RU2563050C1 - Смесительный теплообменник - Google Patents

Смесительный теплообменник Download PDF

Info

Publication number
RU2563050C1
RU2563050C1 RU2014113446/06A RU2014113446A RU2563050C1 RU 2563050 C1 RU2563050 C1 RU 2563050C1 RU 2014113446/06 A RU2014113446/06 A RU 2014113446/06A RU 2014113446 A RU2014113446 A RU 2014113446A RU 2563050 C1 RU2563050 C1 RU 2563050C1
Authority
RU
Russia
Prior art keywords
diameter
truncated cone
hole
chamber
nozzle insert
Prior art date
Application number
RU2014113446/06A
Other languages
English (en)
Inventor
Олег Савельевич Кочетов
Елена Сергеевна Бородина
Original Assignee
Олег Савельевич Кочетов
Елена Сергеевна Бородина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов, Елена Сергеевна Бородина filed Critical Олег Савельевич Кочетов
Priority to RU2014113446/06A priority Critical patent/RU2563050C1/ru
Application granted granted Critical
Publication of RU2563050C1 publication Critical patent/RU2563050C1/ru

Links

Images

Landscapes

  • Nozzles (AREA)

Abstract

Изобретение относится к смесительным теплообменным аппаратам. В смесительном теплообменнике каждая из форсунок системы подвода оросительной холодной воды содержит корпус с камерой завихрения и сопловый вкладыш, при этом корпус выполнен со впускным патрубком, имеющим отверстие, соосной с ним входной цилиндрической камеры, камеры завихрения, расположенной коаксиально по отношению к входной камере и выполненной в виде цилиндрического стакана, имеющего на боковой поверхности, по крайней мере, три тангенциально расположенных отверстия, оси которых расположены касательно по отношению к камере завихрения, т.е. имеет место многоканальный тангенциальный ввод, а соосно камере завихрения расположен сопловый вкладыш с внешним диаметром D1, внутри вкладыша выполнены последовательно расположенные и соосные друг другу и цилиндрической поверхности камеры завихрения три калиброванных отверстия: коническое отверстие с диаметром D нижнего основания усеченного конуса, центральное цилиндрическое отверстие диаметром d2 и выходное коническое отверстие с диаметром d3 нижнего основания усеченного конуса, при этом диаметр d2 центрального цилиндрического отверстия соплового вкладыша равен диаметру верхнего основания усеченного конуса конического отверстия и диаметру верхнего основания усеченного конуса выходного конического отверстия. Технический результат - повышение производительности процесса смесительного теплообмена в аппарате. 3 ил.

Description

Изобретение относится к смесительным теплообменным аппаратам.
Наиболее близким техническим решением к заявляемому объекту является техническое решение по патенту РФ №2488059, C02B 1/10, содержащее корпус, систему орошения с форсунками, подвод паровоздушной смеси, вентилятор (прототип).
Недостатком известного способа является сравнительно невысокая эффективность из-за невысокой степени распыла жидкости форсунками.
Технический результат - повышение производительности процесса смесительного теплообмена в аппарате.
Это достигается тем, что в смесительном теплообменнике, состоящем из сварного стального корпуса прямоугольного сечения, выполненного из нержавеющей стали, по высоте которого размещена планочная насадка с распределительными планками, расположенными под определенным углом к вертикальной оси аппарата, а в верхней части корпуса находится система подвода оросительной холодной воды с форсунками, подводящим трубопроводом и регулирующим клапаном, при этом стенки корпуса покрыты тепловой изоляцией, а нижняя секция теплообменника представляет собой сборник нагретой воды, в котором установлены трубки, предназначенные для отвода нагретой воды, регулятор уровня и переливная трубка, а для подвода паровоздушной смеси служит патрубок, установленный в нижней части корпуса, из которой осуществляется отвод горячей воды через трубки, запорный вентиль и обратный клапан, каждая из форсунок системы подвода оросительной холодной воды содержит корпус с камерой завихрения и сопловый вкладыш, при этом корпус выполнен со впускным патрубком, имеющим отверстие, соосной с ним входной цилиндрической камеры, камеры завихрения, расположенной коаксиально по отношению к входной камере и выполненной в виде цилиндрического стакана, имеющего на боковой поверхности, по крайней мере, три тангенциально расположенных отверстия, оси которых расположены касательно по отношению к камере завихрения, т.е. имеет место многоканальный тангенциальный ввод, а соосно камере завихрения расположен сопловый вкладыш с внешним диаметром D1, внутри вкладыша выполнены последовательно расположенные и соосные друг другу и цилиндрической поверхности камеры завихрения три калиброванных отверстия: коническое отверстие с диаметром D нижнего основания усеченного конуса, центральное цилиндрическое отверстие диаметром d2 и выходное коническое отверстие с диаметром d3 нижнего основания усеченного конуса, при этом диаметр d2 центрального цилиндрического отверстия соплового вкладыша равен диаметру верхнего основания усеченного конуса конического отверстия и диаметру верхнего основания усеченного конуса выходного конического отверстия.
На фиг.1 изображена схема смесительного теплообменника, на фиг.2 - схема форсунки системы подвода оросительной холодной воды, на фиг.3 - сечение А-А на фиг.2.
Смесительный теплообменник (фиг.1) состоит из сварного стального корпуса 1 прямоугольного сечения, выполненного из нержавеющей стали. По высоте теплообменника размещена планочная насадка с распределительными планками 2, расположенными под определенным углом к вертикальной оси аппарата, а в верхней части корпуса находится система подвода оросительной холодной воды с форсунками 4, подводящим трубопроводом 10 и регулирующим клапаном 9. Для доступа внутрь теплообменника одна из стенок каждой секции выполнена съемной, стенки теплообменника покрыты тепловой изоляцией (на чертеже не показано). Нижняя секция теплообменника представляет собой сборник 3 нагретой воды, в котором установлены трубки 5, предназначенные для отвода нагретой воды. В сборнике 3 нагретой воды установлен регулятор уровня 11 и переливная трубка 6. Для подвода паровоздушной смеси служит патрубок 7. Из нижней секции теплообменника осуществляется отвод горячей воды через трубки 5, запорный вентиль 8, обратный клапан 12.
Центробежная форсунка 4 (фиг.2 и 3) системы подвода оросительной холодной воды состоит из корпуса 13 со впускным патрубком 16, имеющим отверстие 15, соосной с ним входной цилиндрической камеры 21, камеры завихрения 23, расположенной коаксиально по отношению к входной камеры 21 и выполненной в виде цилиндрического стакана 14, имеющего на боковой поверхности, по крайней мере, три тангенциально расположенных отверстия 22, оси которых расположены касательно по отношению к камере завихрения 23, т.е. имеет место многоканальный тангенциальный ввод.
Соосно камере завихрения 23 расположен сопловый вкладыш 17 с внешним диаметром D1, выполненный из твердых материалов: карбида вольфрама, рубина, сапфира. Внутри вкладыша выполнены последовательно расположенные и соосные друг другу и цилиндрической поверхности камеры завихрения 23 три калиброванных отверстия: коническое отверстие 18 с диаметром D нижнего основания усеченного конуса, центральное цилиндрическое отверстие 19 диаметром d2 и выходное коническое отверстие 20 с диаметром d3 нижнего основания усеченного конуса. При этом диаметр d2 центрального цилиндрического отверстия 19 соплового вкладыша 17 равен диаметру верхнего основания усеченного конуса конического отверстия 18, а также при этом диаметр d2 центрального цилиндрического отверстия соплового вкладыша равен диаметру верхнего основания усеченного конуса конического отверстия 18 и диаметру верхнего основания усеченного конуса выходного конического отверстия 20.
Внутри вкладыша 17 выполнены последовательно расположенные и соосные друг другу и цилиндрической поверхности камеры завихрения три калиброванных отверстия: коническое отверстие с диаметром D нижнего основания усеченного конуса, центральное цилиндрическое отверстие 19 диаметром d2 и выходное коническое отверстие 20 с диаметром d3 нижнего основания усеченного конуса, при этом диаметр d2 центрального цилиндрического отверстия соплового вкладыша равен диаметру верхнего основания усеченного конуса конического отверстия 18 и диаметру верхнего основания усеченного конуса выходного конического отверстия 20.
Для работы форсунки в оптимальном режиме предусмотрены следующие соотношения ее параметров:
отношение диаметра d3 выходного конического отверстия 20 соплового вкладыша 17 к диаметру d2 центрального цилиндрического отверстия 19 лежит в оптимальном интервале величин: d3/d2=1,5÷2,5;
отношение внешнего диаметра D1 соплового вкладыша 17 к диаметру D нижнего основания усеченного конуса конического отверстия 18 вкладыша 17 лежит в оптимальном интервале величин: D1/D=1,2÷1,8.
Смесительный теплообменник работает следующим образом.
Паровоздушная смесь по воздуховоду 7 поступает в теплообменник, где отдает теплоту технической воде, а затем удаляется в атмосферу. С помощью форсунок 4, расположенных в верхней части теплообменника, разбрызгивается холодная вода, которая стекает вниз по распределительным планкам 2, дробясь на мелкие капли, и нагревается за счет теплообмена с паровоздушной смесью. Нагретая вода собирается в нижней части 3 теплообменника и затем по отводящему трубопроводу 5 направляется в технологическую цепочку на промывные цели. На трубопроводе 5 установлены запорный вентиль 8 и обратный клапан 12. Постоянный расход воды в теплообменнике поддерживается с помощью регулирующего клапана 9, установленного на подводящем трубопроводе 10. Регулирование расхода воды осуществляется регулятором уровня 11, подключенного в электрическую цепь управления приводом клапана (на чертеже не показано).
Жидкость подается по впускному отверстию 15, затем проходит во входную цилиндрическую камеру 21 и поступает по многоканальному тангенциальному вводу через отверстия 22 в камеру завихрения 23, выполненную в виде цилиндрического стакана 14. Вращающийся поток жидкости из камеры завихрения 23 проходит через калиброванное коническое отверстие 18 соплового вкладыша 17, центральное цилиндрическое отверстие 19 и выходное коническое отверстия 20 соплового вкладыша 17, в результате чего образуется факел распыленной жидкости, корневой угол которого определяется величиной угла при вершине конуса выходного конического отверстия 20 соплового вкладыша 17.
Предложенная конструкция широкофакельной форсунки с диаметром центрального цилиндрического отверстия 19, равным 9 мм, при рабочих давлениях жидкости 150…250 кПа обеспечивает угол раскрытия водяного факела до 150° и сохраняет устойчивость факела при давлении жидкости перед форсунками от 40 кПа и выше, при этом производительность форсунки зависит от давления жидкости на входе впускного отверстия.

Claims (1)

  1. Смесительный теплообменник, состоящий из сварного стального корпуса прямоугольного сечения, выполненного из нержавеющей стали, по высоте которого размещена планочная насадка с распределительными планками, расположенными под определенным углом к вертикальной оси аппарата, а в верхней части корпуса находится система подвода оросительной холодной воды с форсунками, подводящим трубопроводом и регулирующим клапаном, при этом стенки корпуса покрыты тепловой изоляцией, а нижняя секция теплообменника представляет собой сборник нагретой воды, в котором установлены трубки, предназначенные для отвода нагретой воды, регулятор уровня и переливная трубка, а для подвода паровоздушной смеси служит патрубок, установленный в нижней части корпуса, из которой осуществляется отвод горячей воды через трубки, запорный вентиль и обратный клапан, отличающийся тем, что каждая из форсунок системы подвода оросительной холодной воды содержит корпус с камерой завихрения и сопловый вкладыш, при этом корпус выполнен со впускным патрубком, имеющим отверстие, соосной с ним входной цилиндрической камеры, камеры завихрения, расположенной коаксиально по отношению к входной камере и выполненной в виде цилиндрического стакана, имеющего на боковой поверхности, по крайней мере, три тангенциально расположенных отверстия, оси которых расположены касательно по отношению к камере завихрения, т.е. имеет место многоканальный тангенциальный ввод, а соосно камере завихрения расположен сопловый вкладыш с внешним диаметром D1, внутри вкладыша выполнены последовательно расположенные и соосные друг другу и цилиндрической поверхности камеры завихрения три калиброванных отверстия: коническое отверстие с диаметром D нижнего основания усеченного конуса, центральное цилиндрическое отверстие диаметром d2 и выходное коническое отверстие с диаметром d3 нижнего основания усеченного конуса, при этом диаметр d2 центрального цилиндрического отверстия соплового вкладыша равен диаметру верхнего основания усеченного конуса конического отверстия и диаметру верхнего основания усеченного конуса выходного конического отверстия, при этом для работы системы подвода оросительной холодной воды в оптимальном режиме предусмотрены следующие соотношения параметров форсунки:
    - отношение диаметра d3 выходного конического отверстия соплового вкладыша к диаметру d2 центрального цилиндрического отверстия лежит в оптимальном интервале величин: d3/d2=1,5÷2,5;
    - отношение внешнего диаметра D1 соплового вкладыша к диаметру D нижнего основания усеченного конуса конического отверстия вкладыша лежит в оптимальном интервале величин: D1/D=1,2÷1,8.
RU2014113446/06A 2014-04-07 2014-04-07 Смесительный теплообменник RU2563050C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014113446/06A RU2563050C1 (ru) 2014-04-07 2014-04-07 Смесительный теплообменник

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014113446/06A RU2563050C1 (ru) 2014-04-07 2014-04-07 Смесительный теплообменник

Publications (1)

Publication Number Publication Date
RU2563050C1 true RU2563050C1 (ru) 2015-09-20

Family

ID=54147654

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014113446/06A RU2563050C1 (ru) 2014-04-07 2014-04-07 Смесительный теплообменник

Country Status (1)

Country Link
RU (1) RU2563050C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212685A (ja) * 1983-05-17 1984-12-01 Masahiko Izumi 気体冷却除水滴装置
CN2422609Y (zh) * 2000-02-03 2001-03-07 侯晓平 无声汽水混合加热箱
CN201141733Y (zh) * 2007-11-23 2008-10-29 山东科技大学 一种新型合成气复合洗涤冷却塔
RU2441708C1 (ru) * 2010-08-20 2012-02-10 Олег Савельевич Кочетов Центробежная широкофакельная форсунка
RU2488059C2 (ru) * 2011-08-30 2013-07-20 Олег Савельевич Кочетов Способ кочетова испарительного охлаждения воды
RU2493521C1 (ru) * 2012-04-10 2013-09-20 Олег Савельевич Кочетов Система кочетова оборотного водоснабжения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212685A (ja) * 1983-05-17 1984-12-01 Masahiko Izumi 気体冷却除水滴装置
CN2422609Y (zh) * 2000-02-03 2001-03-07 侯晓平 无声汽水混合加热箱
CN201141733Y (zh) * 2007-11-23 2008-10-29 山东科技大学 一种新型合成气复合洗涤冷却塔
RU2441708C1 (ru) * 2010-08-20 2012-02-10 Олег Савельевич Кочетов Центробежная широкофакельная форсунка
RU2488059C2 (ru) * 2011-08-30 2013-07-20 Олег Савельевич Кочетов Способ кочетова испарительного охлаждения воды
RU2493521C1 (ru) * 2012-04-10 2013-09-20 Олег Савельевич Кочетов Система кочетова оборотного водоснабжения

Similar Documents

Publication Publication Date Title
RU2554331C1 (ru) Центробежная вихревая форсунка кочетова
CN106267867B (zh) 一种降膜蒸发器用液体分布器及降膜蒸发器
RU2319093C1 (ru) Утилизатор тепла с кипящим слоем
RU2464068C1 (ru) Гидрозолоуловитель-теплоутилизатор
CN103758590B (zh) 新型直接空冷机组低压缸排汽管除氧结构
RU2500482C1 (ru) Широкофакельная центробежная форсунка
RU2563050C1 (ru) Смесительный теплообменник
RU2650215C1 (ru) Распылительная сушилка
RU2513077C1 (ru) Вихревая распылительная сушилка для дисперсных материалов
RU2610031C1 (ru) Энергосберегающий гидрокалорифер
RU2544112C2 (ru) Тепловая электростанция
RU2363896C1 (ru) Аппарат для тепловлажностной обработки воздуха
RU2359176C1 (ru) Установка охлаждения воздуха с испарением рециркулирующей воды
RU2538991C1 (ru) Смесительный теплообменник кочетова
RU2537866C1 (ru) Устройство кочетова для очистки и утилизации отходящих дымовых газов
RU2493521C1 (ru) Система кочетова оборотного водоснабжения
RU2548217C1 (ru) Контактный теплообменник
RU119264U1 (ru) Пневматический распылитель
RU2411061C1 (ru) Форсуночный скруббер
RU2452902C2 (ru) Установка охлаждения воздуха с испарением рециркулирующей воды
RU2645360C1 (ru) Гидрозолоуловитель-теплоутилизатор
RU2449222C2 (ru) Водовоздушная установка для защиты от интенсивного облучения
RU2323761C1 (ru) Выпарной аппарат с падающей пленкой
CN204963600U (zh) 一种冷却塔总成
RU2537108C1 (ru) Контактный теплообменник кочетова с активной насадкой