RU2575235C1 - Система управления наполнением двигателя с турбонаддувом - Google Patents

Система управления наполнением двигателя с турбонаддувом Download PDF

Info

Publication number
RU2575235C1
RU2575235C1 RU2014133572/06A RU2014133572A RU2575235C1 RU 2575235 C1 RU2575235 C1 RU 2575235C1 RU 2014133572/06 A RU2014133572/06 A RU 2014133572/06A RU 2014133572 A RU2014133572 A RU 2014133572A RU 2575235 C1 RU2575235 C1 RU 2575235C1
Authority
RU
Russia
Prior art keywords
engine
throttle
filling
control
signal
Prior art date
Application number
RU2014133572/06A
Other languages
English (en)
Inventor
Андрей Семенович Тюфяков
Константин Олегович Якушев
Original Assignee
Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации
Filing date
Publication date
Application filed by Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации filed Critical Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации
Application granted granted Critical
Publication of RU2575235C1 publication Critical patent/RU2575235C1/ru

Links

Images

Abstract

Изобретение может быть использовано в двигателях с турбонаддувом. Система управления наполнением двигателя с турбонаддувом содержит средства измерения массового расхода воздуха во впускном трубопроводе, средства измерения частоты вращения коленчатого вала двигателя, педаль управления двигателем с датчиком ее положения. Система содержит электропривод дроссельной заслонки с датчиком ее положения, подключенный к функциональному блоку (17) формирования сигнала управления положением дроссельной заслонки, связанному с функциональным блоком (16) определения величины рассогласования измеренной и табличной величин циклового расхода воздуха. Функциональный блок (17) формирования сигнала управления положением дроссельной заслонки подключен к функциональному блоку (13) формирования сигнала заданного базового положения дроссельной заслонки. Технический результат заключается в компенсации отрицательного влияния запаздывания изменения режима работы турбокомпрессора при разгоне на динамические свойства за счет повышения быстродействия и точности работы системы управления. 2 ил.

Description

Техническое решение относится к двигателям внутреннего сгорания. Оно касается наполнения воздухом цилиндров двигателя с турбонаддувом.
Работа двигателя с искровым зажиганием, оборудованного системой турбонаддува, на переменных режимах характеризуется заметным рассогласованием циклового наполнения по положению дроссельной заслонки по сравнению с аналогичной зависимостью на установившихся режимах. В результате этого для двигателя с искровым зажиганием и турбонаддувом при резком открытии дроссельной заслонки наблюдается характерное отставание роста крутящего момента от его величины, соответствующей установившемуся режиму работы двигателя.
Современные системы управления бензиновыми двигателями оборудованы электроприводом дроссельной заслонки, позволяющим обеспечить положение последней с учетом положения педали управления двигателем и частоты вращения коленчатого вала, что, в свою очередь, обеспечивает более гибкое управление двигателем с учетом динамики изменения указанных режимных факторов. При этом управление положением дроссельной заслонки может выполняться на основе так называемой модели крутящего момента, учитывающего изменение показателей двигателя не только на установившихся режимах, но также в периоды разгона и замедления. При этом кроме программного управления положением дроссельной заслонки с учетом динамических факторов, одновременно может производиться управление моментом зажигания и числом работающих цилиндров. Такая модель управления для двигателя без системы турбонаддува может быть реализована при относительно небольшом объеме исследовательских работ, поскольку наиболее значимые динамические факторы влияния на показатели двигателя связаны в основном с учетом момента инерции его вращающихся деталей. Влияние на цикловое наполнение динамических факторов в этом случае носит краткосрочный характер и не определяет в существенной степени показатели транспортного средства по его динамическим свойствам.
В отличие от этого, работа двигателя с искровым зажиганием, оборудованного системой турбонаддува, на переменных режимах характеризуется заметным временным рассогласованием циклового наполнения по положению педали управления двигателем по сравнению с аналогичной зависимостью для данной частоты вращения коленчатого вала на установившихся режимах. В результате этого для двигателя с искровым зажиганием и турбонаддувом при резком открытии дроссельной заслонки наблюдается характерное отставание роста крутящего момента от его величины, соответствующей установившемуся режиму работы двигателя. Это приводит к существенной задержке роста крутящего момента при разгоне по сравнению с его величиной на установившихся режимах. Учет динамического фактора влияния системы турбонаддува на величину циклового наполнения и крутящего момента может быть выполнен путем введения в модель крутящего момента весьма сложных расчетно-экспериментальных зависимостей, реализация которых требует больших материальных и временных затрат.
Известны различные системы управления наполнением двигателей внутреннего сгорания с турбонаддувом, представленные, например, в патентах №№1744285 и 2392457, выданных в РФ, которые способствуют снижению эффекта влияния запаздывания изменения режима работы турбокомпрессора при разгоне за счет использования различных аккумулирующих запас воздуха устройств.
Наиболее близким аналогом является система управления наполнением двигателя внутреннего сгорания с турбонаддувом, содержащая средства измерения массового расхода воздуха во впускном трубопроводе, средства измерения частоты вращения коленчатого вала двигателя, электропривод дроссельной заслонки с датчиком ее положения, педаль управления двигателем с датчиком ее положения. Такая система управления наполнением двигателя с турбонаддувом показана в патенте РФ №2167325. Входным сигналом такой системы управления является заданное значение наполнения цилиндра, которое рассчитывается из заданного значения крутящего момента на основе различных воздействий, таких как положение педали акселератора и др. Заданное значение наполнения цилиндра подается в точку объединения, в которой определяется его отклонение от фактического значения наполнения цилиндра. Регулятор наполнения по расхождению между заданным и фактическим значениями наполнения цилиндра формирует сигнал управления, выдаваемый на исполнительный привод дроссельной заслонки. Однако в такой системе управления наполнением двигателя с турбонаддувом, несмотря на наличие обратной связи по расходу воздуха, реализованной по рассогласованию заданного и реального циклового наполнения, не обеспечивается надлежащее быстродействие при управлении дроссельной заслонкой и наполнением цилиндров двигателя воздухом на неустановившихся режимах его работы по причине запаздывания изменения режима работы турбокомпрессора и относительно медленной реакции двигателя на управляющее воздействие водителя вследствие отсутствия возможности обеспечить первоначальное позиционирование дроссельной заслонки в исходном базовом положении для установившегося режима работы двигателя.
Решаемая задача - компенсация отрицательного влияния запаздывания изменения режима работы турбокомпрессора при разгоне на динамические свойства двигателя за счет повышения быстродействия и точности работы системы управления дроссельной заслонкой без использования в программном обеспечении электронного блока управления сложных расчетных моделей.
Решение данной задачи обеспечено тем, что в системе управления наполнением двигателя с турбонаддувом, содержащей средства измерения массового расхода воздуха во впускном трубопроводе, средства измерения частоты вращения коленчатого вала двигателя, электропривод дроссельной заслонки с датчиком ее положения, а также педаль управления двигателем с датчиком ее положения, электропривод дроссельной заслонки через функциональный блок формирования сигнала управления подключен к функциональным блокам определения заданного циклового наполнения, измеренного циклового наполнения, а также непосредственно подключен к функциональному блоку определения базовой величины положения дроссельной заслонки, определяемой положением педали управления двигателем и частотой вращения коленчатого вала.
В созданной системе управления наполнением двигателя с турбонаддувом при непосредственном управлении положением дроссельной заслонки в каждый момент времени одновременно принимается во внимание регистрируемое положение педали управления двигателем, частота вращения коленчатого вала и измеренная системой управления мгновенная величина расхода воздуха. При этом на режиме разгона двигателя без использования каких-либо математических моделей, путем использования простого PID-регулятора, производится автоматическая коррекция непосредственно задаваемого системой управления базового положения дроссельной заслонки, предварительно выбранного для обеспечения заданного крутящего момента на коленчатом валу двигателя на установившемся режиме путем назначения табличной величины требуемого для этого циклового наполнения с учетом положения педали управления двигателем и частоты вращения коленчатого вала.
При работе двигателя с установленным системой управления исходным положением дроссельной заслонки производится сравнение соответствующей этому положению табличной величины запроса циклового наполнения с величиной расчетного циклового наполнения, полученной в результате вычисления циклового наполнения с использованием результатов прямого измерения расхода воздуха. При появлении рассогласования между указанными величинами, например, в период разгона, когда турбокомпрессор работает в неустановившемся режиме, система управления осуществляет коррекцию непосредственно установленного исходного базового положения дроссельной заслонки в направлении устранения указанного рассогласования. При реализации управления дроссельной заслонкой обратная связь по расходу воздуха организована с использованием пропорционально-интегрально-дифференциального (ПИД) регулятора.
На фигуре 1 представлена созданная система управления наполнением двигателя с турбонаддувом.
На фигуре 2 показано устройство управления положением дроссельной заслонки, определяемым величиной рассогласования измеренной величины циклового расхода воздуха, поступающего в цилиндры двигателя, и табличной величины циклового расхода воздуха, определяемой положением педали управления двигателем и частотой вращения коленчатого вала, а также базовым положением дроссельной заслонки, определяемым положением педали управления двигателем и частотой вращения коленчатого вала.
Система управления наполнением двигателя с турбонаддувом, представленная на фигуре 1, содержит средства 1 измерения массового расхода воздуха во впускном трубопроводе 2, соединенном с компрессором 3, имеющим привод от турбины 4 турбокомпрессора. Кроме того, система управления содержит датчик 5 измерения частоты вращения коленчатого вала двигателя 6, электропривод 7 дроссельной заслонки 8 с датчиком 9 ее положения, педаль 10 управления двигателем с датчиком 11 ее положения. Электропривод 7 дроссельной заслонки 8 подключен к устройству 12 управления положением дроссельной заслонки, к входам которого подключены сигналы частоты вращения коленчатого вала, положения педали акселератора и массового расхода воздуха, на основе которых в содержащихся в составе данного блока функциональных блоков определяются значения базовой табличной величины положения дроссельной заслонки и соответствующей ей табличной величины циклового расхода воздуха, определяемые положением педали 10 управления двигателем и частотой вращения коленчатого вала 6, измеряемой датчиком 5, а также величина рассогласования величины циклового расхода воздуха, определенной на основе измерения частоты вращения коленчатого вала и массового расхода воздуха, поступающего в цилиндры двигателя, и табличной величины циклового расхода воздуха.
На фигуре 2 показано, что устройство 12 управления положением дроссельной заслонки формирует управляющее воздействие (сигнал TP) на электропривод дроссельной заслонки с учетом положения педали акселератора (сигнал АРР), величины массового расхода воздуха (сигнал MAF) от датчика массового расхода воздуха, а также частоты вращения коленчатого вала двигателя (сигнал RPM).
На основе анализа входного сигнала положения педали акселератора АРР и входного сигнала частоты вращения коленчатого вала двигателя RPM функциональным блоком 13 формирования сигнала заданного базового положения дроссельной заслонки устройства 12 управления положением дроссельной заслонки, формируется сигнал управления базовым положением дроссельной заслонки (ВТР), определяемый, например, данными матрицы BTP=f(APP, RPM).
Далее на основе сигнала управления базовым положением дроссельной заслонки (ВТР) и сигнала частоты вращения коленчатого вала двигателя (RPM) функциональным блоком 14 формирования сигнала табличной величины циклового наполнения устройства 12 управления положением дроссельной заслонки, формируется сигнал табличной величины циклового наполнения ([GBCL], определяемый величинами сигналов АРР и RPM.
На основе регистрируемого датчиком массового расхода воздуха сигнала расхода воздуха (MAF) и сигнала частоты вращения коленчатого вала (RPM) в функциональном блоке 15 формирования сигнала измеренного циклового расхода воздуха устройства 12 управления положением дроссельной заслонки, формируется сигнал измеренного циклового расхода воздуха (GBCL). Путем сравнения сигналов табличного ([GBCL] и измеренного (GBCL) цикловых наполнений в функциональном блоке 16 определения величины рассогласования измеренной и табличной величин циклового расхода воздуха формируется сигнал рассогласования расхода воздуха (ΔGBCL). На основе сигнала управления базовым положением дроссельной заслонки (ВТР) и сигнала рассогласования циклового наполнения (ΔGBCL) в функциональном блоке 17 формирования сигнала управления положением дроссельной заслонки, вычисляется величина суммарного выходного сигнала управления положением дроссельной заслонки (TP), поступающего на электропривод дроссельной заслонки и определяющего ее мгновенное положение. На установившемся режиме работы двигателя величина рассогласования циклового расхода воздуха (ΔGBCL) равна нулю, и величина сигнала управления положением дроссельной заслонки (TP) равна сигналу управления базовым положением дроссельной заслонки (ВТР), определенному в первом функциональном блоке 13 по матрице BTP=f(APP, RPM). На режиме разгона вследствие задержки роста частоты вращения вала турбины/нагнетателя турбокомпрессора величина ΔGBCL отлична от нуля, что приводит к появлению коррекции первоначально мгновенно установленного базового положения дроссельной заслонки в направлении увеличения угла ее открытия, что способствует быстродействию вышеописанной системы управления и, как следствие, к повышению динамических качеств двигателя за счет оптимизации управления цикловым наполнением.

Claims (1)

  1. Система управления наполнением двигателя с турбонаддувом, содержащая средства измерения массового расхода воздуха во впускном трубопроводе, средства измерения частоты вращения коленчатого вала двигателя, педаль управления двигателем с датчиком ее положения, электропривод дроссельной заслонки с датчиком ее положения, подключенный к функциональному блоку формирования сигнала управления положением дроссельной заслонки, связанному с функциональным блоком определения величины рассогласования измеренной и табличной величин циклового расхода воздуха, отличающаяся тем, что функциональный блок формирования сигнала управления положением дроссельной заслонки подключен к функциональному блоку формирования сигнала заданного базового положения дроссельной заслонки.
RU2014133572/06A 2014-08-15 Система управления наполнением двигателя с турбонаддувом RU2575235C1 (ru)

Publications (1)

Publication Number Publication Date
RU2575235C1 true RU2575235C1 (ru) 2016-02-20

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2167325C2 (ru) * 1996-03-06 2001-05-20 Роберт Бош Гмбх Способ и устройство для управления мощностью или регулирования мощности двигателя внутреннего сгорания с наддувом
RU2212555C2 (ru) * 1997-09-10 2003-09-20 Роберт Бош Гмбх Способ и устройство управления силовым агрегатом транспортного средства
US6672060B1 (en) * 2002-07-30 2004-01-06 Ford Global Technologies, Llc Coordinated control of electronic throttle and variable geometry turbocharger in boosted stoichiometric spark ignition engines
US7529614B1 (en) * 2007-11-30 2009-05-05 Delphi Technologies, Inc. System and method for turbo compressor recirculation valve control
RU2392457C2 (ru) * 2005-02-24 2010-06-20 Кнорр-Бремзе Зюстеме Фюр Нутцфарцойге Гмбх Устройство для обеспечения приточным воздухом поршневого двигателя внутреннего сгорания с турбонаддувом и способ его эксплуатации

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2167325C2 (ru) * 1996-03-06 2001-05-20 Роберт Бош Гмбх Способ и устройство для управления мощностью или регулирования мощности двигателя внутреннего сгорания с наддувом
RU2212555C2 (ru) * 1997-09-10 2003-09-20 Роберт Бош Гмбх Способ и устройство управления силовым агрегатом транспортного средства
US6672060B1 (en) * 2002-07-30 2004-01-06 Ford Global Technologies, Llc Coordinated control of electronic throttle and variable geometry turbocharger in boosted stoichiometric spark ignition engines
RU2392457C2 (ru) * 2005-02-24 2010-06-20 Кнорр-Бремзе Зюстеме Фюр Нутцфарцойге Гмбх Устройство для обеспечения приточным воздухом поршневого двигателя внутреннего сгорания с турбонаддувом и способ его эксплуатации
US7529614B1 (en) * 2007-11-30 2009-05-05 Delphi Technologies, Inc. System and method for turbo compressor recirculation valve control

Similar Documents

Publication Publication Date Title
CN101435369B (zh) Rpm-转矩的转换控制
JP6012892B1 (ja) 内燃機関の制御装置及びその制御方法
JP5790882B2 (ja) 過給エンジンの制御装置
JP5940126B2 (ja) 過給機付き内燃機関の制御装置及び過給機付き内燃機関の制御方法
JP2012167636A (ja) エンジンの制御装置
US9938912B2 (en) Control device for internal combustion engine
US10221794B1 (en) Measurement, modeling, and estimation of scavenging airflow in an internal combustion engine
US8886440B2 (en) Method and system for reducing turbo lag in an engine
CN102213150B (zh) 在低怠速时使用曲轴转速传感器使能气缸平衡的方法和系统
US20130282259A1 (en) Control apparatus for internal combustion engine with supercharger
JP2015203402A (ja) 内燃機関のシリンダ吸入空気量推定装置および推定方法
JP5146619B2 (ja) 内燃機関の制御装置
US8360030B2 (en) Idle speed reduction systems and methods
JP2012225175A (ja) エンジン適合装置
RU2575235C1 (ru) Система управления наполнением двигателя с турбонаддувом
JP6004077B2 (ja) 吸入空気量推定装置及び吸入空気量推定方法
KR101090796B1 (ko) 내연기관의 실린더 급기량과 최대 흡기 밸브 리프트를 상관시키는 방법 및 장치
JP6468212B2 (ja) 内燃機関の制御装置
WO2011135730A1 (ja) 内燃機関システム制御装置
JP2008202461A (ja) 内燃機関の燃料噴射制御装置
JP5949450B2 (ja) 内燃機関の制御装置
JP2012188956A (ja) エンジンの制御装置
JP5861511B2 (ja) エンジンの制御装置
RU2459968C1 (ru) Способ регулирования мощности двигателя внутреннего сгорания
JP5428914B2 (ja) 車両の制御装置