RU2575995C2 - Волноводная структура с разрешенными и запрещенными зонами - Google Patents

Волноводная структура с разрешенными и запрещенными зонами Download PDF

Info

Publication number
RU2575995C2
RU2575995C2 RU2014109665/08A RU2014109665A RU2575995C2 RU 2575995 C2 RU2575995 C2 RU 2575995C2 RU 2014109665/08 A RU2014109665/08 A RU 2014109665/08A RU 2014109665 A RU2014109665 A RU 2014109665A RU 2575995 C2 RU2575995 C2 RU 2575995C2
Authority
RU
Russia
Prior art keywords
diaphragm
gap
waveguide
pin
semiconductor
Prior art date
Application number
RU2014109665/08A
Other languages
English (en)
Other versions
RU2014109665A (ru
Inventor
Дмитрий Александрович Усанов
Сергей Аполлонович Никитов
Александр Владимирович Скрипаль
Вадим Ермингельдович Орлов
Александр Павлович Фролов
Original Assignee
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского" filed Critical Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского"
Priority to RU2014109665/08A priority Critical patent/RU2575995C2/ru
Publication of RU2014109665A publication Critical patent/RU2014109665A/ru
Application granted granted Critical
Publication of RU2575995C2 publication Critical patent/RU2575995C2/ru

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Изобретение относится к устройствам обработки и коммутации СВЧ-сигналов на полупроводниковых приборах и предназначено для использования в телекоммуникационных системах, электрически управляемых устройствах СВЧ-электроники, таких как полосовые или селективные фильтры, антенны, перестраиваемые генераторы. Техническим результатом является создание волноводной СВЧ-структуры с электрически управляемыми характеристиками разрешенных и запрещенных зон при уменьшенных прямых потерях. Для этого в волноводную структуру с разрешенными и запрещенными зонами, содержащую диафрагму с рамочными элементами связи, расположенными по обе стороны диафрагмы, и полупроводниковый элемент с электрически управляемой проводимостью, введена по крайней мере в один рамочный элемент по крайней мере одна неоднородность типа «штырь с зазором», в зазор одной из которых помещен полупроводниковый элемент с электрически управляемой проводимостью. 5 ил.

Description

Изобретение относится к устройствам обработки и коммутации СВЧ-сигналов на полупроводниковых приборах и предназначено для использования в телекоммуникационных системах, электрически управляемых устройствах СВЧ-электроники, таких как полосовые или селективные фильтры, антенны, перестраиваемые генераторы.
Известно устройство на основе диафрагмы и отрезков короткозамкнутых двухпроводных линий («Электроника СВЧ», №7, 1976 г., с.93-95), имеющее запрещенную и разрешенную зоны. Данное устройство может быть использовано в качестве широкополосного СВЧ-фильтра.
Однако данное устройство не может быть использовано в качестве перестраиваемого СВЧ-резонатора.
Известно устройство (см. патент РФ №2407114, МПК H01P1/00), представляющее собой отрезок волновода, содержащий частотно-селективный элемент и элемент для регулирования затухания. Частотно-селективный элемент выполнен в виде одномерного волноводного фотонного кристалла с нарушением периодичности в виде измененной толщины и/или диэлектрической проницаемости центрального слоя. После фотонного кристалла по направлению распространения электромагнитной волны включен элемент для регулирования затухания, выполненный в виде р-i-n-диодной структуры, подключенной к источнику питания с регулируемым напряжением. Выбором количества и параметров слоев в фотонном кристалле определяется ширина частотной области пропускания, выбором толщины или диэлектрической проницаемости достигается настройка центральной частоты этой области. Для реализации управления величиной пропускания в этой области используется р-i-n-диодная структура.
Однако данное устройство не позволяет осуществлять электрическую частотную перестройку резонансной моды колебаний (резонансной особенности).
Наиболее близким к предлагаемому решению является полупроводниковый СВЧ-модулятор с рамочным элементом связи («Электроника СВЧ», сер.1, №1, 1975 г., с.35-37), представляющий собой отрезок прямоугольного волновода, перегороженный диафрагмой с отверстием, в которое помещена полупроводниковая управляющая структура, например p-i-n-диод или диод с точечным контактом металл-полупроводник. По обе стороны диафрагмы располагаются рамочные элементы связи, соединенные с полупроводниковой управляющей структурой. Плоскости рамок совпадают с E-плоскостью, проходящей через середину широкой стенки волновода.
Однако в данной конструкции реализуется только инверсный режим электрического переключения передаваемой мощности СВЧ-сигнала, отсутствует возможность селективного управления выходным сигналом и прямые потери составляют более 4 дБ.
Задачей настоящего изобретения является создание волноводной СВЧ-структуры с электрически управляемыми характеристиками разрешенных и запрещенных зон при уменьшенных прямых потерях.
Техническим результатом изобретения является снижение прямых потерь, а также расширение функциональных возможностей, связанных с:
- созданием в запрещенной (разрешенной) зоне резонансной моды колебаний (резонансной особенности);
- возможностью «электрического» управления резонансной модой колебаний.
Поставленная задача достигается тем, что в волноводной структуре с разрешенными и запрещенными зонами, содержащей диафрагму с рамочными элементами связи, расположенными по обе стороны диафрагмы, и полупроводниковый элемент с электрически управляемой проводимостью, согласно решению по крайней мере в один рамочный элемент введена по крайней мере одна неоднородность типа «штырь с зазором», в зазор одной из которых помещен полупроводниковый элемент с электрически управляемой проводимостью.
Сущность изобретения заключается в том, что:
- создание в запрещенной (разрешенной) зоне резонансной моды колебаний (резонансной особенности) обеспечивается введением неоднородностей типа «штырь с зазором» в структуру на основе диафрагмы и системы связанных рамочных элементов;
- управление резонансной особенностью осуществляется изменением величины тока, протекающего через полупроводниковую n-i-p-i-n-структуру, помещенную в зазор между штырем и рамочным элементом.
Оригинальность данного изобретения заключается в следующем:
- в качестве неоднородностей используются конструкции типа «штырь с зазором», изготовленные из медной проволоки диаметром 1 мм;
- в качестве управляющего элемента используется n-i-p-i-n-структура, помещенная в зазор между штырем и рамочным элементом.
Устройство поясняется чертежами:
на фиг. 1 представлен общий вид волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием запрещенной зоны;
на фиг. 2 а представлены амплитудно-частотные зависимости коэффициента отражения (кривая 1) и коэффициента прохождения (кривая 2) СВЧ-элемента на основе диафрагмы и системы связанных рамочных элементов, не содержащей неоднородности;
на фиг. 2 б представлены амплитудно-частотные зависимости коэффициента отражения (кривая 1) и коэффициента прохождения (кривая 2) СВЧ-элемента на основе диафрагмы и системы связанных рамочных элементов, содержащей неоднородности типа «штырь с зазором»;
на фиг. 3 представлены амплитудно-частотные характеристики коэффициента отражения вблизи пика пропускания запрещенной зоны СВЧ-элемента;
на фиг. 4 представлен общий вид волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием разрешенной зоны;
на фиг. 5 представлены амплитудно-частотные характеристики коэффициента прохождения исследуемого СВЧ-элемента в диапазоне частот 8-12 ГГц;
где
1 - отрезок волновода сечением 23 мм × 10 мм;
2 - металлическая диафрагма толщиной 0.3 мм;
3 - отверстие в диафрагме (диаметром 3.5 мм);
4 - рамочный элемент, изготовленный из медной проволоки диаметром 1 мм;
5 - неоднородность типа «штырь с зазором»;
6 - неоднородность типа «штырь с зазором»;
7 - неоднородность типа «штырь с зазором»;
8 - полупроводниковая n-i-p-i-n-структура;
9 - частотная зависимость коэффициента отражения волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, не содержащей неоднородности;
10 - частотная зависимость коэффициента прохождения волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, не содержащей неоднородности;
11 - частотная зависимость коэффициента отражения волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, содержащей неоднородности типа «штырь с зазором»;
12 - частотная зависимость коэффициента прохождения волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, содержащей неоднородности типа «штырь с зазором»;
13 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=0 мА;
14 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=20 мА;
15 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=30 мА;
16 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=40 мА;
17 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=60 мА;
18 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=80 мА;
19 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=140 мА;
20 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=320 мА;
21 - отрезок волновода сечением 23 мм × 10 мм;
22 - металлическая диафрагма толщиной 0.3 мм;
23 - отверстие в диафрагме (диаметром 3.5 мм);
24 - рамочный элемент, изготовленный из медной проволоки диаметром 1 мм;
25 - неоднородность типа «штырь с зазором»;
26 - полупроводниковая n-i-p-i-n-структура;
27 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I= 0 мА;
28 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=1 мА;
29 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=3 мА;
30 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=10 мА;
31 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=40 мА;
32 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=60 мА;
33 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=190 мА;
34 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=300 мА.
Ниже представлен пример технической реализации волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием запрещенной зоны.
Общий вид волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием запрещенной зоны, представлен на фиг. 1.
В отрезке волновода 1 сечением 23 мм × 10 мм, перпендикулярно направлению распространения электромагнитного излучения, расположена металлическая диафрагма 2 толщиной 0.3 мм. Через отверстие 3 (диаметром 3.5 мм) в диафрагме 2 проходит рамочный элемент 4, изготовленный из медной проволоки диаметром 1 мм, обеспечивающий в определенном диапазоне частот передачу электромагнитного излучения из «одного» плеча волноведущей системы в «другое» и наоборот. Центр отверстия 3 находится на расстоянии 11.5 мм от узкой и 8.2 мм от широкой стенок волновода. Система связанных рамочных элементов 4 состоит из двух рамок, расположенных в волноводе по обе стороны от диафрагмы с отверстием, таким образом, что один конец рамок является общим, а свободные концы соединены с металлической мембраной 2. Размеры рамок определяют диапазоны частот (см. фиг. 2, а) разрешенных и запрещенных для передачи электромагнитного излучения через диафрагму.
Для создания запрещенной зоны размеры рамочных элементов выбирают кратными целому числу полуволн распространяющегося в волноводе электромагнитного излучения.
Для создания в запрещенной зоне исследуемой системы резонансной особенности в виде окна прозрачности (см. фиг. 2, б) вводятся неоднородности типа «штырь с зазором» (позиции 5-7 на фиг. 1), выполненные из медной проволоки диаметром 1 мм.
Контактные площадки прямоугольной формы, размером 2 мм × 1 мм каждая, напаивались на обе стороны зазора конструкции типа «штырь с зазором», расположенной на расстоянии 14 мм справа от плоскости диафрагмы. Полупроводниковая n-i-p-i-n-структура (позиция 8 на фиг. 1) механически зажималась между контактными площадками (см. фиг. 1). Подключение источника питания к n-i-p-i-n-структуре осуществлялось с помощью тонкого проволочного вывода через отверстие в узкой стенке волновода.
Высокочастотные характеристики исследуемого СВЧ-элемента на основе диафрагмы и системы связанных рамочных элементов исследовались с помощью векторного анализатора цепей Agilent PNA-L Network Analyzer N5230A.
На фиг. 3 представлены амплитудно-частотные характеристики коэффициента отражения вблизи пика пропускания запрещенной зоны СВЧ-элемента для такой конструкции.
Таким образом, полученные зависимости показывают возможность эффективного управления характеристиками резонансной особенности в запрещенной зоне исследуемой структуры с использованием n-i-p-i-n-структуры.
Рассмотрим пример технической реализации волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием разрешенной зоны.
Общий вид волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием разрешенной зоны, представлен на фиг. 4.
В отрезке волновода 21 сечением 23 мм × 10 мм, перпендикулярно направлению распространения электромагнитного излучения, расположена металлическая диафрагма 22 толщиной 0.3 мм. Через отверстие 23 (диаметром 3.5 мм) в диафрагме 22 проходит рамочный элемент 24, изготовленный из медной проволоки диаметром 1 мм, обеспечивающий в определенном диапазоне частот передачу электромагнитного излучения из «одного» плеча волноведущей системы в «другое» и наоборот. Центр отверстия 3 находится на расстоянии 11.5 мм от узкой и 8.2 мм от широкой стенок волновода. Система связанных рамочных элементов 24 состоит из двух рамок, расположенных в волноводе по обе стороны от диафрагмы с отверстием, таким образом, что один конец рамок является общим, а свободные концы соединены с металлической мембраной 22. Размеры рамок определяют диапазоны частот, разрешенных и запрещенных для передачи электромагнитного излучения через диафрагму.
Для создания разрешенной зоны размеры рамочных элементов выбирают кратными целому нечетному числу λ/4 распространяющегося в волноводе электромагнитного излучения.
Для создания в запрещенной зоне исследуемой системы резонансной особенности в виде окна прозрачности вводится неоднородность типа «штырь с зазором» (позиция 25 на фиг. 4), выполненная из медной проволоки диаметром 1 мм.
Контактные площадки прямоугольной формы, размером 2 мм × 1 мм каждая, напаивались на обе стороны зазора конструкции типа «штырь с зазором», расположенной на расстоянии 20 мм справа от плоскости диафрагмы. Полупроводниковая n-i-p-i-n-структура механически зажималась между контактными площадками (см. фиг.4). Подключение источника питания к n-i-p-i-n-структуре осуществлялось с помощью тонкого проволочного вывода через отверстие в узкой стенке волновода.
Высокочастотные характеристики исследуемого СВЧ-элемента на основе диафрагмы и системы связанных рамочных элементов исследовались с помощью векторного анализатора цепей Agilent PNA-L Network Analyzer N5230A.
Реализованная конструкция обеспечивает возникновение разрешенной зоны в диапазоне частот 8.67-11.12 ГГц.
На фиг. 5 представлены амплитудно-частотные характеристики коэффициента прохождения вблизи пика запирания разрешенной зоны исследуемого СВЧ-элемента для различных значений тока, протекающего через n-i-p-i-n-структуру.
На вставке фиг. 5 представлены амплитудно-частотные характеристики коэффициента прохождения исследуемого СВЧ-элемента в диапазоне частот 8-12 ГГц.
Как следует из полученных результатов, изменение величины протекающего тока от 0.0 до 300.0 мА при изменении напряжения смещения от 0.0 В до 0.9 В n-i-p-i-n-структуры приводит к изменению коэффициента прохождения от -25,0 дБ до -1,5 дБ на частоте 9.644 ГГц, при этом положение пика запирания изменялось от 10.079 ГГц до 9.644 ГГц.
Таким образом, из полученных результатов следует, что динамический диапазон изменения коэффициента пропускания на резонансной частоте составляет 23.5 дБ. Рассматриваемый диапазон изменения удельной электропроводности соответствует электрическим характеристикам n-i-p-i-n-структуры (типа 2А505), используемой в эксперименте.

Claims (1)


  1. Волноводная структура с разрешенными и запрещенными зонами, содержащая диафрагму с рамочными элементами связи, расположенными по обе стороны диафрагмы, и полупроводниковый элемент с электрически управляемой проводимостью, отличающаяся тем, что по крайней мере в один рамочный элемент введена по крайней мере одна неоднородность типа «штырь с зазором», в зазор одной из которых помещен полупроводниковый элемент с электрически управляемой проводимостью.
RU2014109665/08A 2014-03-13 2014-03-13 Волноводная структура с разрешенными и запрещенными зонами RU2575995C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014109665/08A RU2575995C2 (ru) 2014-03-13 2014-03-13 Волноводная структура с разрешенными и запрещенными зонами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014109665/08A RU2575995C2 (ru) 2014-03-13 2014-03-13 Волноводная структура с разрешенными и запрещенными зонами

Publications (2)

Publication Number Publication Date
RU2014109665A RU2014109665A (ru) 2015-09-20
RU2575995C2 true RU2575995C2 (ru) 2016-02-27

Family

ID=54147548

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014109665/08A RU2575995C2 (ru) 2014-03-13 2014-03-13 Волноводная структура с разрешенными и запрещенными зонами

Country Status (1)

Country Link
RU (1) RU2575995C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698561C1 (ru) * 2018-12-03 2019-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" СВЧ фотонный кристалл

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2290715C2 (ru) * 2001-11-27 2006-12-27 Рэйтеон Компани Фазированный матричный источник электромагнитного излучения
RU2407114C1 (ru) * 2009-12-08 2010-12-20 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" Свч-фильтр с регулируемыми положением частотной области пропускания и величиной пропускания в этой области
US8426968B2 (en) * 2006-07-21 2013-04-23 Sagacious Investment Group L.L.C. High speed, high density, low power die interconnect system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2290715C2 (ru) * 2001-11-27 2006-12-27 Рэйтеон Компани Фазированный матричный источник электромагнитного излучения
US8426968B2 (en) * 2006-07-21 2013-04-23 Sagacious Investment Group L.L.C. High speed, high density, low power die interconnect system
RU2407114C1 (ru) * 2009-12-08 2010-12-20 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" Свч-фильтр с регулируемыми положением частотной области пропускания и величиной пропускания в этой области

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ЭЛЕКТРОНИКА СВЧ", Серия 1, 1975, N1, стр.35-37. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698561C1 (ru) * 2018-12-03 2019-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" СВЧ фотонный кристалл

Also Published As

Publication number Publication date
RU2014109665A (ru) 2015-09-20

Similar Documents

Publication Publication Date Title
Bisharat et al. Guiding waves along an infinitesimal line between impedance surfaces
US8294538B2 (en) Transmission line microwave apparatus including at least one non-reciprocal transmission line part between two parts
JP6449237B2 (ja) 非相反伝送線路装置
Mohammadi et al. A partially ferrite-filled rectangular waveguide with CRLH response and its application to a magnetically scannable antenna
RU2666969C1 (ru) Нелинейный делитель мощности свч сигнала на спиновых волнах
JP6489601B2 (ja) 非相反伝送線路装置とその測定方法
US2476034A (en) Conformal grating resonant cavity
Le Dai et al. An investigation of open-and short-ended resonators and their applications to bandpass filters
RU2575995C2 (ru) Волноводная структура с разрешенными и запрещенными зонами
RU2469446C1 (ru) Перестраиваемый метаматериальный фильтр терагерцевого диапазона
Vysotskii et al. Bragg resonances of magnetostatic surface waves in a ferrite-magnonic-crystal-dielectric-metal structure
KR101493328B1 (ko) 가변 금속필터판을 포함하는 도파관 필터
Silva et al. An efficient method based on equivalent-circuit modeling for analysis of frequency selective surfaces
Kim et al. Partial $ H $-Plane Filters With Multiple Transmission Zeros
JP6635546B2 (ja) 非相反メタマテリアル伝送線路装置及びアンテナ装置
KR101569474B1 (ko) 우수모드 부하바를 포함하는 계단형 오픈 루프 임피던스 공진기를 이용한 이중 대역 필터
RU2658113C1 (ru) СВЧ фотонный кристалл
US2972122A (en) Nonreciprocal wave transmission
Sharifian Mazraeh Mollaei et al. Broadband polarization rotator for arbitrary angles with enhanced substrate integrated waveguide cavities
Naser-Moghadasi Harmonic suppression of parallel coupled-line bandpass filters using defected microstrip structure
CN108258374B (zh) 基于电磁感应透明现象的端口可调的单向反射式衰减器
Belyaev et al. Frequency-selective properties of a microstrip filter with irregular dual-mode resonators
Saha et al. Study on resonant microstrip line coupled to a double-gap split ring resonator for various microwave filter applications
Kirilenko et al. A way to realize a multi-frequency polarization plane rotator
RU156173U1 (ru) Селективное устройство защиты на встречных стержнях

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210314