RU2575564C1 - Способ получения нанокапсул адаптогенов - Google Patents

Способ получения нанокапсул адаптогенов Download PDF

Info

Publication number
RU2575564C1
RU2575564C1 RU2014141024/15A RU2014141024A RU2575564C1 RU 2575564 C1 RU2575564 C1 RU 2575564C1 RU 2014141024/15 A RU2014141024/15 A RU 2014141024/15A RU 2014141024 A RU2014141024 A RU 2014141024A RU 2575564 C1 RU2575564 C1 RU 2575564C1
Authority
RU
Russia
Prior art keywords
nanocapsules
sodium alginate
adaptogen
shell
extract
Prior art date
Application number
RU2014141024/15A
Other languages
English (en)
Inventor
Александр Александрович Кролевец
Original Assignee
Александр Александрович Кролевец
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Application granted granted Critical
Publication of RU2575564C1 publication Critical patent/RU2575564C1/ru

Links

Images

Abstract

Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. В способе получения нанокапсул адаптогена в альгинате натрия в качестве оболочки нанокапсул используется альгинат натрия, в качестве ядра - экстракт адаптогена, выбранный из экстракта элеутерококка и экстракта женьшеня. Массовое соотношение ядро:оболочка составляет 1:3 или 5:1. Согласно способу по изобретению указанный адаптоген добавляют в суспензию альгината натрия в бензоле в присутствии препарата Е472с при перемешивании 1300 об/сек. Затем приливают петролейный эфир. Полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 2 ил., 4 пр.
.

Description

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.
Ранее были известны способы получения микрокапсул.
В пат. 2173140, МПК А61K 009/50, А61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662, МПК А61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул адаптогенов, отличающимся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - адаптогены (экстракты элеутерококка и женьшеня) при получении нанокапсул методом осаждения нерастворителем с применением петролейного эфира в качестве осадителя, процесс получения нанокапсул осуществляется без специального оборудования.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием петролейного эфира в качестве осадителя, а также использование альгината натрия в качестве оболочки частиц и адаптогенов - в качестве ядра.
Результатом предлагаемого метода является получение нанокапсул экстрактов элеутерококка и женьшеня.
Способ поясняется рис. 1 и рис. 2.
ПРИМЕР 1. Получение нанокапсул экстракта элеутерококка в альгинате натрия, соотношение ядро:оболочка 1:3
100 мг экстракта элеутерокка добавляют в суспензию альгината натрия в бензоле, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата E472c (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1300 об/сек. Далее приливают 2 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул экстракта женьшеня в альгинате натрия, соотношение ядро:оболочка 1:3
100 мг экстракта женьшеня добавляют в суспензию альгината натрия в бензоле, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1300 об/сек. Далее приливают 2 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул экстракта женьшеня в альгинате натрия, соотношение ядро:оболочка 5:1
500 мг экстракта женьшеня добавляют в суспензию альгината натрия в бензоле, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/сек. Далее приливают 6 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4. Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Claims (1)

  1. Способ получения нанокапсул адаптогена в альгинате натрия, характеризующийся тем, что в качестве оболочки нанокапсул используется альгинат натрия, в качестве ядра - экстракт адаптогена, выбранный из экстракта элеутерококка и экстракта женьшеня при массовом соотношении ядро:оболочка 1:3 или 5:1, при этом указанный адаптоген добавляют в суспензию альгината натрия в бензоле в присутствии препарата Е472с при перемешивании 1300 об/сек, далее приливают петролейный эфир, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре.
RU2014141024/15A 2014-10-10 Способ получения нанокапсул адаптогенов RU2575564C1 (ru)

Publications (1)

Publication Number Publication Date
RU2575564C1 true RU2575564C1 (ru) 2016-02-20

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU676316A1 (ru) * 1978-03-24 1979-07-30 Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко Способ получени микрокапсул
SU707510A3 (ru) * 1975-10-30 1979-12-30 Стауффер Кемикал Компани (Фирма) Способ получени микрокапсул
RU2098121C1 (ru) * 1990-02-13 1997-12-10 Такеда Кемикал Индастриз, Лтд. Микрокапсула для длительного высвобождения физиологически активного пептида
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU707510A3 (ru) * 1975-10-30 1979-12-30 Стауффер Кемикал Компани (Фирма) Способ получени микрокапсул
SU676316A1 (ru) * 1978-03-24 1979-07-30 Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко Способ получени микрокапсул
RU2098121C1 (ru) * 1990-02-13 1997-12-10 Такеда Кемикал Индастриз, Лтд. Микрокапсула для длительного высвобождения физиологически активного пептида
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СОЛОДОВНИК В.Д. "Микрокапсулирование", Москва, "Химия", 1980, стр.136-139. *

Similar Documents

Publication Publication Date Title
RU2557900C1 (ru) Способ получения нанокапсул витаминов
RU2562561C1 (ru) Способ получения нанокапсул витаминов в каррагинане
RU2605596C1 (ru) Способ получения нанокапсул витаминов группы в
RU2648816C2 (ru) Способ получения нанокапсул спирулина в альгинате натрия
RU2586612C1 (ru) Способ получения нанокапсул адаптогенов в ксантановой камеди
RU2613883C1 (ru) Способ получения нанокапсул розмарина в альгинате натрия
RU2590666C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием
RU2596479C1 (ru) Способ получения нанокапсул адаптогенов в каррагинане
RU2599484C1 (ru) Способ получения нанокапсул экстракта зеленого чая
RU2639091C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2624532C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в конжаковой камеди
RU2624533C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в каррагинане
RU2591798C1 (ru) Способ получения нанокапсул адаптогенов в конжаковой камеди
RU2596482C1 (ru) Способ получения нанокапсул адаптогенов
RU2642230C1 (ru) Способ получения нанокапсул кверцетина или дигидрокверцетина в каррагинане
RU2631886C2 (ru) Способ получения нанокапсул резвератрола в конжаковой камеди
RU2597153C1 (ru) Способ получения нанокапсул адаптогенов в геллановой камеди
RU2569734C2 (ru) Способ получения нанокапсул резвератрола в альгинате натрия
RU2565392C1 (ru) Способ получения нанокапсул витаминов в ксантановой камеди
RU2657748C1 (ru) Способ получения нанокапсул спирулина в конжаковой камеди
RU2642054C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2635763C2 (ru) Способ получения нанокапсул бетулина в каррагинане
RU2624530C1 (ru) Способ получения нанокапсул унаби в геллановой камеди
RU2609739C1 (ru) Способ получения нанокапсул резвератрола в геллановой камеди
RU2613881C1 (ru) Способ получения нанокапсул сухого экстракта шиповника