Далее засыпают технологические ячейки 4. В завершение заполняют пустоты надреакторных верхних металлоконструкций 2 и вспомогательные помещения 10. На месте демонтированной части здания 10 (фиг.1) размещения промышленного уран-графитового реактора создают многослойные инженерные барьеры безопасности 14, 15, 16, 17, 18 (фиг. 2) из природных материалов различного размера.
Пример осуществления изобретения приведен ниже.
В качестве объекта для вывода из эксплуатации выбран остановленный промышленный уран-графитовый реактор (ПУГР) ЭИ-2 АО «ОДЦ УГР». За время непрерывной эксплуатации в течение 32 лет конструкционные элементы стали радиоактивными. Также имели место инциденты, связанные с просыпью фрагментов ядерного топлива. Поэтому после остановки и выгрузки топлива реактор переводился в ядерно-безопасное состояние путём очистки помещений, технологических систем и шахт от просыпей и россыпей ядерного топлива до количеств, не представляющих ядерную опасность.
Проводился полный демонтаж оборудования и вспомогательных конструкций. Трубопроводы, технологические коммуникации и малогабаритные металлоконструкции обрезались. Демонтированное оборудование отправлялось на дезактивацию и дальнейшую переработку. Одновременно выполнялся сбор и удаление радиоактивных отходов, накопленных в процессе эксплуатации в иловых отложениях в технологических шахтах и бассейне выдержки.
Подреакторное пространство, основание реактора до нижних металлоконструкций, вспомогательные помещения нижних отметок заливались бетоном. Бетон подбирался с учетом сохранения противомиграционных и гидроизоляционных свойств в течение (50-100) лет.
Внутренние инженерные барьеры безопасности создавались с применением технологии бесполостного заполнения пустот. В качестве барьерного материала использовались сухие смеси на основе глинистых пород после предварительного измельчения (помола). Содержание илистой фракции в инженерных барьерах составляло от 18 до 28 % масс., тонкопылеватой фракции - от 34 до 50 % масс. Значительная часть породы состояла из тонкодисперсного материала катионообменной емкостью больше 30 мг-экв./100 г породы. Заполнение свободного пространства молотой глиной осуществлялось при помощи шнекового устройства, которое вставлялось в технологическую ячейку ПУГР. Молотая глина подавалась в верхнюю часть устройства. За счет вращения шнека глина продвигалась в заполняемую полость. В результате плотность внутри объема достигала не менее 1.6-1.8 г/см3. Сначала заполнялись пустоты в подреакторных опорных металлоконструкциях и боковое пространство между кожухом реактора и баками боковой биологической защиты. Далее засыпались сами технологические ячейки. В завершение заполнялись пустоты надреакторных конструкций и вспомогательные помещения, в том числе приреакторные хранилища. Создаваемые инженерные барьеры препятствовали проникновению грунтовых вод и атмосферных осадков и обладали достаточной сорбционной способностью, т.е. ограничивали миграцию радионуклидов.
После дезактивации строительных конструкций демонтировали надземную часть здания размещения уран-графитового реактора. Демонтаж осуществляли с помощью спецтехники для уменьшения разброса пыли от разрушаемых конструкций. На этом месте создавались многослойные инженерные барьеры атмосферному воздействию на объект захоронения. На фиг.2 показана схема инженерных барьеров. Поверх глиносодержащей засыпки 11 наваливался песок средней крупности 14 толщиной 0.3 м и общим объёмом 1385 м3. За ним следовал слой пластичной глины 15 толщиной 0.8 м и общим объёмом 3874 м3 и слой щебня 16 размером (20-40) мм, толщиной 0.8 м и общим объёмом 4240 м3. На щебень 16 насыпался песок средней крупности 17 толщиной 0.3 м и общим объёмом 1718 м3. Последним слоем барьера служил растительный грунт 18 толщиной 0.3 м и общим объёмом 1782 м3. Предусматривалось возможное создание дополнительного гидроизоляционного слоя из искусственного материала.
Реализация настоящего изобретения дает возможность существенного увеличения длительности безопасного хранения остановленного уран-графитового реактора за счет применения естественных барьерных материалов и минимизирует радиационное воздействие на прилегающие территории, население и персонал.

Claims (7)

1. Способ вывода из эксплуатации уран-графитового реактора, установленного в образованной стенками и основанием бетонной шахте, имеющего верхнюю и нижнюю металлоконструкции с отверстиями, графитовую кладку, боковые металлоконструкции, полость с песчаной засыпкой между боковыми металлоконструкциями и стенками бетонной шахты, включающий демонтаж доступного радиоактивного реакторного оборудования, усиление основания реактора и нижних металлоконструкций гидроизоляционным бетоном, заполнение пустот в реакторном пространстве засыпкой, состоящей из глиносодержащего материала, отличающийся тем, что одновременно засыпкой заполняют вспомогательные помещения, дезактивируют строительные конструкции и демонтируют надземную часть здания размещения уран-графитового реактора, создают многослойные инженерные барьеры атмосферному воздействию на объект захоронения.
2. Способ по п.1, отличающийся тем, что заполнение пустот осуществляют последовательно: сначала заполняются пустоты в подреакторных опорных металлоконструкциях и боковое пространство между кожухом реактора и баками боковой биологической защиты, далее технологические ячейки, с последующим заполнением пустот надреакторных конструкций и вспомогательных помещений.
3. Способ по п.1, отличающийся тем, что вспомогательные помещения нижних отметок бетонируют одновременно с основанием реактора и нижними металлоконструкциями.
4. Способ по п.1, отличающийся тем, что бесполостное заполнение пустот шахты осуществляют через каналы технологических ячеек.
5. Способ по п.1, отличающийся тем, что глиносодержащие материалы выбирают такой плотности, чтобы они полностью сорбировали мобильные радионуклиды и препятствовали проникновению грунтовых вод.
6. Способ по п.1, отличающийся тем, что многослойные инженерные барьеры атмосферному воздействию на объект захоронения создают из естественных материалов различного размера и состава.
7. Способ по п.5, отличающийся тем, что создают дополнительный гидроизоляционный слой из искусственного материала.
RU2015105922/07A 2015-02-21 2015-02-21 Способ вывода из эксплуатации уран-графитового ядерного реактора RU2580819C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015105922/07A RU2580819C1 (ru) 2015-02-21 2015-02-21 Способ вывода из эксплуатации уран-графитового ядерного реактора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015105922/07A RU2580819C1 (ru) 2015-02-21 2015-02-21 Способ вывода из эксплуатации уран-графитового ядерного реактора

Publications (1)

Publication Number Publication Date
RU2580819C1 true RU2580819C1 (ru) 2016-04-10

Family

ID=55794288

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015105922/07A RU2580819C1 (ru) 2015-02-21 2015-02-21 Способ вывода из эксплуатации уран-графитового ядерного реактора

Country Status (1)

Country Link
RU (1) RU2580819C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017108423A1 (de) * 2017-04-20 2018-10-25 Norbert Planitscher Verfahren zum erstellen eines sicheren einschlusses eines atomkraftwerks, einer kerntechnischen anlage oder einer zwischenlagerstätte
RU2679827C1 (ru) * 2018-03-12 2019-02-13 Российская Федерация, от лица которой выступает Государственная корпорация по атомной энергии "Росатом" Способ демонтажа графитовой кладки ядерного реактора

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414211B1 (en) * 2000-06-09 2002-07-02 Burns & Roe Enterprises, Inc. Method of packing a nuclear reactor vessel for decommissioning and removal
US6784444B2 (en) * 2000-04-18 2004-08-31 Wmg, Inc. Containment and transportation of decommissioned nuclear reactor pressure vessels
EP1517337B1 (en) * 2003-09-16 2010-04-28 Tobiyama, Misa Method for disposing of power station facility directly below the original location
RU2444796C1 (ru) * 2010-07-15 2012-03-10 Федеральное государственное унитарное предприятие "Горно-химический комбинат" Способ вывода из эксплуатации канального уран-графитового ядерного реактора

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784444B2 (en) * 2000-04-18 2004-08-31 Wmg, Inc. Containment and transportation of decommissioned nuclear reactor pressure vessels
US6414211B1 (en) * 2000-06-09 2002-07-02 Burns & Roe Enterprises, Inc. Method of packing a nuclear reactor vessel for decommissioning and removal
EP1517337B1 (en) * 2003-09-16 2010-04-28 Tobiyama, Misa Method for disposing of power station facility directly below the original location
RU2444796C1 (ru) * 2010-07-15 2012-03-10 Федеральное государственное унитарное предприятие "Горно-химический комбинат" Способ вывода из эксплуатации канального уран-графитового ядерного реактора

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017108423A1 (de) * 2017-04-20 2018-10-25 Norbert Planitscher Verfahren zum erstellen eines sicheren einschlusses eines atomkraftwerks, einer kerntechnischen anlage oder einer zwischenlagerstätte
DE102017108423B4 (de) * 2017-04-20 2018-11-15 Norbert Planitscher Verfahren zum erstellen eines sicheren einschlusses eines atomkraftwerks, einer kerntechnischen anlage oder einer zwischenlagerstätte
RU2679827C1 (ru) * 2018-03-12 2019-02-13 Российская Федерация, от лица которой выступает Государственная корпорация по атомной энергии "Росатом" Способ демонтажа графитовой кладки ядерного реактора

Similar Documents

Publication Publication Date Title
Lee et al. Concept of a Korean reference disposal system for spent fuels
Izmestiev et al. Application of void-free filling technology for additional safety barriers creation during uranium-graphite reactors decommissioning
Pavliuk et al. Experience of on-site disposal of production uranium-graphite nuclear reactor
Hardin et al. Cost estimation inputs for spent nuclear fuel geologic disposal concepts (Revision 1)
Juvankoski Buffer design 2012
JP2023536599A (ja) 遮蔽性を備えた材料を有する建築要素および構造
RU2580819C1 (ru) Способ вывода из эксплуатации уран-графитового ядерного реактора
RU2444796C1 (ru) Способ вывода из эксплуатации канального уран-графитового ядерного реактора
Deju et al. Review on radioactive concrete recycling methods
RU2388083C2 (ru) Способ консервации подземного хранилища большого объема с концентрированными солевыми осадками высокоактивных жро
US5171483A (en) Method for retrievable/permanent storage of hazardous waste materials
Hardin et al. Alternative Concepts for Direct Disposal of Dual-Purpose Canisters.
Brewitz et al. Concepts and technologies for radioactive waste disposal in rock salt
DE102020007175A1 (de) Anordnung und Verfahren zur Herstellung eines übertätigen erschlossenen Endlagers für mittel- und hochradioaktive Abfälle
JPH0641513A (ja) 閉塞材料、その製造方法および該材料をコンテナ貯蔵サイトに設置する方法
Keto et al. KYT SURFACE: Near Surface Repositories in Finland
Keck et al. Potential for subsidence at the low-level radioactive waste disposal area
Chegbeleh et al. Concepts of Repository and the Functions of Bentonite in Repository Environments: A State–of–the–art review
Pusch et al. Disposal of low-and intermediate-level radioactive waste
RU2625169C1 (ru) Способ захоронения технологической шахты для радиоактивных отходов при выводе из эксплуатации уран-графитового реактора
Lee et al. Development of the Korean Reference vertical disposal system concept for spent fuels
RU2754771C1 (ru) Способ захоронения радиоактивных отходов и контейнер для их хранения
Popov et al. Disposal of radioactive waste in abandoned mines
KR101399295B1 (ko) 방사성 폐기물 저장용 반지하 구조물 시공방법
JP6110061B2 (ja) 放射性物質で汚染された土壌、汚泥又は焼却灰の処分方法