RU2578328C2 - Способ горячей прокатки тонких полос на широкополосном стане - Google Patents
Способ горячей прокатки тонких полос на широкополосном стане Download PDFInfo
- Publication number
- RU2578328C2 RU2578328C2 RU2014126316/02A RU2014126316A RU2578328C2 RU 2578328 C2 RU2578328 C2 RU 2578328C2 RU 2014126316/02 A RU2014126316/02 A RU 2014126316/02A RU 2014126316 A RU2014126316 A RU 2014126316A RU 2578328 C2 RU2578328 C2 RU 2578328C2
- Authority
- RU
- Russia
- Prior art keywords
- stand
- rolling
- compression
- strip
- stands
- Prior art date
Links
Landscapes
- Control Of Metal Rolling (AREA)
- Metal Rolling (AREA)
Abstract
Изобретение относится к технологии прокатного производства, конкретно к технологии непрерывной прокатки тонких полос, и может быть использовано на многоклетевых широкополосных станах горячей прокатки. Сущность изобретения состоит в том, что заранее, на стадии настройки стана, задают в математическую модель процесса прокатки такие параметры режима прокатки, которые обеспечивают минимальные отклонения от плоскостности готовых полос. В процессе прокатки в случае выхода при настроечной прокатке значений неплоскостности за заданные по техническим условиям пределы корректируют реальные параметры режима настроечной прокатки. При этом используют пошаговый алгоритм коррекции, учитывающий все технологические параметры, влияющие на неплоскостность полосы. Данный алгоритм позволяет с наибольшей точностью и надежностью обеспечить далее, уже на стадии технологической прокатки, невыход показателей точности формы полосы за заданные заранее пределы. В этом заключается технический результат изобретения. 2 з.п. ф-лы, 4 табл.
Description
Изобретение относится к технологии прокатного производства, конкретно к технологии непрерывной прокатки тонких полос, и может быть использовано на многоклетевых широкополосных станах горячей прокатки.
Известен способ горячей прокатки тонких полос на широкополосном стане, включающий прокатку заготовки в черновой группе клетей стана, прокатку полос в чистовой непрерывной группе клетей, с охлаждением полосы в межклетевых промежутках и на отводящем рольганге водой сверху и снизу и последующее охлаждение полосы водой на отводящем рольганге. При прокатке в чистовой группе клетей регулирование теплового профиля полосы осуществляют дифференцируемым управляемым охлаждением поверхности рабочих валков водой по ширине. Охлаждение осуществляют сверху и снизу непосредственно со стороны выхода из очага деформации [1].
Недостаток известного способа состоит в том, что в нем предусматривается воздействие на поперечный профиль прокатываемой полосы только с помощью изменения режима охлаждения бочек рабочих валков, при этом не используется регулирование поперечного профиля полосы с помощью других технологических параметров, зачастую более эффективно воздействующих на профиль.
Известен способ горячей прокатки тонких полос на широкополосном стане, включающий прокатку заготовки в черновой группе клетей стана, прокатку полос в чистовой непрерывной группе клетей, с охлаждением полосы в межклетевых промежутках и на отводящем рольганге, с последующей смоткой в рулоны, при этом на промежуточном рольганге после черновой группы клетей предварительно охлаждают его поверхности водно-воздушной смесью дифференцированно по длине раската.
Способ обеспечивает оптимальную микроструктуру горячекатаной полосы путем управления охлаждением раската на промежуточном рольганге [2].
Недостаток этого способа состоит в том, что в нем не предусматривается воздействие на технологические параметры процесса прокатки с целью повышения точности геометрических характеристик проката.
Наиболее близким к изобретению по своей сущности является способ горячей прокатки тонких полос на широкополосном стане, включающий в себя последовательную прокатку нагретого сляба в черновой и чистовой группах клетей, с регламентированными величинами обжатий и натяжений, и предварительную настройку режима прокатки, с использованием математической модели процесса прокатки и прогнозированием показателей неплоскостности, ввод в указанную модель данных о марке и химическом составе материала прокатываемой полосы, а также контролируемых датчиками значений толщины полосы после черновой и чистовой групп клетей в трех точках по ширине: в середине, у левой и правой кромок, температуры ее перед чистовой группой, настроечных параметров режима прокатки в чистовой группе клетей: профилировки валков, частных обжатий в каждой клети, межклетевых натяжений, заданной скорости на выходе из последней клети, обработку моделью всех этих данных и выдачу зависящих от них ожидаемых показателей неплоскостности полосы после каждой клети чистовой группы: коэффициентов вытяжки в середине, у левой и правой боковых кромок, их разности, амплитуды неплоскостности, и в случае выхода амплитуды неплоскостности за допустимые, заранее заданные пределы коррекцию оператором чистовой группы стана настройки режима прокатки [3]. Этот способ принят в качестве прототипа.
Недостаток способа-прототипа состоит в том, что в нем не разработан алгоритм коррекции параметров режима прокатки при настройке, обеспечивающий уменьшение прогнозируемых показателей неплоскостности до заданных значений. Правильность и точность коррекции в известном способе в большой мере зависят от опыта оператора, что не гарантирует надежности настройки.
Задача изобретения - разработка применительно к способу-прототипу алгоритма коррекции параметров режима прокатки, позволяющего исключить из процесса настройки фактор опыта оператора и тем самым повысить надежность настройки.
Указанная задача решается тем, что в способе горячей прокатки тонких полос на широкополосном стане, включающем последовательную прокатку нагретого сляба в черновой и чистовой группах клетей, с регламентированными величинами обжатий и натяжений, и предварительную настройку режима прокатки, с использованием математической модели процесса прокатки и прогнозированием показателей неплоскостности, ввод в указанную модель данных о марке и химическом составе материала прокатываемой полосы, а также контролируемых датчиками значений толщины полосы после черновой и чистовой групп клетей в трех точках по ширине: в середине, у левой и правой кромок, температуры ее перед чистовой группой, настроечных параметров режима прокатки в чистовой группе клетей, включающие профилировки валков, обжатия в каждой клети, межклетевые натяжения и заданную скорость на выходе из последней клети, обработку с использованием математической модели процесса прокатки упомянутых данных и выдачу зависящих от них ожидаемых показателей неплоскостности полосы после каждой клети чистовой группы, включающих коэффициенты вытяжки в середине и у левой и правой боковых кромок, их разности, амплитуды неплоскостности, и в случае выхода амплитуды неплоскостности за допустимые, заранее заданные пределы коррекцию настройки режима прокатки согласно изобретению при превышении рассчитанной по модели амплитуды неплоскостности полосы на выходе из последней клети чистовой группы стана упомянутых допустимых значений во всех клетях чистовой группы стана, начиная с первой (i=1…k, где k - номер последней клети), последовательно вычисляют с использованием математической модели процесса прокатки коэффициенты вытяжки и их разности по следующим математическим выражениям:
Δλлевi=λсерi-λлевi, Δλправi=λсерi-λправi,
λлевi=hлевi-l/hлевi; λсерi=hсерi-1/hсерi;
λправi=hправi-1/hправi;
где λлевi, λсерi, λправi - коэффициенты вытяжки в i-й клети соответственно по левой кромке, в середине и по правой кромке;
hлевi-1, hсерi-1, hправi-1 - толщина полосы на входе в i-ю клеть соответственно на левой кромке, в середине и на правой кромке,
hлевi, hсерi, hправi - толщина полосы на выходе из i-й клети соответственно на левой кромке, в середине и на правой кромке,
и при Δλлевi>0 и (или) Δλправi>0 увеличивают расход и давление охлаждающей воды, подаваемой на середину бочки рабочих валков i-й клети, увеличивают обжатие в i-й клети, перераспределяют суммарное обжатие с уменьшением обжатия в тех клетях, где Δλлевi<0 и/или Δλправi<0, уменьшают межклетевые натяжения и уменьшают шлифовочную выпуклость рабочих валков в i-й клети, а при Δλлевi<0 и/или Δλправi<0 уменьшают расход и давление охлаждающей воды, подаваемой на середину бочки рабочих валков i-й клети, уменьшают обжатие в i-й клети, перераспределяют суммарное обжатие, с увеличением обжатия в тех клетях, где Δλлевi>0 и/или Δλправi>0, увеличивают межклетевые натяжения и увеличивают шлифовочную выпуклость рабочих валков в i-й клети, при этом коррекцию настройки режима прокатки осуществляют в пошаговом режиме до достижения амплитудой неплоскостности полосы упомянутых допустимых значений и дальнейшую технологическую прокатку проводят в скорректированном режиме.
Кроме того, увеличение расхода и давления охлаждающей воды, подаваемой на середину бочки рабочих валков i-й клети, увеличение обжатия в i-й клети и перераспределение суммарного обжатия осуществляют одновременно или выборочно.
Кроме того, уменьшение расхода и давления охлаждающей воды, подаваемой на середину бочки рабочих валков i-й клети, уменьшение обжатия в i-й клети и перераспределение суммарного обжатия осуществляют одновременно или выборочно.
Сущность изобретения заключается в том, что оператор стана заранее, на стадии настройки стана, задавая такие параметры режима прокатки, которые обеспечивают минимальные отклонения от плоскостности готовых полос, корректирует реальные параметры режима настроечной прокатки, в случае выхода значений неплоскостности за заданные значения, используя при этом пошаговый алгоритм коррекции, описанный в изобретении. При этом данный алгоритм учитывает все технологические параметры, влияющие на неплоскостность полосы, что позволяет с наибольшей точностью и надежностью обеспечить далее, уже на стадии технологической прокатки, невыход показателей точности формы полосы за заданные заранее в соответствии с техническими требованиями пределы.
Ниже приводится пример конкретной практической реализации способа согласно изобретению.
Способ был опробован при производстве на широкополосном стане 2000 полос из стали 3сп толщиной 1,57 мм, шириной 1250 мм из подката, поступившего из черновой группы на вход в чистовую группу клетей, имевшего толщину 35,4 мм.
Фактические режимы прокатки этих полос до использования изобретения приведены в таблице 1.
Данные таблицы 1 были введены в модель идентификации факта неплоскостности полосы и ее численных значений, а также в алгоритм коррекции режима прокатки. Расчетная амплитуда волны для этих полос на выходе из последней - 12-й клети оказалась равной 18,8 мм, а фактическая (по замерам) 17 мм, что свидетельствует о достоверности модели идентификации неплоскостности.
Коррекции, выполненные по первому альтернативному варианту описанного выше алгоритма, согласно изобретению заключались в следующем (таблица 2).
1. Уменьшены обжатия в 4-х последних клетях чистовой группы на 20-23%. Такое уменьшение обеспечило в этих клетях снижение усилия прокатки, упругих деформаций рабочих валков и увеличило обжатие полосы в середине ее сечения. Увеличение обжатия в середине сечения полосы позволило выровнять вытяжки и устранить дефект «волна».
2. Увеличены обжатия в 3 первых клетях чистовой группы на 10-15% для сохранения конечной толщины полосы.
3. Дополнительно на 10-15% увеличены натяжения в межклетевых промежутках. Это обеспечило дополнительное снижение усилия прокатки во всех клетях, уменьшило деформации валков и, следовательно, увеличило обжатие полосы по середине сечения во всех клетях, тем самым дополнительно выравнивая вытяжки и устраняя дефект «волна» на готовой полосе.
4. Дополнительно осуществлена перевалка рабочих валков с уменьшением шлифовочной выпуклости профиля в каждой из 3-х первых клетей на 0,05 мм и увеличением выпуклости шлифовочного профиля в каждой из 4-х последних клетей чистовой группы на 0,05 мм.
Расчетная амплитуда «волны» на полосе, полученной при прокатке по скорректированному режиму, оказалась равной 2,5 мм. Полоса с амплитудой дефекта «волна», равной 2,5 мм, соответствует категории плоскостности полосы ПВ.
Коррекции, выполненные по описанному выше алгоритму по второму альтернативному варианту, согласно изобретению заключались в следующем (таблица 3).
1. Уменьшены обжатия в 4-х последних клетях чистовой группы на 18-20%. Такое уменьшение обеспечило в этих клетях снижение усилия прокатки, упругих деформаций рабочих валков и увеличило обжатие полосы в середине ее сечения. Увеличение обжатия в середине сечения полосы позволило выровнять вытяжки и устранить дефект «волна».
2. Увеличены обжатия в 3 первых клетях чистовой группы на 8-13% для сохранения конечной толщины полосы.
3. Уменьшены расходы и давления охлаждающей воды, подаваемой на бочки рабочих валков 4 последних клетей чистовой группы, на 100-120 м3/ч и 1 бар соответственно.
4. Увеличены расходы охлаждающей воды и давления охлаждающей воды, подаваемой на бочки рабочих валков 3 первых клетей чистовой группы на 70-90 м3/ч и 1 бар соответственно.
5. Дополнительно на 10-15% увеличены натяжения в межклетевых промежутках.
Это обеспечило дополнительное снижение усилия прокатки во всех клетях, уменьшило деформации валков и, следовательно, увеличило обжатие полосы по середине сечения во всех клетях, тем самым дополнительно выравнивая вытяжки и устраняя дефект «волна» на готовой полосе.
6. Дополнительно осуществлена перевалка рабочих валков с уменьшением выпуклости шлифовочного профиля в каждой из 3-х первых клетей на 0,05 мм и увеличением выпуклости шлифовочного профиля в каждой из 4 последних клетей чистовой группы на 0,05 мм.
Расчетная амплитуда «волны» на полосе, полученной при прокатке по скорректированному режиму, оказалась равной 1,9 мм. Полоса с амплитудой дефекта «волна», равной 1,9 мм, соответствует той же категории плоскостности полосы ПВ.
Коррекции, выполненные по описанному выше алгоритму по третьему альтернативному варианту, согласно изобретению заключались в следующем (таблица 4).
1. Уменьшены расходы и давления охлаждающей воды, подаваемой на бочки рабочих валков 4 последних клетей чистовой группы, на 350-450 м3/ч и 5 бар соответственно.
2. Увеличены расходы охлаждающей воды и давления охлаждающей воды, подаваемой на бочки рабочих валков 3 первых клетей чистовой группы на 250-300 м3/ч и 3,5 бар соответственно.
3. Дополнительно на 10-15% увеличены натяжения в межклетевых промежутках. Это обеспечило дополнительное снижение усилия прокатки во всех клетях, уменьшило деформации валков и, следовательно, увеличило обжатие полосы по середине сечения во всех клетях, тем самым дополнительно выравнивая вытяжки и устраняя дефект «волна» на готовой полосе.
4. Дополнительно осуществлена перевалка рабочих валков с уменьшением выпуклости шлифовочного профиля в каждой из 3-х первых клетей на 0,05 мм и увеличением выпуклости шлифовочного профиля в каждой из 4 последних клетей чистовой группы на 0,05 мм.
Расчетная амплитуда «волны» на полосе, полученной при прокатке по скорректированному режиму, оказалась равной 3,5 мм. Полоса с амплитудой дефекта «волна», равной 3,5 мм, соответствует той же категории плоскостности полосы ПВ.
Источники информации
1. Патент РФ №2300431, МПК B21B 1/00, 2007.
2. Патент РФ №2279937, МПК B21B 1/26, 2006.
3. Гарбер Э.А., Мишнев П.А. и др. Моделирование и уменьшение неплоскостности полос при горячей прокатке на стадии настройки широкополосного стана. «Производство проката», №3, 2014, с. 7-13.
Claims (3)
1. Способ горячей прокатки тонких полос в широкополосном стане, включающий последовательную прокатку нагретого сляба в черновой и чистовой группах клетей с регламентированными величинами обжатий и натяжений и предварительную настройку режима прокатки с использованием математической модели процесса прокатки и прогнозированием показателей неплоскостности, ввод в указанную модель данных о марке и химическом составе материала прокатываемой полосы, а также контролируемых датчиками значений толщины полосы после черновой и чистовой групп клетей в середине, у левой и правой кромок полосы, температуры полосы перед чистовой группой, настроечных параметров режима прокатки в чистовой группе клетей, включающие профилировку валков, обжатия в каждой клети, межклетевые натяжения и заданную скорость на выходе из последней клети, обработку с использованием математической модели процесса прокатки упомянутых данных и выдачу зависящих от них ожидаемых показателей неплоскостности полосы после каждой клети чистовой группы, включающих коэффициенты вытяжки в середине и у левой и правой боковых кромок, их разности, амплитуды неплоскостности, и в случае выхода амплитуды неплоскостности за допустимые, заранее заданные пределы коррекцию настройки режима прокатки, отличающийся тем, что при превышении рассчитанной по упомянутой модели амплитуды неплоскостности полосы на выходе из последней клети чистовой группы стана упомянутых допустимых значений во всех клетях чистовой группы стана, начиная с первой, при этом i=1…k, где k - номер последней клети, последовательно вычисляют с использованием математической модели процесса прокатки коэффициенты вытяжки и их разности по следующим математическим выражениям:
Δλлевi=Δλсерi-λлевi, Δλправi=λсерi-λправi,
λлевi=hлевi-1/hлевi, λсерi=hсерi-1/hсерi;
λправi=hправi-1/hправi,
где λлевi, λсерi, λправi - коэффициенты вытяжки в i-й клети соответственно по левой кромке, в середине и по правой кромке;
hлевi-1, hсерi-1, hправi-1 - толщина полосы на входе в i-ю клеть соответственно на левой кромке, в середине и на правой кромке,
hлевi, hсерi, hправi - толщина полосы на выходе из i-й клети соответственно на левой кромке, в середине и на правой кромке,
и при Δλлевi>0 и/или Δλправi>0 увеличивают расход и давление охлаждающей воды, подаваемой на середину бочки рабочих валков i-й клети, увеличивают обжатие в i-й клети, перераспределяют суммарное обжатие с уменьшением обжатия в тех клетях, где Δλлевi<0 и/или Δλправi<0, уменьшают межклетевые натяжения и уменьшают шлифовочную выпуклость рабочих валков в i-й клети,
а при Δλлевi<0 и/или Δλправi<0 уменьшают расход и давление охлаждающей воды, подаваемой на середину бочки рабочих валков i-й клети, уменьшают обжатие в i-й клети, перераспределяют суммарное обжатие, с увеличением обжатия в тех клетях, где Δλлевi>0 и/или Δλправi>0, увеличивают межклетевые натяжения и увеличивают шлифовочную выпуклость рабочих валков в i-й клети, при этом коррекцию настройки режима прокатки осуществляют в пошаговом режиме до достижения амплитудой неплоскостности полосы упомянутых допустимых значений и дальнейшую технологическую прокатку проводят в скорректированном режиме.
Δλлевi=Δλсерi-λлевi, Δλправi=λсерi-λправi,
λлевi=hлевi-1/hлевi, λсерi=hсерi-1/hсерi;
λправi=hправi-1/hправi,
где λлевi, λсерi, λправi - коэффициенты вытяжки в i-й клети соответственно по левой кромке, в середине и по правой кромке;
hлевi-1, hсерi-1, hправi-1 - толщина полосы на входе в i-ю клеть соответственно на левой кромке, в середине и на правой кромке,
hлевi, hсерi, hправi - толщина полосы на выходе из i-й клети соответственно на левой кромке, в середине и на правой кромке,
и при Δλлевi>0 и/или Δλправi>0 увеличивают расход и давление охлаждающей воды, подаваемой на середину бочки рабочих валков i-й клети, увеличивают обжатие в i-й клети, перераспределяют суммарное обжатие с уменьшением обжатия в тех клетях, где Δλлевi<0 и/или Δλправi<0, уменьшают межклетевые натяжения и уменьшают шлифовочную выпуклость рабочих валков в i-й клети,
а при Δλлевi<0 и/или Δλправi<0 уменьшают расход и давление охлаждающей воды, подаваемой на середину бочки рабочих валков i-й клети, уменьшают обжатие в i-й клети, перераспределяют суммарное обжатие, с увеличением обжатия в тех клетях, где Δλлевi>0 и/или Δλправi>0, увеличивают межклетевые натяжения и увеличивают шлифовочную выпуклость рабочих валков в i-й клети, при этом коррекцию настройки режима прокатки осуществляют в пошаговом режиме до достижения амплитудой неплоскостности полосы упомянутых допустимых значений и дальнейшую технологическую прокатку проводят в скорректированном режиме.
2. Способ по п. 1, отличающийся тем, что увеличение расхода и давления охлаждающей воды, подаваемой на середину бочки рабочих валков i-й клети, увеличение обжатия в i-й клети и перераспределение суммарного обжатия осуществляют одновременно или выборочно.
3. Способ по п. 1, отличающийся тем, что уменьшение расхода и давления охлаждающей воды, подаваемой на середину бочки рабочих валков i-й клети, уменьшение обжатия в i-й клети и перераспределение суммарного обжатия осуществляют одновременно или выборочно.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014126316/02A RU2578328C2 (ru) | 2014-06-27 | 2014-06-27 | Способ горячей прокатки тонких полос на широкополосном стане |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014126316/02A RU2578328C2 (ru) | 2014-06-27 | 2014-06-27 | Способ горячей прокатки тонких полос на широкополосном стане |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014126316A RU2014126316A (ru) | 2016-01-27 |
RU2578328C2 true RU2578328C2 (ru) | 2016-03-27 |
Family
ID=55237130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014126316/02A RU2578328C2 (ru) | 2014-06-27 | 2014-06-27 | Способ горячей прокатки тонких полос на широкополосном стане |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2578328C2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11364526B2 (en) | 2017-10-02 | 2022-06-21 | Primetals Technologies Germany Gmbh | Flatness control using optimizer |
RU2785510C2 (ru) * | 2017-10-02 | 2022-12-08 | Прайметалз Текнолоджиз Джермани Гмбх | Регулирование плоскостности с оптимизатором |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113649420B (zh) * | 2021-07-28 | 2023-10-24 | 首钢京唐钢铁联合有限责任公司 | 一种平整机轧制力获取方法及装置 |
CN113822334A (zh) * | 2021-08-20 | 2021-12-21 | 南京钢铁股份有限公司 | 轧辊筛选方法、存储介质及系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2186641C1 (ru) * | 2001-12-11 | 2002-08-10 | Шатохин Игорь Михайлович | Способ производства рулонов горячекатаной трубной стали |
RU2279937C1 (ru) * | 2004-12-27 | 2006-07-20 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Способ горячей прокатки полос |
-
2014
- 2014-06-27 RU RU2014126316/02A patent/RU2578328C2/ru active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2186641C1 (ru) * | 2001-12-11 | 2002-08-10 | Шатохин Игорь Михайлович | Способ производства рулонов горячекатаной трубной стали |
RU2279937C1 (ru) * | 2004-12-27 | 2006-07-20 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Способ горячей прокатки полос |
Non-Patent Citations (1)
Title |
---|
Гарбер Э.А. и др. Моделирование и уменьшение неплоскостности полос при горячей прокатке на стадии настройки широкополосного стана, Производство проката, 2014., N3, с. 7-13. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11364526B2 (en) | 2017-10-02 | 2022-06-21 | Primetals Technologies Germany Gmbh | Flatness control using optimizer |
RU2785510C2 (ru) * | 2017-10-02 | 2022-12-08 | Прайметалз Текнолоджиз Джермани Гмбх | Регулирование плоскостности с оптимизатором |
Also Published As
Publication number | Publication date |
---|---|
RU2014126316A (ru) | 2016-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104511484B (zh) | 一种热轧带钢微中浪板形控制方法 | |
CN101890435B (zh) | 热轧串联式轧机的凸度和/或楔形自动控制方法及系统 | |
EP1485216B1 (de) | Rechnergestütztes ermittlungsverfahren für sollwerte für profil- und planheitsstellglieder | |
US11358194B2 (en) | Roll wear dispersion method for rolling stand and rolling system | |
CN103071683B (zh) | 一种双机架s型四辊冷轧机综合调整轧制方法 | |
CN103949481B (zh) | 兼顾热轧带钢轧制稳定性和质量的平坦度分段控制方法 | |
CN101765467A (zh) | 用于设定轧件的,特别是粗轧带的状态的方法 | |
US11318511B2 (en) | Width setting on a finishing train | |
US20170014880A1 (en) | Simple pre-control of a wedge-type roll-gap adjustment of a roughing stand | |
CN109570241A (zh) | 一种具有跑偏保护的楔形控制系统及方法 | |
CN104148404A (zh) | 一种热轧带钢平直度自动控制方法 | |
RU2578328C2 (ru) | Способ горячей прокатки тонких полос на широкополосном стане | |
CN106734239A (zh) | 一种定宽机中间坯头尾宽度控制方法以及装置和定宽机 | |
CN103831304A (zh) | 一种热连轧中间坯目标宽度计算方法及系统 | |
CN109513750B (zh) | 一种兼顾机架间浪形调节的凸度反馈方法 | |
CN108941208B (zh) | 一种板坯的粗轧宽度控制方法 | |
US11938528B2 (en) | Method for ascertaining control variables for active profile and flatness control elements for a rolling stand and profile and average flatness values for hot-rolled metal strip | |
CN110961491B (zh) | 一种带钢拉矫生产方法及装置 | |
CN114042760B (zh) | 一种通过下工作辊窜辊补偿值改善带钢截面楔形的方法 | |
JP6897609B2 (ja) | 熱間圧延装置及び熱延鋼板の製造方法 | |
EP1481742B1 (de) | Steuerrechner und rechnergestütztes Ermittlungsverfahren für eine Profil- und Planheitssteuerung für eine Walzstrasse | |
CN102581028A (zh) | 一种控制带钢热轧成型工艺的硬度补偿方法 | |
JP3520868B2 (ja) | 鋼板の製造方法 | |
JP2005319492A (ja) | 冷間圧延における形状制御方法 | |
SU787124A1 (ru) | Способ регулировани ширины гор чекатаных полос |