RU2577236C1 - Способ лечения заболеваний глаз, сопровождающихся окислительным стрессом - Google Patents
Способ лечения заболеваний глаз, сопровождающихся окислительным стрессом Download PDFInfo
- Publication number
- RU2577236C1 RU2577236C1 RU2014150495/14A RU2014150495A RU2577236C1 RU 2577236 C1 RU2577236 C1 RU 2577236C1 RU 2014150495/14 A RU2014150495/14 A RU 2014150495/14A RU 2014150495 A RU2014150495 A RU 2014150495A RU 2577236 C1 RU2577236 C1 RU 2577236C1
- Authority
- RU
- Russia
- Prior art keywords
- eye
- sod
- oxidative stress
- uveitis
- burn
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000036542 oxidative stress Effects 0.000 title claims abstract description 22
- 208000030533 eye disease Diseases 0.000 title claims abstract description 12
- 102000019197 Superoxide Dismutase Human genes 0.000 claims abstract description 59
- 108010012715 Superoxide dismutase Proteins 0.000 claims abstract description 59
- 239000002105 nanoparticle Substances 0.000 claims abstract description 24
- 239000003814 drug Substances 0.000 claims abstract description 23
- 239000001506 calcium phosphate Substances 0.000 claims abstract description 17
- 229910000389 calcium phosphate Inorganic materials 0.000 claims abstract description 17
- 235000011010 calcium phosphates Nutrition 0.000 claims abstract description 17
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical group [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims abstract description 17
- 230000002255 enzymatic effect Effects 0.000 claims abstract description 9
- 150000002016 disaccharides Chemical class 0.000 claims abstract description 3
- 229940079593 drug Drugs 0.000 claims description 20
- 238000009434 installation Methods 0.000 claims description 7
- 229960001714 calcium phosphate Drugs 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 12
- 102000004190 Enzymes Human genes 0.000 abstract description 10
- 108090000790 Enzymes Proteins 0.000 abstract description 10
- 239000000203 mixture Substances 0.000 abstract description 10
- 230000001225 therapeutic effect Effects 0.000 abstract description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 6
- 230000001965 increasing effect Effects 0.000 abstract description 5
- 201000010099 disease Diseases 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 24
- 206010046851 Uveitis Diseases 0.000 description 23
- 210000004087 cornea Anatomy 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 18
- 239000000243 solution Substances 0.000 description 16
- 239000002245 particle Substances 0.000 description 11
- 150000003254 radicals Chemical class 0.000 description 11
- 239000003963 antioxidant agent Substances 0.000 description 10
- 230000003078 antioxidant effect Effects 0.000 description 10
- 230000004054 inflammatory process Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 206010030113 Oedema Diseases 0.000 description 9
- 208000025865 Ulcer Diseases 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 210000002159 anterior chamber Anatomy 0.000 description 8
- 235000006708 antioxidants Nutrition 0.000 description 8
- 230000036269 ulceration Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000003859 lipid peroxidation Effects 0.000 description 6
- 206010011033 Corneal oedema Diseases 0.000 description 5
- 102000009123 Fibrin Human genes 0.000 description 5
- 108010073385 Fibrin Proteins 0.000 description 5
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 5
- 201000004778 corneal edema Diseases 0.000 description 5
- 229950003499 fibrin Drugs 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 206010015911 Eye burns Diseases 0.000 description 4
- 208000010412 Glaucoma Diseases 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 206010020565 Hyperaemia Diseases 0.000 description 4
- 206010029113 Neovascularisation Diseases 0.000 description 4
- 244000309464 bull Species 0.000 description 4
- 210000000795 conjunctiva Anatomy 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000012377 drug delivery Methods 0.000 description 4
- 210000000744 eyelid Anatomy 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000008506 pathogenesis Effects 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 206010064996 Ulcerative keratitis Diseases 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 210000001742 aqueous humor Anatomy 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- -1 hydroxyl radicals Chemical class 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 239000000902 placebo Substances 0.000 description 3
- 229940068196 placebo Drugs 0.000 description 3
- 231100000241 scar Toxicity 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- TWBNMYSKRDRHAT-RCWTXCDDSA-N (S)-timolol hemihydrate Chemical compound O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 TWBNMYSKRDRHAT-RCWTXCDDSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 108010053835 Catalase Proteins 0.000 description 2
- 206010012689 Diabetic retinopathy Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- 108010007859 Lisinopril Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 206010030348 Open-Angle Glaucoma Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000003732 agents acting on the eye Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 201000007717 corneal ulcer Diseases 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 229960003957 dexamethasone Drugs 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000006196 drop Substances 0.000 description 2
- 201000004949 exfoliation syndrome Diseases 0.000 description 2
- 239000003889 eye drop Substances 0.000 description 2
- 229940012356 eye drops Drugs 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 230000004410 intraocular pressure Effects 0.000 description 2
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 2
- 229960002394 lisinopril Drugs 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229940023490 ophthalmic product Drugs 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 201000006366 primary open angle glaucoma Diseases 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229960004605 timolol Drugs 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- SATHPVQTSSUFFW-UHFFFAOYSA-N 4-[6-[(3,5-dihydroxy-4-methoxyoxan-2-yl)oxymethyl]-3,5-dihydroxy-4-methoxyoxan-2-yl]oxy-2-(hydroxymethyl)-6-methyloxane-3,5-diol Chemical compound OC1C(OC)C(O)COC1OCC1C(O)C(OC)C(O)C(OC2C(C(CO)OC(C)C2O)O)O1 SATHPVQTSSUFFW-UHFFFAOYSA-N 0.000 description 1
- PXGPLTODNUVGFL-NAPLMKITSA-N 8-epi-prostaglandin F2alpha Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)C[C@H](O)[C@H]1C\C=C/CCCC(O)=O PXGPLTODNUVGFL-NAPLMKITSA-N 0.000 description 1
- 239000005541 ACE inhibitor Substances 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 101710129690 Angiotensin-converting enzyme inhibitor Proteins 0.000 description 1
- 229920000189 Arabinogalactan Polymers 0.000 description 1
- 239000001904 Arabinogalactan Substances 0.000 description 1
- 101710086378 Bradykinin-potentiating and C-type natriuretic peptides Proteins 0.000 description 1
- 229910014497 Ca10(PO4)6(OH)2 Inorganic materials 0.000 description 1
- 229940122072 Carbonic anhydrase inhibitor Drugs 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 206010007749 Cataract diabetic Diseases 0.000 description 1
- 206010007759 Cataract nuclear Diseases 0.000 description 1
- 241000700112 Chinchilla Species 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 206010051625 Conjunctival hyperaemia Diseases 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- 206010011039 Corneal perforation Diseases 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 208000031969 Eye Hemorrhage Diseases 0.000 description 1
- 102000006587 Glutathione peroxidase Human genes 0.000 description 1
- 108700016172 Glutathione peroxidases Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 208000032578 Inherited retinal disease Diseases 0.000 description 1
- 235000019766 L-Lysine Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- 208000032430 Retinal dystrophy Diseases 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 241000906446 Theraps Species 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000008578 acute process Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 1
- 230000001384 anti-glaucoma Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000767 anti-ulcer Effects 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 230000006851 antioxidant defense Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 235000019312 arabinogalactan Nutrition 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229960000722 brinzolamide Drugs 0.000 description 1
- HCRKCZRJWPKOAR-JTQLQIEISA-N brinzolamide Chemical compound CCN[C@H]1CN(CCCOC)S(=O)(=O)C2=C1C=C(S(N)(=O)=O)S2 HCRKCZRJWPKOAR-JTQLQIEISA-N 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000003489 carbonate dehydratase inhibitor Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 208000021921 corneal disease Diseases 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 201000007025 diabetic cataract Diseases 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 230000002497 edematous effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 231100000040 eye damage Toxicity 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 201000006321 fundus dystrophy Diseases 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000000544 hyperemic effect Effects 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000008798 inflammatory stress Effects 0.000 description 1
- 208000017532 inherited retinal dystrophy Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 208000016339 iris pattern Diseases 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 206010023365 keratopathy Diseases 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 208000029552 nuclear cataract Diseases 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000006195 ophthalmic dosage form Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000008756 pathogenetic mechanism Effects 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- CMFNMSMUKZHDEY-UHFFFAOYSA-N peroxynitrous acid Chemical compound OON=O CMFNMSMUKZHDEY-UHFFFAOYSA-N 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 150000004291 polyenes Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000006950 reactive oxygen species formation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Изобретение относится к медицине, в частности к офтальмологии, и предназначено для лечения заболеваний глаз, сопровождающихся окислительным стрессом. Супероксиддисмутазу вводят в состав кальций-фосфатных биодеградируемых наночастиц, покрытых дисахаридами, с радиусом до 350 нм и в диапазоне ферментативной активности от 20 до 500 кЕД/мл и инсталлируют в конъюнктивальную полость глаза. Способ позволяет увеличить терапевтическую эффективность супероксиддисмутазы за счет усиления способности этого фермента снижать выраженность окислительного стресса при глазных заболеваниях. 6 пр.
Description
Изобретение относится к медицине, в частности к офтальмологии и фармации, и предназначено для лечения заболеваний глаз, сопровождающихся окислительным стрессом. Роль свободнорадикальных процессов в патологии впервые была установлена отечественными учеными в 60-х годах 20 века [Тарусов Б.Н. Физико-химические механизмы биологического действия ионизирующих излучений// Успехи совр. биологии, 1957, 44, 2, 171-185; Эммануэль Н.М., Липчина Л.П. Лейкоз у мышей и особенности его развития при воздействии ингибиторов цепных окислительных процессов // Доклады АН, 1958, 121, 1, 141-144]. Но и в настоящее время контроль образования свободных радикалов при лечении широкого круга заболеваний остается актуальной проблемой медицины, в том числе в офтальмологии. Свободные радикалы - это атомы или молекулы с неспаренными электронами на внешних электронных оболочках, которые обладают высокой реакционной способностью. В организме в норме процессы образования свободных радикалов строго регулируются системой антиоксидантной защиты, которая включает ферментные и неферментные антиоксиданты. К числу ферментных антиоксидантов относятся супероксиддисмутаза (СОД), каталаза, глутатион-пероксидазы.
Под окислительным стрессом понимают усиление свободнорадикальных процессов на фоне ослабления собственной антиоксидантной системы, которое приводит к повреждению практически всех компонентов тканевых структур, нарушению метаболических процессов и структуры тканей [Зенков Н.К., Ланкин В.З., Меньшикова Е.Б. Окислительный стресс: Биохимический и патофизиологический аспекты. 2001, М.: МАИК «Наука Интерпериодика»]. Высокая вероятность свободнорадикального повреждения тканей глаза обусловливается несколькими причинами. Во-первых, ткани глаза постоянно подвергаются действию света, что приводит к фотоинициированию перекисного окисления липидов (ПОЛ). Во-вторых, липиды, входящие в состав внутриглазных тканей, по своему составу являются чрезвычайно легко окисляемым субстратом для ПОЛ. Так, в мембранных структурах сетчатки более половины фосфолипидов содержат полиеновые остатки жирных кислот, восприимчивые к атаке активированными кислородными метаболитами. Кроме того, в фоторецепторах присутствует много митохондрий, в которых проходит постоянное потребление кислорода, сопровождающееся образованием активных форм кислорода, что делает их уязвимыми в отношении окислительного стресса.
Практически нет такой офтальмологической патологии, при которой не было бы установлено усиления свободнорадикальных процессов. Например, показана их важная роль в патогенезе глаукомы [Зиангирова Г.Г., Антонова О.В. Перекисное окисление липидов в патогенезе первичной открытоугольной глаукомы // Вестн. Офтальмол., 2003, 4, 54-55], катаракты [Gamer В., Davies V.J., Truscott R.J. W. Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract // Exp. Eye Res., 2000, 70, 81-88], псевдоэксфолиативного синдрома [Koliakos G.G., Konstas A., Schlotzer-Schrehardt U., Hollo G., Katsimbris I.E., Georgiadis N., Ritch R. 8-Isoprostaglandin F2a and ascorbic acid concentration in the aqueous humour of patients with exfoliation syndrome// Br. J. Ophthalmol., 2003, 87, 3, 353-356], внутриглазных кровоизлияний [Ромащенко А.Д., Гундорова Р.А., Касавина Б.С. Роль перекисного окисления липидов в патогенезе развития травматического гемофтальма // Вестн. Офтальмол., 1981, 2, 51-53], ожоговой болезни глаз [Гулидова О.В., Любицкий О.Б., Клебанов Г.И., Чеснокова Н.Б. Изменение антиокислительной активности слезной жидкости при экспериментальной ожоговой болезни глаз. Бюлл. Экспер. Биол. Мед.// 1999, 128, 11, 571-574], диабетической ретинопатии [Булатова О.С., Кондратьев Я.Ю., Миленькая Т.М. Окислительный стресс: клинико-метаболические показатели и полиморфный маркер гена каталазы при развитии ретинопатии у больных сахарным диабетом II типа. Клин. Эндокринол.// 1999, 45, 4, 3-7]. По мнению ряда авторов для многих глазных болезней характерна активация ПОЛ на уровне всего организма [Бабенкова И.В., Теселкин Ю.О., Макашова Н.В., Гусева М.Р. Антиоксидантная активность гистохрома и некоторых лекарственных препаратов, применяемых в офтальмологии. Вестн. Офтальмол. // 1999, 4, 22-24].
В условиях окислительного стресса клетки продуцируют в очень больших количествах супероксид-анион. Супероксид - это молекулярный кислород с неспаренным электроном на внешнем уровне. Супероксид может реагировать с молекулами воды с образованием очень агрессивного гидроксильного радикала, а также с оксидом азота с образованием высокотоксичного пероксинитрита. Гидроксильные радикалы могут легко реагировать с органическими и неорганическими молекулами, способны разрушать практически все структурные и функционально активные компоненты тканей, приводят к образованию органических свободных радикалов. Образующиеся в большом количестве свободные радикалы способствуют возникновению различных нарушений в иммунной системе, а также вызывают образование токсических веществ, что приводит к усугублению нарушений микроциркуляции в тканях, приводящее к ишемизации и гипоксии тканей [CarubelliR., Nodrquist R.E., Rowsey J.J. Role of active oxygen species in corneal ulceration. Effect of hydrogen peroxide generated in situ // Cornea, 1990, 9, 161-169; Yadav U.C. S., Kalariya N.M., Ramana K.V. Emerging role of antioxidants in the protection of uveitis complications// Curr. Med. Chem., 2011, 18, 931-942].
В организме контроль концентрации супероксид-аниона, играющего важную роль в запуске окислительного стресса, в основном осуществляет антиоксидантный фермент супероксиддисмутаза (СОД). Супероксиддисмутаза катализирует реакцию дисмутации супероксидных кислородных радикалов в кислород и перекись водорода согласно следующим реакциям.
Имеется несколько изоформ СОД, которые находятся в разных клеточных структурах, а также во внеклеточном пространстве, где эти ферменты осуществляют контроль уровня супероксид-аниона.
Действие препаратов на основе СОД направлено на усиление собственной защитной реакции организма при окислительном стрессе. В данной работе предлагается применение в виде глазных капель препарата, действующим началом которого является СОД, внедренная в кальций-фосфатные наночастицы (КФЧ), с целью увеличения проникновения фермента во внутренние структуры глаза.
Известен способ того же назначения, предусматривающий инстилляции в конъюнктивальную полость антиоксидантного препарата на основе рекомбинантной супероксиддисмутазы (фармацевтический препарат «Рексод-ОФ», ЛСР-006689/10 от 15.07.10). Показаниями к его применению являются первичная открытоугольная глаукома, аденовирусное поражение глаз, вторичная кератопатия.
Известным недостатком препаратов, применяемых для закапывания в глаз, является их плохое проникновение во внутренние структуры глаза. Помимо этого, лекарственный препарат легко смывается слезой с поверхности глаза, а также поступает в носослезный канал. В среднем только около 5% от вводимого лекарственного вещества способно проникнуть через роговую оболочку и достичь внутриглазных тканей [Ahmad I., Patton Т. Importance of thenon and corneal absorption routes in topical ophthalmic drug delivery // Invest. Ophtalm. Vis. Sci., 1985, 26, 584-587]. В итоге, необходимую концентрацию лекарственной субстанции в препарате необходимо повышать, что усиливает нежелательные побочные эффекты как локальные, так и системные, связанные с последующим попаданием этих препаратов в кровоток.
Препарат Рексод-ОФ выпускается в виде лиофилизата СОД. Перед употреблением содержимое флакона 0,8 млн ЕД разводят в 2 мл воды и полученный раствор (глазные капли) хранят в холодильнике при 4-10°С в течение не более 3 дней. Данному препарату присущи все вышеперечисленные недостатки использования капельного метода введения в виде сложности создания требуемой концентрации действующего вещества во внутренних тканях глаза, что вызывает необходимость его частого закапывания - до 8 раз в сутки.
Перспективным подходом к решению проблемы проникновения лекарственного препарата внутрь глаза является использование наночастиц в качестве систем доставки, так как они способны значительно увеличивать биодоступность лекарственного препарата и повышать концентрацию вещества в тканях без изменения исходной концентрации препарата [Araujo J., Gonzalez Е., Egea М.А., Garcia M.L., Souto E.B. Nanomedicines for ocular NSAIDs: safety on drug delivery // Nanomedicine, 2009, 5, 394-401; Sahoo S.K., Dilnawaz F., Krishnakumar S. Nanotechnology in ocular drug delivery // Drug Discov. Today, 2008, 13, 144-151]. Серьезной проблемой в разработке глазных лекарственных форм на основе наночастиц является сложность получения этих препаратов. Наночастицы должны быть биосовместимы, хорошо выводиться из организма, не оказывать токсического действия. Так, при включении СОД в полимерные наночастицы на основе сшитого метокси-поли(этиленгликоль)-поли(L-лизин) блок-сополимера и целевых добавок [Патент RU 2012130852/15, 19.07.2012; Patent US 2014/0120075 A1, May 1, 2014] экспериментально было показано усиление терапевтического действия СОД. Однако с технологической точки зрения получение данного блок-сополимера, обладающего, кстати, немалой стоимостью, является достаточно сложным и трудно масштабируемым процессом. Поэтому не снят вопрос о поиске других наночастиц - носителей СОД для применения в фармации.
В качестве альтернативы органическим частицам к использованию предложены неорганические, в частности, кальций-фосфатные частицы (КФЧ). Методика получения КФЧ была впервые упомянута и запатентована в 2002 году [US Patent №6,355,271 B1, 12 March 2002]. Кальций-фосфатные наночастицы хорошо выводятся из организма и обладают хорошей биосовместимостью ввиду схожести по составу с гидроксиапатитом Са10(PO4)6(ОН)2, который является основным компонентом костей и зубов человека [Не Q., Chu T. - C, Potter D. Biodegradable Calcium Phosphate Nanoparticles as a New Vehicle for Ocular Delivery of a Potential Ocular Hypotensive Agent // J. Ocular Pharmacol, and Therap., 2002, V. 18, P. 507-514].
Была показана способность КФЧ при инсталляциях в глаз кроликов проникать во внутренние среды глаза [Шимановская Е.В., Безнос О.В., Клячко Н.Л., Кост О.А., Никольская И.И., Павленко Т.А., Чеснокова Н.Б., Кабанов А.В. Получение кальций-фосфатных наночастиц, содержащих тимолол, и оценка их влияния на внутриглазное давление в эксперименте // Вестн. Офтальмол., 2012, 3, 15-18; патент RU №: 2472471, 20.01.2013; Шимановская Е.В., Никольская И.И., Биневский П.В., Безнос О.В., Клячко Н.Л., Павленко Т.А., Чеснокова Н.Б., Кост О.А. Лизиноприл в составе кальций-фосфатных наночастиц как перспективный антиглаукомный препарат // Российские нанотехнологии. 2014, Т. 9, №3-4, 100-106]. В этих работах были продемонстрированы повышение эффективности и пролонгация эффекта снижения внутриглазного давления в экспериментах in vivo на кроликах при включении в КФЧ низкомолекулярных соединений - адреноблокатора тимолола и ингибитора ангиотензин-превращающего фермента лизиноприла.
Эксперименты по внедрению в КФЧ ингибитора карбоангидразы, который эффективно снижает ВГД, показали, что такой препарат снижает ВГД намного эффективнее не только водного раствора этого вещества, но и коммерческого препарата бринзоламида. При этом никаких побочных эффектов при использовании частиц выявлено не было [X. Zhang, W. Yaun, D. Zhau, J. Wu. Lyceum Chinense and calcium phosphate nanoparticles for ophthalmic drug delivery // Nanotech., 2008, V. 2, P. 401-404].
В настоящее время в литературе нет данных по внедрению в КФЧ ферментов различной природы.
Техническим результатом предлагаемого способа является увеличение терапевтической эффективности СОД, связанное с усилением способности СОД снижать выраженность окислительного стресса при глазных заболеваниях.
Технический результат достигается за счет инсталляций в конъюнктивальную полость СОД в составе кальций-фосфатных биодеградируемых наночастиц, покрытых дисахаридом, с радиусом 50-350 нм и в диапазоне ферментативной активности от 20 до 500 кЕД/мл.
Частицы получали по модифицированной нами методике, предложенной впервые в 2002 году [US Patent №6,355,271 B1, 12 March 2002]. В этой работе после смешивания растворов хлорида кальция и фосфата калия частицам давали состариться в течение 48 часов перед воздействием ультразвука. В этом случае помимо частиц с радиусом 50-200 нм образуются также частицы с радиусом около 500 нм и более. Мы использовали метод, при котором смешивание эквимолярных растворов хлорида кальция и фосфата калия проводилось одновременно с ультразвуковым воздействием продолжительностью 30 мин. После этого частицы оставляли стабилизироваться. В результате мы получали частицы с радиусом только до 350 нм. Для повышения стабильности частиц было использовано покрытие их 0,5% раствором целлобиозы или лактозы. Для приготовления препарата мы внедряли супероксиддисмутазу в КФЧ на стадии их получения. Была показана стабильность определяющих параметров КФЧ (размер, дзета-потенциал) при хранении в течение как минимум 6 месяцев. Показано, что активность СОД в составе КФЧ при хранении в виде водной суспензии при 4C° падает не более чем на 30% в течение 2 месяцев. Показано, что водные суспензии КФЧ, содержащие СОД, можно подвергать концентрированию на мембранных фильтрах без потери ими ферментативной активности и изменения размера и поверхностного заряда. Важно с технологической точки зрения, что СОД-содержащие КФЧ не теряют своих свойств в результате лиофилизации. Лиофильно высушенные КФЧ, содержащие СОД, могут храниться при -20°, по крайней мере, в течение полугода без изменения свойств.
Сравнительное изучение терапевтического действия СОД в растворе и СОД в составе КФЧ мы проводили на моделях воспалительного процесса, сопровождающегося окислительным стрессом, во внутренних (иммуногенный увеит - воспаление сосудистой оболочки глаза) и внешних (ожог роговицы) структурах глаза кроликов.
При увеите имеется высокая степень корреляции между выраженностью воспаления и окислительным стрессом. Ранее нами было показано, что инсталляции СОД при увеите у кроликов по своему терапевтическому действию не уступают общепринятому методу лечения увеитов с помощью дексаметазона, который вызывает много побочных эффектов. Кроме того, в отличие от дексаметазона, СОД в значительной степени снижает уровень окислительного стресса во внутренних средах глаза при увеите [Чеснокова Н.Б., Нероев В.В., Безнос О.В., Бейшенова Г.А., Никольская И.И., Кост О.А., Биневский П.В., Шехтер А.Б. Окислительный стресс при увеите и его коррекция антиоксидантным ферментом супероксиддисмутазой // Вестн. Офтальмол. 2014, т.30, №5, 30-36]. При ожоге глаза развивается воспалительный процесс, сопровождающийся значительным снижением антиоксидантного потенциала, что свидетельствует об истощении собственной антиоксидантной системы при окислительном стрессе [Гулидова О.В., Любицкий О.Б., Клебанов Г.И., Чеснокова Н.Б. Изменение антиокислительной активности слезной жидкости при экспериментальной ожоговой болезни глаз // Бюл. Эксп. Биол. Мед., 1999, 128, 11, 571-574].
Работа выполнена на 30 кроликах (60 глаз) породы шиншилла массой 2,0-2,5 кг. В первой серии экспериментов у 15 животных воспроизводили увеит путем двукратного введения нормальной лошадиной сыворотки: первую дозу (5 мл) вводили подкожно, вторую (0,07 мл) - интравитреально на 10-е сутки после первой [Нероев В.В., Давыдова Г.А., Перова Т.С. Моделирование иммуногенного увеита у кроликов // Бюл. Эксп. Биол. Мед., 2006, 142, 11, 598-600]. Во второй серии экспериментов 15 кроликам наносили дозированный ожог центральной области роговицы с помощью круга из хлопчатобумажной ткани диаметром 5 мм, пропитанного 1н. NaOH, с временем экспозиции 40 сек.
Для лечения использовали препарат Рексод-ОФ (ООО ′′НПП Ферментные технологии′′, Россия), представляющий собой рекомбинантную СОД человека (400 кЕД в 1 мг), и полученный нами препарат СОД в составе КФЧ, содержащий СОД с такой же активностью.
Кролики в каждой серии экспериментов были разбиты на 3 группы по 5 животных. Первой группе ежедневно в течение 7 дней при увеите и 14 дней при ожоге проводили инсталляции Рексод-ОФ 3 раза в день по 30 мкл в оба глаза, второй - раствор СОД в составе КФЧ в том же режиме, третьей - плацебо (буферный раствор рН 7,4).
Клиническую оценку течения увеита проводили ежедневно в течение 8 дней после начала, а ожогового процесса на 1, 3, 7, 14, 21 и 28 сутки после травмы путем биомикроскопии с помощью щелевой лампы. В условных баллах по принятой в лаборатории шкале оценивали выраженность следующих признаков: 1) при увеите - отек радужки, отек роговицы, количество фибрина в передней камере глаза, наличие задних синехий, помутнение хрусталика, интенсивность неоваскуляризации роговицы; 2) при ожоге роговицы - отек роговицы, площадь и глубину язв роговицы, интенсивность неоваскуляризации роговицы.
Результаты показали преимущество заявленного препарата СОД, внедренного в кальций-фосфатные наночастицы, по сравнению с коммерческим водным раствором СОД при местном применении при лечении заболеваний как внутренних, так и внешних структур глаза, сопровождающихся окислительным стрессом. При воспалении внутренних структур глаза, имеющем место при иммуногенном увеите у кроликов, преимущество применения СОД в КФЧ по сравнению с простым раствором СОД выражается в снижении интенсивности воспаления, снижении отека роговицы в острый период увеита в среднем на 20%, снижении на 40% количества фибриновых сгустков в передней камере глаза на протяжении всего периода наблюдения, что способствует сохранению прозрачности сред глаза и снижению вероятности возникновения осложнений, например, вторичной глаукомы вследствие закрытия фибриновыми сгустками путей оттока внутриглазной жидкости. Полученные данные могут напрямую свидетельствовать об улучшении проникновения СОД в составе КФЧ во внутренние структуры глаза (увеличение биодоступности) с сохраненной ферментативной активностью. На примере ожога роговицы глаза (оценивался воспалительный процесс во внешних структурах глаза) показана более высокая эффективность СОД в КФЧ по сравнению с простым раствором СОД, которая выражалась в более эффективном противоспалительном и противоязвенном действии, повышении прозрачности роговицы, снижении величины площади ее изъязвления в среднем на 22% и глубины язв на 27%. Полученные результаты свидетельствуют о более эффективном действии на течение постожогового воспалительного процесса СОД в КФЧ по сравнению с СОД в простом растворе, что может быть связано с лучшим проникновением СОД в составе наночастиц в ткань роговицы.
В рамках данной работы было показано, что включение в кальций-фосфатные частицы супероксиддисмутазы повышает эффективность действия фермента без повышения его концентрации. Это важно, поскольку позволяет снизить частоту закапывания препарата, а также снизить концентрацию действующей субстанции, что снижает вероятность побочного действия препарата и улучшает качество жизни пациента.
Способ осуществляют следующим образом. Суспензию СОД, внедренной в кальций-фосфатные наночастицы с радиусом 50-350 нм, в диапазоне активности от 20 до 500 кЕД/мл применяют местно в виде капель для снижения окислительного стресса (интенсивности свободнорадикальных процессов). Режим лечения зависит от вида и характера течения патологического процесса. Частота введения может варьировать от 2 до 5 закапываний в сутки. Лечение при острых процессах следует продолжать до достижения эффекта снижения клинических проявлений, а при хронических заболеваниях лечение следует проводить курсами по 2 недели 2-6 раз в год.
Апробация на экспериментальных моделях является необходимым этапом обоснования и внедрения любого нового метода лечения. Нами были выбраны модели воспалительных процессов у кроликов: в основном внешних (ожог) и в основном внутренних (увеит) структур глаза. Модель ожога глаза у кроликов воспроизводит все проявления и стадии ожоговой болезни глаз у человека, сопровождается локальным усилением свободнорадикальных процессов [Burgalassi S, Nicosia N, Monti D, Falcone G, Boldrini E, Fabiani O, Lenzi C, Pirone A, Chetoni P. Arabinogalactan as active compound in the management of corneal wounds: in vitro toxicity and in vivo investigations on rabbits // Eye Res., 2011, 36, 1, 21-28; Гулидова O.B., Любицкий О.Б., Клебанов Г.И., Чеснокова Н.Б. Изменение антиокислительной активности слезной жидкости при экспериментальной ожоговой болезни глаз // Бюл. Экспер. Биол. Мед., 1999, 128, 11, 571-574]. Патогенетические механизмы развития иммуногенного увеита у кроликов соответствуют закономерностям развития увеита у человека, и поэтому эта модель используется для обоснования новых методов лечения увеита. Показана роль окислительного стресса при увеите у кроликов и у человека [Yadav U.С.S., Kalariya N.М., Ramana К.V. Emerging role of antioxidants in the protection of uveitis complications // Curr. Med. Chem., 2011, 18, 931-942]. Поэтому полученные нами результаты экспериментального исследования, в которых было показано увеличение терапевтической эффективности СОД, внедренной в кальций-фосфатные наночастицы, по сравнению с простым раствором фермента, можно использовать для обоснования целесообразности применения этого метода доставки СОД в глаз человека.
Способ поясняется следующими примерами.
Оценка клинической картины показала, что у кролика №14 в течение всего периода наблюдения признаки увеита были ярко выражены: конъюнктива отечна и гиперемирована, развивались прогрессирующие отек роговицы, отек и гиперемия радужки, во влаге передней камеры в большом количестве обнаруживался фибрин, формировались задние синехии, в большинстве случаев круговые, хрусталик становился диффузно мутным, стекловидное тело сквозь него не визуализировалось, отмечалась выраженная неоваскуляризация роговицы.
У кролика №7 признаки конъюнктивита были выражены незначительно, перикорнеальная инъекция конъюнктивы - умеренно. Отек роговицы был локальным, не резко выраженным и со временем уменьшался, как и отек радужки. Количество фибрина в передней камере и неоваскуляризация роговицы были менее выражены, чем у кролика №14. Во время лечения отмечался регресс задних синехий и частичное восстановление реакции зрачка на свет. Помутнение хрусталика было незначительным. Таким образом, лечение препаратом Рексод, содержащим фермент в виде простого водного раствора, привело к существенному снижению выраженности всех проявлений увеита по сравнению с кроликом, получавшим плацебо.
У кролика №13, получавшего инсталляции СОД в наночастицах, проявления увеита были еще меньше выражены, чем у кролика №7, получавшего фермент в растворе. Отек и гиперемия век были очень незначительны. Самые большие различия заключались в существенно меньшем содержании фибрина в передней камере глаза, что способствует лучшему сохранению прозрачности оптических сред глаза и снижению вероятности развития вторичной глаукомы вследствие закупорки путей оттока внутриглазной жидкости.
Сразу после ожога на месте нанесения травмы образовался дефект эпителия, который в течение 3-х дней закрывался, но в последующие дни вновь обнажалась строма роговицы, в которой начинался процесс ее изъязвления. Максимальная интенсивность изъязвления достигалась на 14-21 сутки, при этом на одном глазу образовалось десцеметоцеле (язва роговицы до десцеметовой базальной мембраны), создающее угрозу перфорации роговицы, а на 28 сутки на месте ожога оставалось точечное изъязвление. Наблюдался отек роговицы, рост в ней новообразованных сосудов, в обоих глазах отмечен гипопион (наличие гноя в передней камере глаза). Отмечался значительный отек век, отек и гиперемия конъюнктивы. Отек области роговицы, окружающей ожог, делал ее полностью непрозрачной.
У кролика №24, получавшего Рексод, отек век, отек и гиперемия конъюнктивы были меньше, чем у кролика №17, получавшего плацебо. Через область роговицы, окружающей ожог, можно было различить радужку, что свидетельствует о меньшей отечности этой ткани. Существенно ниже была интенсивность изъязвления роговицы, в передней камере глаза гипопиона не отмечалось. К 28 суткам формировалась рубцовая ткань без признаков изъязвления.
У кролика №29, получавшего СОД в наночастицах, на всем протяжении наблюдения отек и гиперемия век и конъюнктивы были менее выражены, чем у кролика №24, получавшего СОД в простом растворе. Степень изъязвления роговицы также снижалась и по глубине и площади не превышала умеренного уровня, на 28 сутки формировалась более нежная рубцовая ткань без признаков изъязвления. Через полупрозрачную область роговицы, окружающей ожог, хорошо просматривался рисунок радужки. Гноя в передней камере глаза не было.
Таким образом, применение супероксиддисмутазы, внедренной в кальций-фосфатные наночастицы, в виде местных инсталляций для лечения ожога глаз позволяет снизить выраженность воспалительной реакции тканей глаза, снизить интенсивность изъязвления роговицы по сравнению с применением простого раствора СОД, что приводит к образованию более нежной рубцовой ткани, что, в свою очередь, улучшает оптические свойства роговицы и позволяет лучше сохранить зрение.
Внедрение СОД в кальций-фосфатные наночастицы позволяет обеспечить усиление терапевтического эффекта при лечении заболеваний глаза, сопровождающихся окислительным стрессом как во внешних, так и внутренних структурах глаза. В данном исследовании мы сравнивали одинаковые режимы и дозы введения СОД в растворе и СОД в КФЧ. Полученные данные, свидетельствующие о большей терапевтической эффективности фермента в составе наночастиц, позволяют полагать, что его можно применять менее часто и в меньшей дозе, чем препарат в простом растворе. В то же время выбор дозы и режима применения должен зависеть от тяжести, локализации, характера течения патологии.
Показанием к применению супероксиддисмутазы в составе кальций-фосфатных наночастиц является широкий круг глазных болезней, в патогенезе которых большую роль играет усиление процессов свободнорадикального окисления. Это воспалительные процессы любой этиологии и локализации, нейродегенеративные процессы в сетчатке, включая глаукому и возрастную дистрофию сетчатки, диабетическая ретинопатия, профилактика катаракты. Метод получения СОД в составе КФЧ достаточно прост, не требует применения органических растворителей, сами частицы биосовместимы и биодеградируемы, обладают высокой биодоступностью и позволяют создать в тканях высокую концентрацию активного фермента.
Claims (1)
- Способ лечения заболеваний глаз, сопровождающихся окислительным стрессом, включающий инсталляции в конъюнктивальную полость препарата на основе супероксиддисмутазы (СОД), отличающийся тем, что СОД вводят в составе кальций-фосфатных биодеградируемых наночастиц, покрытых дисахаридами, с радиусом до 350 нм и в диапазоне ферментативной активности от 20 до 500 кЕД/мл.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014150495/14A RU2577236C1 (ru) | 2014-12-15 | 2014-12-15 | Способ лечения заболеваний глаз, сопровождающихся окислительным стрессом |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014150495/14A RU2577236C1 (ru) | 2014-12-15 | 2014-12-15 | Способ лечения заболеваний глаз, сопровождающихся окислительным стрессом |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2577236C1 true RU2577236C1 (ru) | 2016-03-10 |
Family
ID=55654454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014150495/14A RU2577236C1 (ru) | 2014-12-15 | 2014-12-15 | Способ лечения заболеваний глаз, сопровождающихся окислительным стрессом |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2577236C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2657780C2 (ru) * | 2016-09-14 | 2018-06-15 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | Средство для лечения глазных заболеваний и способ его применения |
RU2709536C1 (ru) * | 2019-03-28 | 2019-12-18 | Общество с ограниченной ответственностью "Медицинские нанотехнологии" | Способ получения водосодержащей суспензии частиц, состоящих из антиоксидантного фермента супероксиддисмутазы, поликатиона и полианиона |
RU2815996C1 (ru) * | 2022-12-20 | 2024-03-25 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) | Средство для снижения внутриглазного давления и способ его применения |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2188633C2 (ru) * | 2000-10-02 | 2002-09-10 | Военно-медицинская академия | Способ лечения ожогов и термохимических поражений дыхательных путей |
-
2014
- 2014-12-15 RU RU2014150495/14A patent/RU2577236C1/ru active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2188633C2 (ru) * | 2000-10-02 | 2002-09-10 | Военно-медицинская академия | Способ лечения ожогов и термохимических поражений дыхательных путей |
Non-Patent Citations (2)
Title |
---|
ЧЕСНОКОВА Н.Б. и др., Использование супероксиддисмутазы в наночастицах в лечении экспериментального увеита, VII Российский общенациональный офтальмологический форум, Москва, 2014, том 2, с. 464-465. КЛЯЧКО Н.Л. и др., Новые бинаносистемы для медицинских применений, Развитие технологии NanoZyme в Московском государственном университета им. М.В. Ломоносова, Вестник Московского университета, сер. 2, Химия, 2014, том 55, N3, с 139-147. * |
ЧЕСНОКОВА Н.Б. и др., Окислительный стресс при увеите и его коррекция антиоксидантным ферментом супероксиддисмутазой // Вестн. Офтальмол. 2014, т.30, N5, 30-36. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2657780C2 (ru) * | 2016-09-14 | 2018-06-15 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | Средство для лечения глазных заболеваний и способ его применения |
RU2709536C1 (ru) * | 2019-03-28 | 2019-12-18 | Общество с ограниченной ответственностью "Медицинские нанотехнологии" | Способ получения водосодержащей суспензии частиц, состоящих из антиоксидантного фермента супероксиддисмутазы, поликатиона и полианиона |
RU2815996C1 (ru) * | 2022-12-20 | 2024-03-25 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) | Средство для снижения внутриглазного давления и способ его применения |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bikbova et al. | Corneal changes in diabetes mellitus | |
US7976833B2 (en) | Ophthalmic surgical irrigating solutions containing hyaluronidase and method for preventing post-operative intraocular pressure increases | |
CZ76893A3 (en) | Use of plasminogen activator inhibitors for the preparation of medicaments | |
JP2009501727A (ja) | 巨大分子集合体の存在に関連した状態、特に眼科障害の治療 | |
BG99213A (bg) | Фармацевтичен състав за лечение на глаукома | |
Li et al. | Glaucoma and ocular surface disease: more than meets the eye | |
Richardson et al. | Exfoliation Glaucoma: Quantitative Perfusion and Ultrastructural Study | |
TWI659737B (zh) | 用於降低眼部不適的方法及組成物 | |
RU2577236C1 (ru) | Способ лечения заболеваний глаз, сопровождающихся окислительным стрессом | |
US20170368024A1 (en) | Compositions and Methods for Treating Glaucoma | |
RU2485939C1 (ru) | Офтальмологический препарат в виде глазных капель, содержащий дисульфирам и таурин | |
WO2020009248A1 (ja) | 眼組織の線維化抑制用組成物 | |
RU2730975C1 (ru) | Способ лечения эндотелиально-эпителиальной дистрофии роговицы | |
RU2513997C1 (ru) | Комбинированный офтальмологический препарат в виде глазных капель, содержащий полигексаметиленгуанидин и таурин | |
US20130316983A1 (en) | Drug screening method, compositions and methods of treating glaucoma | |
RU2508123C1 (ru) | Фармацевтическая композиция для местного применения при лечении воспалительных заболеваний глаз и способ ее использования | |
RU2472471C1 (ru) | Способ снижения внутриглазного давления | |
RU2694226C1 (ru) | Фармацевтическая композиция для лечения заболеваний глаз, сопровождающихся окислительным стрессом, и способ ее применения | |
RU2840756C1 (ru) | Способ консервативного лечения нейротрофического кератита | |
Wy et al. | Clinical outcomes in maximum tolerated medical therapy in penetrating keratoplasty for bullous keratopathy | |
WO2017126708A1 (ja) | 内眼手術時の酸化ストレス障害に対する水素分子含有予防又は治療薬 | |
CN116407496B (zh) | 一种包含青蒿素前体药物的滴眼液及其制备方法 | |
US20230015595A1 (en) | Use of valproic acid for reducing post-operative scarring following a glaucoma surgery | |
RU2558991C1 (ru) | Способ моделирования пролиферативной витреоретинопатии у крыс | |
RU2234309C2 (ru) | Ирригационный раствор для офтальмологии |