RU2570114C1 - Способ получения водорастворимых полимерных комплексов радиоизотопов - Google Patents

Способ получения водорастворимых полимерных комплексов радиоизотопов Download PDF

Info

Publication number
RU2570114C1
RU2570114C1 RU2014137416/04A RU2014137416A RU2570114C1 RU 2570114 C1 RU2570114 C1 RU 2570114C1 RU 2014137416/04 A RU2014137416/04 A RU 2014137416/04A RU 2014137416 A RU2014137416 A RU 2014137416A RU 2570114 C1 RU2570114 C1 RU 2570114C1
Authority
RU
Russia
Prior art keywords
water
mol
polymer
content
allylamine
Prior art date
Application number
RU2014137416/04A
Other languages
English (en)
Inventor
Евгений Фёдорович Панарин
Николай Иванович Горшков
Валерий Дмитриевич Красиков
Ольга Владимировна Назарова
Андрей Юрьевич Мурко
Юлия Игоревна Золотова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук
Priority to RU2014137416/04A priority Critical patent/RU2570114C1/ru
Application granted granted Critical
Publication of RU2570114C1 publication Critical patent/RU2570114C1/ru

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Изобретение относится к способу получения водорастворимых полимерных комплексов радиоизотопов и может быть использовано в области высокомолекулярных соединений и медицине. Способ получения водорастворимых полимерных комплексов радиоизотопов заключается в том, что вначале получают полимер носитель с привитым биологическим вектором и хелатными узлами для связывания радиометалла. Затем проводят процедуру радиомечения. Взаимодействие полимера носителя хелатных узлов с радиоактивным компонентом проводят в спирте, в воде или водно-спиртовом растворе в атмосфере инертного газа при температуре 70°С в течение 20 минут. В качестве полимера носителя используют водорастворимый сополимер N-винилпирролидона с N-аллиламином с молекулярной массой 5000-50000 Да, содержанием хелатных узлов в виде иминодиацетатных фрагментов иминодиуксусной кислоты 1-20 мол.%, содержанием винилпирролидона m=99-80 мол.% и аллиламина n=1-20 мол.%. В качестве радиоактивного компонента используют соединения переходных металлов и лантаноидов в виде следующего ряда [99mTc(СО)3]+, [188Re(CO)3]+, [161Tb(СО)3]+. Изобретение позволяет получить гибридные водорастворимые высокомолекулярные носители радиоизотопов с высоким выходом, не требуя дополнительной очистки конечного продукта. 4 ил., 1 табл., 5 пр.

Description

Предложение относится к области химии высокомолекулярных соединений и медицины и касается создания полимерных носителей для радиоизотопов (радиофармпрепаратов (РФП)) для диагностики новообразований организма методами однофотонной эмиссионной томографии (ОФЭКТ), позитронной эмиссионной томографии (ПЭТ) и лечения онкологических заболеваний (бета, гамма-терапия).
В настоящее время известны способы введения радиоизотопов в биоконъюгаты, представляющие собой низкомолекулярные и высокомолекулярные носители радиоизотопов [напр., US 20050169838, 2005; Patent 5102990, 1992]. В качестве носителей для радиоизотопов используются пептиды, стероиды, рецепторные лиганды, жирные кислоты, антитела и др. [например, US 7179444 B2 2009, ЕР 1797904, ЕР 1051980 А2, 1999].
Известны препараты «третьего поколения», а именно, биоконъюгаты, содержащие изотопы 188Re (терапия) и 99mTc (диагностика) [Alberto, et al., ″Journal of the American Chemical Society, vol.120, №31, Aug. 12, 1998, pp.7987-7988; US 20060165594, 2011]. В настоящее время в медицинской практике более 80% исследований, проводимых методом ОФЭКТ, приходится на долю радиоизотопа технеций-99m (99mTc) по причине его доступности (коммерческие генераторы), оптимальным излучательным характеристикам и достаточно большого периода полураспада (T1/2 6 ч, Eγ 142.7 кЭВ)) [М. Welch, M. Redwanly Handbook of Radiopharmaceuticals, 2003].
Известны биоконъюгаты на основе низкомолекулярных пептидов, например, препарат Octreoscan™ (Mallinkrodt) на основе циклического пептида октреотида с введенным изотопом индия-111 [ЕР 1872800, 1996].
Недостатком указанных аналогов является введение металлов в состав малых туморотропных молекул, что приводит к нарушению нативности биомолекулы и, соответственно, чувствительности метода ОФЭКТ и неконтролируемому накоплению радиоактивности в нецелевых органах и тканях организма.
Оправданной альтернативой являются макромолекулы с высокой молекулярной массой (белки, антитела), поскольку введение тяжелого металла не должно существенным образом отражаться на свойствах полученного конъюгата.
При этом известные близкие аналоги предлагаемой заявки представляют собой, в основном, немодифицированные полимерные структуры, такие как циклопептиды [US 7666392, 2010], макроциклические конъюгаты [US 20110293517, 2009], линейные полиэтиленоксиды [US 5583206, 1996], графтированные декстраны [Mol. Pharmaceutics, 2011, 8 (2), pp. 609-620], синтетические биологически активные полимеры [US 6352682, 2002; 20080064841, 2007; US 7951846, 2011].
Недостатками указанных аналогов являются: сложная процедура выделения, очистки и идентификации «холодных» макромолекул; неконтролируемое введение хелатных узлов для связывания радиоизотопов в макромолекулы по причине наличия большого количества свободных активных функциональных амино- и карбоксильных групп; крайне высокая стоимость конечных РФП.
Наиболее близким прототипом по технической сущности и достигаемому результату является конъюгированный сополимер биотина [US 5482698, 1996]. Способ получения сополимера заключается в следующем: а) синтез полимера носителя с привитым биологическим вектором и хелатными узлами для связывания радиометалла; б) процедура радиомечения; в) хроматографическая очистка конечного продукта с получением приемлемой радиохимической чистотой препарата.
Существенным недостатком известного способа является низкий радиохимический выход целевого продукта, очень сложная процедура очистки прекурсора и выделения целевого препарата.
Задачей и положительным результатом заявленного технического решения является разработка способа получения водорастворимых металл-полимерных комплексов радиоизотопов переходных металлов и лантаноидов для лечения и диагностики новообразований организма за счет использования в качестве полимеров-носителей (прекурсоров) синтетических водорастворимых поликатионов - сополимеров N-винилпирролидона (ВП) с с N-аллиламином (АА), содержащих в макромолекуле хелатные узлы в виде иминодиацетатных фрагментов (остатки иминодиуксусной кислоты - ИДУК) и образующих металл-полимерные комплексы.
В результате создаются гибридные водорастворимые системы с полифункциональной биологической активностью для диагностики и терапии новообразований, обладающих собственной иммуностимулирующей активностью (сополимеры ВП), несущие противоопухолевые агенты (радиоизотопы) и обладающие вектором целевого транспорта в злокачественные клетки (поликатионы, получающиеся в результате введения в систему ненасыщенных аминов).
Это позволяет получить синергический эффект при химиотерапии опухолей и снижение иммунодепрессантного эффекта.
Указанная задача и технический результат достигаются за счет того, что способ получения водорастворимых полимерных комплексов включает синтез полимера носителя с привитым биологическим вектором и хелатными узлами для связывания радиометалла и процедуры радиомечения, при этом в качестве полимера носителя используют водорастворимый сополимер N-винилпирролидона с N-аллиламином и молекулярной массой 5000-50000 Да, содержанием хелатных узлов в виде иминодиацетатных фрагментов иминодиуксусной кислоты (ИДУК) 1-20 мол. %, введенных в макромолекулу путем алкилирования звеньев аминосодержащего сополимера монохлоруксусной кислотой в водном щелочном растворе с рН 8-10, содержанием винилпирролидона m=99-80 мол. % и n=1-20 мол. %, в качестве радиоактивного компонента используют соединения переходных металлов и лантаноидов в виде следующего ряда [99mTc(СО)3]+, [188Re(CO)3]+, [161Tb(CO)3]+, а взаимодействие полимера носителя хелатных узлов с радиоактивным компонентом проводят в спирте, в воде или водно-спиртовом растворе в атмосфере инертного газа при температуре 70°С и с концентрацией полимера 10 масс. % в течение 20 минут с получением радиоактивного металл-полимерного конъюгата в различных степенях окисления (+1÷+3) следующего строения:
Figure 00000001
На фиг. 1 представлены структурные формулы сополимеров N-винилпирролидон с N-аллиламином (ВП-АА) и N-винилпирролидон с N-виниламином (ВП-ВА);
на фиг. 2 - схема синтеза сополимеров-прекурсоров;
на фиг. 3 - хроматограмма конъюгата сополимера с трикарбонилтехнецием [99mTc(CO)3]+, полученным при pH=5.5;
на фиг. 4 - хроматограмма конъюгата сополимера с трикарбонилтехнецием [99mTc(CO)3]+, полученным при pH=8.0.
Поставленная задача решена также описываемым способом получения прекурсора, который включает: на первой стадии синтез сополимеров ВП-АА или N-винилпирролидона с N-виниламином (ВП-ВА); на второй стадии, введение в макромолекулу сополимера остатков иминодиуксусной кислоты (ИДУК) в виде иминодиацетатных фрагментов, путем алкилирования звеньев иминосодержащего сополимера монохлоруксусной кислоты в водном щелочном растворе с pH=8÷10; на третьей стадии связывание полученных хелатных иминодиацетатных групп сополимера с металлоорганическим фрагментом, несущим радиоселективную метку, например, с технецием-99m, причем ввод радиоизотопа осуществляется с использованием низковалентного металлорганического фрагмента трикарбонилтехнеция [99mTc(CO)3]+ в качестве предшественника по схеме:
Figure 00000002
Поставленная задача решается также путем использования сополимеров со строго заданными молекулярными массами (ММ), 5000-50000 Да и составом-содержанием звеньев ИДУК 1-20 мол.%.
Следует отметить, что в отличие от приведенных аналогов радиохимический синтез целевого полимерного препарата по предлагаемому способу позволяет достигать 90-95% конверсии исходного [99mTc(CO)3]+ в зависимости от pH и времени реакции и не требует дополнительной очистки конечного продукта, что является существенным преимуществом.
Излагаемая сущность данного способа раскрывается ниже на примерах его экспериментального осуществления.
Пример 1. Методика синтеза полимера-носителя (прекурсора) ВП-АА или ВП-ВА с последующим введением в макромолекулярную цепь хелатных групп - остатков иминодиуксусной кислоты (ИДУК).
Сополимеризацию проводили в атмосфере аргона при 60°C в этаноле в течение 48 ч. Массовая концентрация мономеров составляла 50 масс. %, концентрация инициатора АИБН (2,2 - динитрил азоизомасляной кислоты) - 1 масс. % от содержания мономера. Полимеры выделяли осаждением в диэтиловый эфир и очищали диализом на мембране с пределом исключения 1000 Да (Spectra/Por 7, USA) водным 2% раствором NaCl в течение 24 ч и водой также в течение 24 ч. Затем сополимеры подвергали лиофильной сушке.
Введение в состав сополимеров ВП-АА и ВП-ВА остатков иминодиуксусной кислоты осуществляли реакцией первичных аминогрупп сополимеров с монохлоруксусной кислотой (МХУК) в водном растворе при 90°C и pH 10.
К раствору 3,0 г сополимера ВП-АА (5,3 моль % звеньев АА, ММ=30000) в 10 мл воды добавили 0,556 г МХУК, мольное соотношение МХУК: звено амина - 4:1. С помощью 6 N раствора KОН pH реакционной смеси довели до 10,0. Реакцию проводили при 90°C в течение 12 часов. Затем смесь подвергали диализу против воды в течение 48 часов. Использовали диализные мембраны Spectra/Por 7 фирмы ″Spectrum Lab. Inc.″ (США), позволяющие удалять соединения с М≤1000. Сополимеры, содержащие 4,9 мол.% звеньев ИДУК, выделяли с помощью лиофильной сушки.
Состав полученных полимеров был подтвержден 1) данными УФ спектроскопии по поглощению комплекса первичных аминогрупп с 2,4,6-тринитробензолсульфоновой кислотой при λmax=420 нм, 2) данными потенциометрического титрования звеньев АА 0,1 N раствором HCl. Молекулярные массы (ММ) были определены методами вискозиметрии и эксклюзионной жидкостной хроматографии (ЭЖХ). Значения характеристической вязкости растворов полимеров [η] были определены в 0.1 М растворе ацетата натрия при 25°C в вискозиметре Уббелоде.
Реакцию свободных аминогрупп полимеров и монохлоруксусной кислоты проводили в водном растворе KОН. Содержание хелатных групп определяли по убыли свободных аминогрупп.
Примеры 2-5 выполнены в условиях примера 1. Полученные результаты приведены в Таблице 1.
Figure 00000003
Пример 2. Радиомечение полимерного носителя (прекурсора) трикарбонилом технеция [99mTc(CO)3]+. Проводили по оптимизированному протоколу.
Реакционный набор (кит) ″ISOLINK™″ производства (″TYCO - Mallincrodt″), состоящий из K2BH3CO2, фосфатного буфера и элюата T 99 m c O 4
Figure 00000004
(pH 5.5), нагревали при 150°C в условиях микроволновой активации (450 В, 15 с), после чего нейтрализовали до pH 6.5 фосфатным буфером. Полученный раствор разбавляли до 0,5 мл. К водному раствору ВП-АА-ИДУК (13000 Да) (С=10-4 М, 0,3 мл) добавляли 10 мкл разбавленного раствора [99mTc(CO)3]+ и нагревали при 70°C в течение 20 мин. Реакцию контролировали методом ВЭЖХ на ультракоротких CIM™ (GMA-EDMA) колонках BIASeparations (Austria) в изократическом режиме, элюент - 0,1% TFA, 0,3 мл/мин, детектирование - спектрофотометрическое (λn=210 нм) и радиометрическое (у-радиометрия).
Пример 3. Кит ″ISOLINK™″ производства (″TYCO - Mallincrodt″) нагревали при 150°C в условиях микроволновой активации (450 В, 15 с) с элюатом T 99 m c O 4
Figure 00000005
, после чего нейтрализовали до pH 6.5 фосфатным буфером. Полученный раствор разбавляли до 0,5 мл при pH 7. К водному раствору ВП-АА-ИДУК (9000 Да) (С=10-4 М, 0,3 мл) добавляли 10 мкл разбавленного раствора 99mТс(CO3) и нагревали при 70°C в течение 20 мин РХЧ-80%.
Пример 4. Кит ″ISOLINK™″ производства (″TYCO - Mallincrodt″) нагревали при 150°C в условиях микроволновой активации (450 В, 15 с) с элюатом T 99 m c O 4
Figure 00000005
, после чего нейтрализовали до pH 6.5 фосфатным буфером. Полученный раствор разбавляли до 0,5 мл при pH 8. К водному раствору ВП-АА-ИДУК (9000 Да) (С=10-4 М, 0,3 мл) добавляли 10 мкл разбавленного раствора 99mTc(CO3) и нагревали при 70°C в течение 20 мин РХЧ-90%.
Пример 5. Кит производства Mallinckrodt™ Кит ″ISOLINK™″ производства (″TYCO - Mallincrodt″) нагревали при 150°C в условиях микроволновой активации (450 В, 15 с) с элюатом T 99 m c O 4
Figure 00000005
, после чего нейтрализовали до pH 6.5 фосфатным буфером. Полученный раствор разбавляли до 0,5 мл при pH 5.5. К водному раствору ВП-АА-ИДУК (9000 Да) (С=10-4 М, 0,3 мл) добавляли 10 мкл разбавленного раствора 99mTc(CO3) и нагревали при 70°C в течение 20 мин. Радиохимическая чистота - 40%.
Таким образом, разработанные водорастворимые полимерные комплексы радиоизотопов на основе сополимеров N-винилпирролидона (ВП) с N-виниламином (ВА) или с N-аллиламином (АА) с хелатными узлами, содержащими остатки иминодиуксусной кислоты, и способ их получения позволяют создать новые гибридные радиофармпрепараты, обладающие комбинированным действием и не требующие сложных процедур выделения и очистки. Поэтому эти водорастворимые полимерные комплексы радиофармпрепаратов могут быть востребованы в медицине для диагностики новообразований организма методами однофотонной эмиссионной томографии (ОФЭКТ), позитронной эмиссионной томографии (ПЭТ) и лечения онкологических заболеваний (бета, гамма-терапия), - это свидетельствует о соответствии данного технического решения всем требуемым критериям изобретения, защищаемым Патентом.

Claims (1)

  1. Способ получения водорастворимых полимерных комплексов радиоизотопов, включающий синтез полимера носителя с привитым биологическим вектором и хелатными узлами для связывания радиометалла, процедуры радиомечения, отличающийся тем, что в качестве полимера носителя используют водорастворимый сополимер N-винилпирролидона с N-аллиламином и молекулярной массой 5000-50000 Да, содержанием хелатных узлов в виде иминодиацетатных фрагментов иминодиуксусной кислоты (ИДУК) 1-20 мол.%, введенных в макромолекулу путем алкилирования звеньев аминосодержащего сополимера монохлоруксусной кислотой в водном щелочном растворе с рН 8-10, содержанием винилпирролидона m=99-80 мол.% и аллиламина n=1-20 мол.%, при этом в качестве радиоактивного компонента используют соединения переходных металлов и лантаноидов в виде следующего ряда [99mTc(СО)3]+, [188Re(CO)3]+, [161Tb(СО)3]+, а взаимодействие полимера носителя хелатных узлов с радиоактивным компонентом проводят в спирте, в воде или водно-спиртовом растворе в атмосфере инертного газа при температуре 70°С и с концентрацией полимера 10 мас.% в течение 20 минут с получением радиоактивного металл-полимерного коньюгата в различных степенях окисления (+1÷+3) следующего строения:
    Figure 00000006
RU2014137416/04A 2014-09-17 2014-09-17 Способ получения водорастворимых полимерных комплексов радиоизотопов RU2570114C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014137416/04A RU2570114C1 (ru) 2014-09-17 2014-09-17 Способ получения водорастворимых полимерных комплексов радиоизотопов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014137416/04A RU2570114C1 (ru) 2014-09-17 2014-09-17 Способ получения водорастворимых полимерных комплексов радиоизотопов

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2013102768/04A Previously-Filed-Application RU2013102768A (ru) 2013-01-23 2013-01-23 Водорастворимые полимерные комплексы радиозотопов и способ их получения

Publications (1)

Publication Number Publication Date
RU2570114C1 true RU2570114C1 (ru) 2015-12-10

Family

ID=54846441

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014137416/04A RU2570114C1 (ru) 2014-09-17 2014-09-17 Способ получения водорастворимых полимерных комплексов радиоизотопов

Country Status (1)

Country Link
RU (1) RU2570114C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2641349C2 (ru) * 2016-05-18 2018-01-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Полидисперсная древесно-цементная смесь с наномодификатором
RU2665140C2 (ru) * 2016-05-31 2018-08-28 Акционерное общество "Ордена Трудового Красного Знамени научно-исследовательский физико-химический институт имени Л.Я. Карпова" Способ получения термочувствительного радиофармпрепарата

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2481856C2 (ru) * 2007-07-26 2013-05-20 Лаборатуар Сиклофарма Новые композиции на основе полисахаридов, привитых с помощью полиаминных или полисульфированных соединений

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2481856C2 (ru) * 2007-07-26 2013-05-20 Лаборатуар Сиклофарма Новые композиции на основе полисахаридов, привитых с помощью полиаминных или полисульфированных соединений

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2641349C2 (ru) * 2016-05-18 2018-01-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Полидисперсная древесно-цементная смесь с наномодификатором
RU2665140C2 (ru) * 2016-05-31 2018-08-28 Акционерное общество "Ордена Трудового Красного Знамени научно-исследовательский физико-химический институт имени Л.Я. Карпова" Способ получения термочувствительного радиофармпрепарата

Similar Documents

Publication Publication Date Title
Stéen et al. Trans-cyclooctene-functionalized peptobrushes with improved reaction kinetics of the tetrazine ligation for pretargeted nuclear imaging
Illy et al. Metal-chelating polymers by anionic ring-opening polymerization and their use in quantitative mass cytometry
JP5388355B2 (ja) タンパク質、ペプチドおよび他の分子の改善されたf−18標識化のための方法および組成物
Pearce et al. Development of a polymer theranostic for prostate cancer
CN110267982A (zh) 具有人源化靶向部分和/或经过优化的嵌合抗原受体相互作用结构域的嵌合抗原受体效应细胞开关以及其用途
Herth et al. 72/74As-labeling of HPMA based polymers for long-term in vivo PET imaging
CN104231069B (zh) 蛋白质‑高分子结合体及其制备方法
KR20040068363A (ko) 갈륨-68 및 갈륨-67로 제조한 라벨링 표적화제
CN109963596A (zh) 长效多特异性分子和相关方法
RU2570114C1 (ru) Способ получения водорастворимых полимерных комплексов радиоизотопов
Burridge et al. Bioconjugates–From a specialized past to a diverse future
Wharton et al. H4picoopa─ Robust Chelate for 225Ac/111In Theranostics
Salih et al. DFO-Km: A Modular Chelator as a New Chemical Tool for the Construction of Zirconium-89-Based Radiopharmaceuticals
Chen et al. Synthesis and characterization of oligomeric nido-carboranyl phosphate diester conjugates to antibody and antibody fragments for potential use in boron neutron capture therapy of solid tumors
Karczmarczyk et al. Does the number of bifunctional chelators conjugated to a mAb affect the biological activity of its radio-labeled counterpart? Discussion using the example of mAb against CD-20 labeled with 90Y or 177Lu
Huynh et al. Direct radiofluorination of a heat-sensitive antibody by Al–18 F complexation
Gorshkov et al. Synthesis of complexes of N-vinylpyrrolidone–vinylamine or N-vinylpyrrolidone–allylamine containing macrocyclic polyligand 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (DOTA) with gallium-68 isotope and estimation of their in vivo distribution
Čepa et al. Radiolabeling of the antibody IgG M75 for epitope of human carbonic anhydrase IX by 61Cu and 64Cu and its biological testing
RU2602502C2 (ru) Способ получения радиофармпрепаратов класса поли-n-виниламидов с металлами группы марганца
RU2588144C1 (ru) Способ получения синтетических металл-полимерных комплексов радиоизотопа галлия-68
CN112111269B (zh) 一种荧光和镥-177双标记生物分子及其制备方法与应用
Vettorato et al. A NEW PRODUCTION METHOD OF HIGH SPECIFIC ACTIVITY RADIONUCLIDES TOWARDS INNOVATIVE RADIOPHARMACEUTICALS: THE ISOLPHARM PROJECT
Gorshkov et al. Specific features of using ultrashort monolithic columns for analysis of biologically active synthetic polymers labeled with radioactive metal isotopes (99m Tc, 161 Tb, 68 Ga)
Gorshkov et al. Introduction of Re (CO) 3+/99mTc (CO) 3+ Organometallic Species into Vinylpyrrolidone-Allyliminodiacetate Copolymers
CA3150073C (en) New nucleophile-reactive sulfonated compounds for the (radio)labelling of (bio)molecules; precursors and conjugates thereof