RU2574264C1 - Способ получения порошка фторида стронция, активированного фторидом неодима, для лазерной керамики - Google Patents
Способ получения порошка фторида стронция, активированного фторидом неодима, для лазерной керамики Download PDFInfo
- Publication number
- RU2574264C1 RU2574264C1 RU2014150470/05A RU2014150470A RU2574264C1 RU 2574264 C1 RU2574264 C1 RU 2574264C1 RU 2014150470/05 A RU2014150470/05 A RU 2014150470/05A RU 2014150470 A RU2014150470 A RU 2014150470A RU 2574264 C1 RU2574264 C1 RU 2574264C1
- Authority
- RU
- Russia
- Prior art keywords
- fluoride
- neodymium
- strontium
- solution
- activated
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 31
- FVRNDBHWWSPNOM-UHFFFAOYSA-L Strontium fluoride Chemical compound [F-].[F-].[Sr+2] FVRNDBHWWSPNOM-UHFFFAOYSA-L 0.000 title claims abstract description 22
- 229910001637 strontium fluoride Inorganic materials 0.000 title claims abstract description 22
- XRADHEAKQRNYQQ-UHFFFAOYSA-K trifluoroneodymium Chemical compound F[Nd](F)F XRADHEAKQRNYQQ-UHFFFAOYSA-K 0.000 title claims abstract description 19
- 239000000919 ceramic Substances 0.000 title claims description 12
- LDDQLRUQCUTJBB-UHFFFAOYSA-N Ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- KRHYYFGTRYWZRS-UHFFFAOYSA-N HF Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 15
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 14
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims abstract description 12
- DHEQXMRUPNDRPG-UHFFFAOYSA-N Strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 claims abstract description 11
- 230000003993 interaction Effects 0.000 claims abstract description 10
- CFYGEIAZMVFFDE-UHFFFAOYSA-N neodymium(3+);trinitrate Chemical compound [Nd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CFYGEIAZMVFFDE-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims abstract description 5
- 239000002244 precipitate Substances 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000005406 washing Methods 0.000 claims description 5
- -1 neodymium ions Chemical class 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N Neodymium Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 abstract description 11
- 239000000126 substance Substances 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 5
- 150000002500 ions Chemical class 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 28
- 239000000047 product Substances 0.000 description 13
- WUKWITHWXAAZEY-UHFFFAOYSA-L Calcium fluoride Chemical group [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 11
- 239000006104 solid solution Substances 0.000 description 10
- 239000012467 final product Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-M fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 6
- 150000002222 fluorine compounds Chemical class 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000002194 synthesizing Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000005712 crystallization Effects 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 239000011147 inorganic material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000003287 optical Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000875 corresponding Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N Diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- 238000007696 Kjeldahl method Methods 0.000 description 2
- 229910017855 NH 4 F Inorganic materials 0.000 description 2
- 238000004125 X-ray microanalysis Methods 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 239000011858 nanopowder Substances 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000003595 spectral Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000036698 Distribution coefficient Effects 0.000 description 1
- 229910003205 Nd(NO3)3·6H2O Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OPCMAZHMYZRPID-UHFFFAOYSA-J Potassium tetraiodomercurate(II) Chemical compound [K+].[K+].I[Hg-2](I)(I)I OPCMAZHMYZRPID-UHFFFAOYSA-J 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012497 inhomogeneous sample Substances 0.000 description 1
- 238000009114 investigational therapy Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000320 mechanical mixture Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000877 morphologic Effects 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000001681 protective Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001427 strontium ion Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Abstract
Изобретение может быть использовано при изготовлении сырья для горячего прессования фторидной лазерной керамики. Способ получения порошка фторида стронция, активированного фторидом неодима, включает взаимодействие раствора фторида аммония с раствором, содержащим нитрат стронция и нитрат неодима. Полученный садок отделяют, промывают, сушат и подвергают термической обработке. Используют раствор, содержащий ионы стронция и неодима при их мольном соотношении от 0,997:0,003 до 0,98:0,02, соответственно. Фторид аммония берут с избытком от стехиометрии 100-120%. Термическую обработку высушенного осадка проводят в две стадии. Первую стадию проводят при температуре 200-250°C в течение 0,5-1 часа со скоростью нагрева 5-7 град/мин, вторую - при 550-600°C со скоростью нагрева 10-15 град/мин в атмосфере выделяющегося фтористого водорода в течение 2-3 часов. Изобретение позволяет получить тонкодисперсный безводный порошок фторида стронция, активированного фторидом неодима, с однородным химическим и фазовым составом и выходом продукта 92,3-97,5%. 9 ил., 3 табл., 6 пр.
Description
Изобретение относится к области синтеза неорганических материалов, в частности к получению фторидов щелочноземельных и редкоземельных металлов, которые могут быть использованы в качестве исходного сырья для процесса горячего прессования фторидной лазерной керамики. Изобретение может быть использовано для изготовления твердотельных лазеров с диодной накачкой высокой мощности.
На монокристаллах SrF, активированных Nd, получена лазерная генерация, что позволило использовать их для создания активных элементов лазеров с диодной накачкой (Kaminskii А.А. Laser Crystals. Their physics and properties. // (Berlin: Springer-Verlag). - 1981. - P. 256; Кариес Ю.Е., Феофилов П.П. Поглощение, люминесценция и лазерная генерация неодима в кристалле SrF2. // Оптика и спектроскопия. - 1963. - Т. 14. - С. 89-90.; Каминский А.А., Ломонов В.А. Стимулированное излучение твердых растворов типа M(1-x)Nd(x)F(2+x) со структурой флюорита. // Неорганические материалы. - 1984. - Т. 20. - №12. - С. 1799-1801.; Payne S.A., Caird J.A., Chase L.L., Smith L.K., Nielsen N.D., Krupke W.F. Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts. // J. Optical Society of America B. - 1991. - V. 8. - Issue 4. - P. 726-740.;. Alimov O.K., Basiev T.T., Doroshenko M.E., Fedorov P.P., Konyushkin V.A., Nakladov A.N., Osiko V.V. Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride single crystal. // Optical Materials. - 2012. - V. 34. - Issue 5. - P. 799-802). Коэффициент распределения Nd при кристаллизации расплава существенно отличается от единицы (k0=1,74), что приводит к потере устойчивости фронтом кристаллизации и неоднородному распределению Nd по объему кристалла. (Delbove F., Lallemand-Chatain. Determination cryometrique a la limite de dilution infine des coefficients de distribution entre solution solide et solution ignee fondue, des ions trivalent des terres rares dissons dans les fluorures alcalino-terreux. // C.R. Acad. Sci. - 1970. - V. 270. - P. 964-966.; Kuznetsov S.V., Fedorov P.P. Morphological Stability of Solid-Liquid Interface during Melt Crystallization of Solid Solutions M1-xRxF2+x. // Inorganic Materials. - 2008. - V. 44. - №13. - P. 1434-1458).
Альтернативой кристаллам является лазерная керамика, генерационные (Basiev Т.Т., Doroshenko М.Е., Konyushkin V.A., Osiko V.V. SrF2··Nd3+ laser fluoride ceramics. // Optics Letters. - 2010. - V. 35. - Issue 23. - P. 4009-4011) и механические (Fedorov P.P. Fluoride laser ceramics. In: Handbook on solid-state lasers: materials, systems and applications. Ed. by B. Denker and E. Shklovsky. // Oxford Cambridge Philadelphia New Delhi, Woodhead Publishing Limited, - UK. - 2013. - P. 82-109) характеристики которой лучше, чем у монокристаллов. Данные образцы фторидной лазерной керамики были получены методом горячего формования монокристаллов. Лазерная керамика предпочтительнее монокристаллов благодаря ее высокой степени оптической однородности, обусловленной гомогенным распределением активатора.
Попытки получения оптически однородной легированной керамики методом горячего прессования из механической смеси компонентов высококачественных порошков привели к получению оптически неоднородных образцов. (Федоров П.П., Осико В.В., Басиев Т.Т., Орловский Ю.В., Дукельский К.В., Миронов И.А., Демиденко В.А., Смирнов А.Н. Оптическая фторидная нанокерамика. // Российские нанотехнологии. - 2007. - Т. 2. - №5-6. - С. 95-105). В связи с этим, при получении керамики методом горячего прессования необходимо использовать в качестве исходной шихты однофазные порошки твердых растворов заданного состава.
Известен способ получения высокочистого фторида стронция, включающий взаимодействие раствора фтороводородной кислоты и раствора нитрата стронция, прошедшего предварительную очистку. Полученный таким образом фторид стронция применяется в качестве исходного сырья для оптической керамики, оптического стекловарения, производства лазерных материалов (RU 2424189, C01F 11/22, 2009). Однако, данный метод не был апробирован для синтеза образцов твердых растворов на основе фторида стронция, легированного РЗЭ.
Известен способ получения нанопорошков фторидов щелочноземельных и редкоземельных металлов действием газообразного фтористого водорода на их соединения при нагревании до температуры 150-200°C в течение 1-2 часов (RU 2328448, C01F 17/00, 2008). Применение безводных процессов позволяет получать фториды с минимальным содержанием кислорода в них, но они предназначены только для синтеза индивидуальных фторидов.
Известны способы получения соосаждением из водных растворов порошков фторидов и оксифторидов щелочноземельных и редкоземельных элементов смешанного состава (EP 1728763, C01F 17/00, 2006; EP 1942172, C09K 11/85, 2008; US 2010/0012898, С09K 11/61, 2010; US 8506844, С09K 11/61; US 7901593, С09K 11/61; US 7625503, C09K 11/61). Однако, они дают продукты, содержащие адсорбированную воду, трудно удаляемую из осадков.
Известен способ получения наноразмерных частиц твердых растворов фторидов M1-xRxF2+x, где M=Ca, Sr, R=Er, Yb, Ce, Nd, согласно которому осуществляют соосаждение из кислых растворов соответствующих солей раствором фтороводородной кислоты с кристаллизацией продукта в кубической сингонии, структурном типе флюорита (Кузнецов С.В., Яроцкая И.В., Федоров П.П., Воронов В.В., Лаврищев С.В., Басиев Т.Т., Осико В.В. Получение нанопорошков твердых растворов M1-xRxF2+x (M=Ca, Sr, Ba; R=Ce, Nd, Er, Yb). // Ж. Неорганической химии. - 2007. - Т. 52. - №3. - С. 364-369). Однако получение однофазного твердого раствора фторида Sr1-xNdxF2+x требует более 20-кратного избытка фтороводородной кислоты. Если требование избытка плавиковой кислоты не соблюдается, то в результате получается двухфазный образец из твердого раствора на основе фторида стронция и нитрата стронция, но после дополнительной двукратной промывки полученного осадка, образец становится однофазным.
Наиболее близким к предлагаемому техническому решению является способ синтеза однофазного порошка Sr1-xNdxF2+x, включающий смешивание фторирующего соединения (фторида аммония или фтороводородной кислоты, взятых с 10% избытком от стехиометрически необходимого количества) с раствором, содержащим нитраты стронция и неодима при их мольном соотношении, равном от 0,995:0,005 до 0,990:0,010 соответственно, с получением осадка, его промывку и сушку. (Лугинина А.А., Федоров П.П., Кузнецов С.В., Маякова М.Н., Осико В.В., Иванов В.К., Баранчиков А.Е. Синтез ультрадисперсных порошков Sr1-xNdxF2+x со структурой флюорита. // Неорганические материалы. - 2012, - Т. 48, - №5, - С. 617-624).
Однако, как видно из описания способа-прототипа, он не обеспечивает полное обезвоживание получаемого порошка и не предотвращает пирогидролиз продукта, поскольку термообработка его проводится путем нагревания на воздухе, без защитной фторирующей атмосферы. Кроме того, невысокая температура термообработки не обеспечивает удаления углеродных примесей. Перечисленные недостатки в дальнейшем отрицательно сказываются на чистоте конечного продукта.
Задачей настоящего изобретения является разработка способа получения тонкодисперсного, гомогенного, безводного порошка фторида стронция, активированного фторидом неодима Sr1-xNdxF2+x (х=0,003÷0,02).
Для решения поставленной задачи предлагается новый способ получения порошка фторида стронция, активированного фторидом неодима, для лазерной керамики, включающий взаимодействие раствора фторида аммония с раствором, содержащим нитраты стронция и неодима при их мольном соотношении от 0,997:0,003 до 0,98:0,02, соответственно, с последующим отделением осадка, его промывкой, с последующим центрифугированием, сушкой и термической обработкой продукта.
Предпочтительно, при взаимодействии использовать в качестве фторирующего соединения раствор фторида аммония, взятого в 100-120% избытке от стехиометрического количества, соответствующего получению фторидов стронция и неодима.
Предпочтительно, промывать полученный осадок 0,5-1% раствором NH4F до полного удаления
по качественной реакции с дифениламином.
Предпочтительно, термическую обработку высушенного осадка проводить в две стадии, первую при температуре 200-250°C в течение 0,5-1 часа со скоростью нагрева 5-7 град/мин, вторую - при 550-600°C со скоростью нагрева 10-15 град/мин в атмосфере выделяющегося при его разложении газообразного фтористого водорода в течение 2-3 часов.
Способ отличается от способа-прототипа условиями проведения процесса. Как видно из описания способа, необходимыми условиями, обеспечивающими получение гомогенного, безводного порошка фторида стронция, активированного фторидом неодима, является использование при взаимодействии в качестве фторирующего соединения раствора фторида аммония, взятого в 100-120% избытке от стехиометрии, и ступенчатая термообработка высушенного осадка в атмосфере выделяющегося при его разложении газообразного фтористого водорода, заканчивающаяся при температуре 550-600°C в течение 2-3 часов.
Заявленный технологический процесс подтвержден опытным путем.
Изобретение иллюстрируется следующими рисунками и снимками: На рис. 1 представлены результаты рентгенофазового анализа (РФА) высушенных при 35°C порошков, полученных взаимодействием растворов нитрата стронция и неодима с фторидом аммония для 6 конкретных примеров, где 1, 2, 3, 4, 5 и 6 - номера примеров.
На рис. 2 представлен снимок сканирующей электронной микроскопии (СЭМ) высушенного при 35°C порошка, полученного взаимодействием растворов нитрата стронция и неодима с фторидом аммония по примеру №1.
На рис. 3 представлен СЭМ высушенного при 35°C порошка, полученного взаимодействием растворов нитрата стронция и неодима с фторидом аммония по примеру №5.
На рис. 4 представлена зависимость содержания
от концентрации Nd в твердом растворе для четырех конкретных примеров составов (примеры 1, 2, 3 и 4).
На рис. 5 представлен ИК-спектр конечного продукта для примера №4.
На рис. 6 представлены результаты РФА конечного продукта по примерам 1, 2, 3, 4, 5 и 6.
На рис. 7 представлен снимок СЭМ конечного продукта для примера №1.
На рис. 8 представлен снимок СЭМ конечного продукта для примера №5.
На рис. 9 представлен снимок с указанием результатов рентгеноспектрального микроанализа конечного продукта, изготовленного по примеру №1.
В таблице 1 приведены вычисленные в программе TOPAS параметры решетки полупродукта и продукта.
В таблице 2 приведены данные химического анализа на содержание
по методу Кьельдаля для различных конкретных примеров порошка фторида стронция, активированного фторидом неодима.
В таблице 3 приведены данные спектрально-эмиссионного анализа для различных конкретных примеров тонкодисперсного, гомогенного, безводного порошка фторида стронция, активированного фторидом неодима с низким содержанием активатора, изготовленного в соответствии с заявленным способом.
Использование фторида аммония в избытке 100-120% от стехиометрического количества обеспечивает получение из нитратных растворов тонкодисперсного осадка Sr1-x-yNdx(NH4)yF2+x-y кубической флюоритовой структуры, что подтверждается результатами рентгенофазового (рис. 1) и химического анализа (табл. 2, рис. 4). При этом предполагается, что внедрение ионов неодима и
в решетку фторида стронция осуществляется путем замещения ионов стронция. После ступенчатой термообработки полученных порошков химическим анализом по методу Къельдаля наличие
в конечном продукте не было обнаружено. Также это подтверждается результатами качественной реакции с реактивом Несслера. Это говорит о том, что твердый раствор Sr1-x-yNdx(NH4)yF2+x-y в процессе термообработки разлагается на Sr1-xNdxF2+x NH4F.
Из снимков сканирующей электронной микроскопии видно, что высушенные при 35°C порошка, полученные взаимодействием растворов нитрата стронция и неодима с фторидом аммония, состоят из частиц пластинчатой формы длиной 50÷200 нм и толщиной около 10 нм (рис. 2), и частиц в виде нано- и микрокубов размером 50÷350 нм (рис. 3).
В ИК-спектрах прокаленных порошков отсутствуют характеристические колебания (полосы) H2O при 1615-1640 и 3200-3600 см-1, что подтверждает отсутствие следов влаги (рис. 5). Термообработка при температуре 550-600°C также способствует удалению углеродсодержащих примесей за счет окисления кислородом воздуха (сгорания). В результате термообработки получается тонкодисперсный порошок фторида стронция, активированного фторидом неодима, кубической флюоритовой структуры, с частицами округлой формы размером 50÷200 нм и плохо ограненных нано- и микрокубов размером 50÷350 нм (рис. 7, 8). Выход продукта составляет 92.3-97.5%. По данным спектрально-эмиссионного анализа содержание фторида неодима вполне соответствует заданному количеству, введенному при синтезе (табл. 3). Методом рентгеноспектрального микроанализа подтверждена гомогенность порошка (рис. 9).
Технический эффект от осуществления данного способа заключается в получении тонкодисперсного, безводного порошка фторида стронция, активированного фторидом неодима, с однородным химическим и фазовым составом, с минимальным содержание кислородных и углеродных примесей, что подтверждается приведенными примерами.
Пример 1. Водный раствор нитрата стронция (0,15 М), приготовленный растворением в бидистиллированной воде реактива (х.ч.), заливали в реактор, выполненный из полипропилена и снабженный мешалкой из фторопласта. В реактор добавляли раствор нитрата неодима (0,15 М), полученный растворением шестиводного нитрата неодима Nd(NO3)3·6H2O (содержание основного вещества не менее 99,99%). Соотношение мольной концентрации стронция к неодиму в растворе составило 0,997:0,003. Растворы перемешивали в течение 15-20 минут. Осаждение вели путем одновременного покапельного добавления раствора фторида аммония, приготовленного растворением в бидистиллированной воде реактива (х.ч.) (0,30 М) в избытке 120% от стехиометрического количества и раствора нитратов в горячую бидистиллированную воду. По завершении этапа осаждения проводили перемешивание полученной суспензии в течение 3 ч. После отстаивания осадка маточный раствор декантировали, осадок промывали разбавленным 0,5-1% раствором фторида аммония с контролем чистоты отмывки от нитрат-ионов качественной реакцией с дифениламином. Отмытый осадок перегружали в чашку из фторопласта и высушивали на воздухе при 35°C под зеркальными лампами накаливания в течение 5-6 часов. Содержание
в высушенном осадке составляло 0,85 мол. % (табл. 2). Согласно данным рентгенофазового анализа был получен однофазный порошок, соответствующий гранецентрированной кубической решетке (структурный тип флюорита) с параметром решетки а=5,8007(2) Å (рис. 1, табл. 1). Высушенный полупродукт ступенчато прокаливали в платиновом тигле в две стадии: первую при температуре 250°C в течение 1 часа со скоростью нагрева 5 град/мин, а вторую при 550°C в течение 2 часов со скоростью нагрева 10 град/мин. Получен безводный порошок фторида стронция, активированного фторидом неодима, флюоритовой структуры с параметром решетки а=5,7996(3) Å, с содержанием неодима 0,29±0,01 мол. % (табл. 1, 3; рис. 6, 7). Методом рентгеноспектрального микроанализа подтверждена гомогенность порошка 0,29±0,09 мол. % (рис. 9). Выход продукта составил 97%.
Пример 2. Пример осуществлен аналогично примеру №1. Соотношение мольной концентрации стронция к неодиму составило 0,993:0,007. Избыток раствора фторида аммония составил 120% от стехиометрического количества. Содержание
в высушенном осадке составляло 0,91 мол. % (табл. 2). Получен безводный порошок фторида стронция, активированного фторидом неодима, флюоритовой структуры с параметром решетки a=5,7999(3) Å (табл. 1, рис. 6). Выход продукта составил 97,2%.
Пример 3. Пример осуществлен аналогично примеру №1. Соотношение мольной концентрации стронция к неодиму составило 0,985:0,015. Избыток раствора фторида аммония составил 120% от стехиометрического количества. Содержание
в высушенном осадке составляло 1,09 мол. % (табл. 2). Получен безводный порошок фторида стронция, активированного фторидом неодима, флюоритовой структуры с параметром решетки а=5.7996(3) Å, с содержанием неодима 1,78±0,03 мол. % (табл. 1, 3; рис. 6). Выход продукта составил 97,5%.
Пример 4. Пример осуществлен аналогично примеру №1. Соотношение мольной концентрации стронция к неодиму составило 0,98:0,02. Избыток раствора фторида аммония составил 120% от стехиометрического количества. Содержание
в высушенном осадке составляло 1,29 мол. % (табл. 2). Получен безводный порошок фторида стронция, активированного фторидом неодима, флюоритовой структуры с параметром решетки а=5,8001(3) Å (табл. 1, рис. 6). Выход продукта составил 97,1%.
Пример 5. Пример осуществлен аналогично примеру №2, только вместо 120% избытка использовали 114% избыток фторида аммония от стехиометрии. Содержание
в высушенном осадке составляло 3,10 мол. % (табл. 2). Получен безводный порошок фторида стронция, активированного фторидом неодима, флюоритовой структуры с параметром решетки а=5,7999(4) Å, с содержанием неодима 0,74±0,02 мол. % (табл. 1, 3; рис. 6, 8). Выход продукта составил 94,5%.
Пример 6. Пример осуществлен аналогично примеру №5, с той лишь разницей, что осаждение вели путем покапельного добавления раствора нитратов к раствору фторида аммония. Содержание
в высушенном осадке составляло 5,16 мол. % (табл. 2). Получен безводный порошок фторида стронция, активированного фторидом неодима, флюоритовой структуры с параметром решетки а=5,8001(4) Å, с содержанием неодима 0,71±0,01 (табл. 1, 3; рис. 6). Выход продукта составил 92,3%.
Claims (1)
- Способ получения порошка фторида стронция, активированного фторидом неодима, для лазерной керамики, включающий взаимодействие раствора фторида аммония с раствором, содержащим нитрат стронция и нитрат неодима, с последующим отделением осадка, его промывкой, сушкой и термической обработкой, отличающийся тем, что для взаимодействия используют раствор, содержащий ионы стронция и неодима при их мольном соотношении от 0,997:0,003 до 0,98:0,02, соответственно, фторид аммония берут с избытком от стехиометрии 100-120%, термическую обработку высушенного осадка проводят в две стадии, из которых первую проводят при температуре 200-250°C в течение 0,5-1 часа со скоростью нагрева 5-7 град/мин, вторую - при 550-600°C со скоростью нагрева 10-15 град/мин в атмосфере выделяющегося при его разложении газообразного фтористого водорода в течение 2-3 часов.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2574264C1 true RU2574264C1 (ru) | 2016-02-10 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111304469A (zh) * | 2020-03-05 | 2020-06-19 | 赣州嘉源新材料有限公司 | 一种高分散性超细氧化钕的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU632653A1 (ru) * | 1976-02-16 | 1978-11-15 | Предприятие П/Я Р-6681 | Способ получени фторидов щелочно-земельных металлов |
DE102006017582A1 (de) * | 2006-04-13 | 2007-10-25 | Humboldt-Universität Zu Berlin | Verfahren zur Herstellung von Metallfluorid-Solen und -Gelen |
EP1884553A2 (en) * | 2006-07-31 | 2008-02-06 | E.I.Du pont de nemours and company | Novel rare-earth doped fluorides and process for preparing |
RU2328448C1 (ru) * | 2006-12-06 | 2008-07-10 | ФГУП "Всероссийский научно-исследовательский институт химической технологии" | Способ получения фторидов металлов |
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU632653A1 (ru) * | 1976-02-16 | 1978-11-15 | Предприятие П/Я Р-6681 | Способ получени фторидов щелочно-земельных металлов |
DE102006017582A1 (de) * | 2006-04-13 | 2007-10-25 | Humboldt-Universität Zu Berlin | Verfahren zur Herstellung von Metallfluorid-Solen und -Gelen |
EP1884553A2 (en) * | 2006-07-31 | 2008-02-06 | E.I.Du pont de nemours and company | Novel rare-earth doped fluorides and process for preparing |
RU2328448C1 (ru) * | 2006-12-06 | 2008-07-10 | ФГУП "Всероссийский научно-исследовательский институт химической технологии" | Способ получения фторидов металлов |
Non-Patent Citations (2)
Title |
---|
КУЗНЕЦОВ С.В. и др., Получение нанопорошков твердых растворов M 1-x R x F 2+x (M=Ca, Sr, Ba; R=Ce, Nd, Er, Yb), Журнал Неорганической химии, 2007, т. 52, N 3, сс. 364-369. * |
ЛУГИНИНА А.А. и др., Синтез ультрадисперсных порошков Sr 1-x Nd x F 2+x со структурой флюорита, Неорганические материалы, 2012, т. 48, N 5, сс. 617-624. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111304469A (zh) * | 2020-03-05 | 2020-06-19 | 赣州嘉源新材料有限公司 | 一种高分散性超细氧化钕的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2557765B2 (ja) | セリウムランタンテルビウム混合燐酸塩及びその製造方法 | |
Mishra et al. | Preparation and characterization of upconversion luminescent Tm 3+/Yb 3+ co-doped Y 2 O 3 nanophosphor | |
Hakmeh et al. | Combustion synthesis and up-conversion luminescence of La2O2S: Er3+, Yb3+ nanophosphors | |
JP2008521745A (ja) | 窒化ガリウム粉末の合成のための改善された系および方法 | |
Cao et al. | Synthesis of potassium sodium niobate powders using an EDTA/citrate complexing sol–gel method | |
Rakov et al. | Er: SrF2 luminescent powders prepared by combustion synthesis | |
Luginina et al. | Preparation of barium monohydrofluoride BaF2· HF from nitrate aqueous solutions | |
Andrrev et al. | Synthesis and thermal stability of rare earth compounds REF3, REF3· nH2O and (H3O) RE3F10· nH2O (RE= Tb− Lu, Y), obtained from sulphide precursors | |
Zhang et al. | Energy transfer from Bi 3+ to Ho 3+ triggers brilliant single green light emission in LaNbTiO 6: Ho 3+, Bi 3+ phosphors | |
Cong et al. | Rare earth induced formation of δ-BiB 3 O 6 at ambient pressure with strong second harmonic generation | |
Li et al. | Rapid, morphology-controllable synthesis of GdOF: Ln 3+(Ln= Eu, Tb) crystals with multicolor-tunable luminescence properties | |
Dinic et al. | Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis | |
Luginina et al. | Synthesis of ultrafine fluorite Sr 1− x Nd x F 2+ x powders | |
Sobota et al. | Influence of synthesis route and grain size on structural and spectroscopic properties of cubic Nd3+-doped Y6MoO12 nano and micro-powders as optical materials | |
Ermakova et al. | Synthesis of SrF 2: Yb: Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH 4 F | |
Merkulov et al. | Vibrational and luminescent properties of polycrystalline zircon: effect of structural and impurity defects | |
RU2574264C1 (ru) | Способ получения порошка фторида стронция, активированного фторидом неодима, для лазерной керамики | |
Razumkova | Synthesis of NaYF4 compounds from sulfide precursors | |
Liu et al. | Controlled synthesis and photoluminescence behaviors of Lu2O2SO4: Eu3+ and Lu2O2S: Eu3+ phosphors | |
Ekmekçi et al. | Molten salt synthesis, visible and near-IR region spectral properties of europium or neodymium doped CoNb 2 O 6 columbite niobate | |
Mazur et al. | Formation of nanostructured Tb3+-doped yttrium aluminium garnets by the glycol route | |
CN110835533B (zh) | 一种氟化钙纳米颗粒的制备方法 | |
JP5484480B2 (ja) | 場合によりランタンを有するリン酸セリウムおよび/またはリン酸テルビウム、前記リン酸塩から生じる燐光体、ならびに該燐光体を製造する方法 | |
RU2704990C1 (ru) | Способ получения сложного литиевого танталата лантана и кальция | |
JP6201680B2 (ja) | 導電性酸化亜鉛粉末およびその製造方法 |