RU2363896C1 - Аппарат для тепловлажностной обработки воздуха - Google Patents

Аппарат для тепловлажностной обработки воздуха Download PDF

Info

Publication number
RU2363896C1
RU2363896C1 RU2008116671/06A RU2008116671A RU2363896C1 RU 2363896 C1 RU2363896 C1 RU 2363896C1 RU 2008116671/06 A RU2008116671/06 A RU 2008116671/06A RU 2008116671 A RU2008116671 A RU 2008116671A RU 2363896 C1 RU2363896 C1 RU 2363896C1
Authority
RU
Russia
Prior art keywords
air
stage
heat
mixing chamber
pipeline
Prior art date
Application number
RU2008116671/06A
Other languages
English (en)
Inventor
Олег Савельевич Кочетов (RU)
Олег Савельевич Кочетов
Мария Олеговна Кочетова (RU)
Мария Олеговна Кочетова
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2008116671/06A priority Critical patent/RU2363896C1/ru
Application granted granted Critical
Publication of RU2363896C1 publication Critical patent/RU2363896C1/ru

Links

Images

Abstract

Аппарат предназначен для создания комфортных условий и микроклимата в бытовых, административных и производственных помещениях. Аппарат содержит камеру смешения, подогреватель и блок орошения, первая ступень представляет собой многофункциональный аппарат со встречными закрученными потоками и предназначена для очистки от пыли рециркуляционного воздуха, поступающего из помещения и имеющего положительную температуру, а также для увлажнения воздуха, и включает в себя корпус с емкостью для сбора жидкости, в которой расположен насос с фильтром для осуществления рециркуляции жидкости по трубопроводу и подачи ее в блок орошения. При этом трубопровод для рециркуляции жидкости содержит регулирующий клапан-смеситель для подключения к системе водоснабжения посредством трубопровода к источнику подачи охлажденной воды от холодильной машины, а в нижней части корпуса расположен нижний входной патрубок, а в верхней части - верхний входной патрубок, а в патрубках установлены соответственно нижний тангенциальный закручиватель и верхний тангенциальный закручиватель, при этом выхлопной патрубок соединяет первую ступень устройства со второй ступенью устройства. Технический результат - повышение эффективности тепловлажностной обработки воздуха, экономия энергоресурсов, упрощение конструкции систем кондиционирования воздуха, их монтажа и обслуживания. 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к системам вентиляции и кондиционирования воздуха с режимами регенеративной теплоутилизации и может быть использовано для создания комфортных условий микроклимата в бытовых, административных и производственных помещениях.
Наиболее близким техническим решением к заявляемому объекту в части устройства является устройство для обработки воздуха по патенту РФ №2319906, F24F 5/00 от 13.10.06 (прототип), содержащее камеру смешения, подогреватель и блок орошения.
Недостатком прототипа является сравнительно невысокая эффективность процесса тепловлажностной обработки воздуха за счет недостаточной эффективности очистки рециркуляционного воздуха от тонкой пыли и невозможности подмеса воздуха других параметров уже после обработки рециркуляционного ввиду отсутствия вихревой камеры смешения.
Технический результат - повышение эффективности тепловлажностной обработки воздуха, экономия энергоресурсов, упрощение конструкции систем кондиционирования воздуха, их монтажа и обслуживания.
Это достигается тем, что в аппарате для тепловлажностной обработки воздуха, содержащим камеру смешения, подогреватель и блок орошения, первая ступень представляет собой многофункциональный аппарат со встречными закрученными потоками и предназначена для очистки от пыли рециркуляционного воздуха, поступающего из помещения и имеющего положительную температуру, а также для увлажнения воздуха, и включает в себя корпус с емкостью для сбора жидкости, в которой расположен насос с фильтром для осуществления рециркуляции жидкости по трубопроводу и подачи ее в блок орошения, который выполнен в виде, по крайней мере, двух круговых трубчатых коллекторов с равномерно распределенными по внутренней поверхности центробежными форсунками, при этом трубопровод для рециркуляции жидкости содержит регулирующий клапан-смеситель для подключения к системе водоснабжения посредством трубопровода к источнику подачи охлажденной воды от холодильной машины, а в нижней части корпуса расположен нижний входной патрубок, а в верхней части - верхний входной патрубок, а в патрубках установлены соответственно нижний тангенциальный закручиватель и верхний тангенциальный закручиватель, при этом выхлопной патрубок соединяет первую ступень устройства со второй ступенью устройства, предназначенной для смешения потоков воздуха, поступающих из первой ступени с потоком наружного воздуха, причем вторая ступень устройства выполнена в виде тепломассообменного аппарата смешения и включает в себя входной патрубок камеры смешения, центробежную камеру смешения, диффузор, конфузор, раскручиватель, выходной патрубок.
На фиг.1 представлена схема аппарата для тепловлажностной обработки воздуха, на фиг.2 - общий вид форсунки для распыливания жидкостей, на фиг.3 - разрез А-А фиг.2.
Аппарат для тепловлажностной обработки воздуха (фиг.1) состоит из двух ступеней: первая ступень представляет собой многофункциональный аппарат со встречными закрученными потоками и предназначена для очистки от пыли рециркуляционного воздуха, поступающего из помещения и имеющего положительную температуру, а также для увлажнения воздуха, и включает в себя корпус 1 с емкостью 2 для сбора жидкости, в которой расположен насос 20 с фильтром 19 для осуществления рециркуляции жидкости по трубопроводу 21 и подачи ее в блок орошения 5, который выполнен в виде, по крайней мере, двух круговых трубчатых коллекторов с равномерно распределенными по внутренней поверхности центробежными форсунками (фиг.2, 3). Трубопровод 21 для рециркуляции жидкости содержит регулирующий клапан-смеситель 22 для подключения к системе водоснабжения посредством трубопровода 23 к источнику 24 подачи охлажденной воды от холодильной машины, или артезианской скважины, или емкости с запасом ледниковой воды.
В нижней части корпуса 1 расположен нижний входной патрубок 18, а в верхней части - верхний входной патрубок 17. Для интенсификации процесса тепловлажностной обработки воздуха в патрубках установлены соответственно нижний тангенциальный закручиватель 3 и верхний тангенциальный закручиватель 4.
Выхлопной патрубок 6 соединяет первую ступень устройства со второй ступенью устройства, предназначенной для смешения потоков воздуха, поступающих из первой ступени с потоком наружного воздуха, имеющего в летний период положительную температуру, а в зимний - отрицательную. Вторая ступень устройства выполнена в виде тепломассообменного аппарата смешения и включает в себя: входной патрубок камеры смешения 7, центробежную камеру смешения 8, диффузор 9, конфузор 10, раскручиватель 11, выходной патрубок 12. Потоки воздуха 13 и 14 - это рециркуляционные потоки воздуха, 15 - поток наружного воздуха, 16 - поток обработанного воздуха. Центробежная камера смешения 8 выполнена по габаритному внешнему размеру - диаметру D, больше, чем габаритный внешний размер корпуса 1 многофункционального аппарата - диаметр D1. Для оптимальной работы аппарата необходимо выполнить следующие соотношения параметров:
- отношение диаметра D центробежной камеры смешения 8 к диаметру D1 корпуса многофункционального аппарата лежит в оптимальном интервале величин: D/D1=1,25-2,0;
- угол наклона форсунок блока орошения 5 к горизонту лежит в оптимальном интервале величин: 30÷40°;
- аэродинамическое сопротивление аппарата лежит в оптимальном интервале величин: 600÷900 Па.
Центробежная форсунка (фиг.2-3) состоит из корпуса 25 с впускным отверстием 26 крышки 27 герметизирующей прокладки 28 между корпусом и крышкой, пружины 29, расположенной между крышкой и завихрителем 30, выполненным в виде перевернутого днищем вверх цилиндрического стакана, установленного относительно корпуса 25 с кольцевым зазором 31. В завихрителе 30 выполнено, по меньшей мере, два ряда дроссельных отверстий 32, в каждом ряду выполнено, по меньшей мере, два равномерно расположенных по кольцевой стенке завихрителя 30 дроссельных отверстия 32. В нижней части корпуса 25 установлен в виде конической шайбы сопловый вкладыш 33, выполненный из твердых материалов: карбида вольфрама, рубина, сапфира с калиброванным коническим отверстием 34, соосным с цилиндрической поверхностью завихрителя 30, причем отверстие 34 имеет обратную конусность с конической шайбой вкладыша 33.
Аппарат для тепловлажностной обработки воздуха работает следующим образом.
В многофункциональном аппарате со встречными закрученными потоками в рабочем пространстве первой ступени образуются, как и в классическом аппарате со встречными закрученными потоками, два закрученных в одну сторону, но встречно направленных потока: восходящий - в центральной части камеры и нисходящий - в периферийной части. Для тепловлажностной обработки воздуха в блок орошения 5 по трубопроводу 21 подается вода, распыляемая центробежными тангенциальными форсунками. Под действием центробежных сил капли воды отбрасываются на вертикальные стенки аппарата и по ним стекают в нижнюю часть камеры. Затем увлажненный воздух выводится из камеры через выхлопной патрубок 6, расположенный в верхней части первой ступени аппарата, и поступает в камеру смешения - вторую ступень устройства. Часть наружного воздуха, заранее подготовленная в системе кондиционирования воздуха, через тангенциальный закручиватель входного патрубка камеры смешения 7 подается в центробежную камеру смешения 8, где поток увлажненного и очищенного от пыли воздуха смешивается с наружным потоком воздуха. Увеличение диаметра D камеры смешения 8 относительно диаметра D1 корпуса 1 многофункционального аппарата первой ступени устройства, где происходит увлажнение и мокрое обеспыливание, обеспечивает падение скорости воздуха в поперечном сечении аппарата и, как следствие, не создается существенного дополнительного аэродинамического сопротивления, что способствует предотвращению каплеуноса. На выходе из аппарата второй ступени установлен раскручиватель 11 обработанного потока воздуха. Посредством регулирующего клапана-смесителя 22 осуществляется подключение аппарата к системе водоснабжения от источника 24 подачи охлажденной воды от холодильной машины, или артезианской скважины, или емкости с запасом ледниковой воды, что позволяет эффективно использовать аппарат в летнее время для процессов одновременного увлажнения и охлаждения обрабатываемого воздуха, подаваемого в помещения.
Центробежная форсунка для распыливания жидкостей работает следующим образом. Жидкость подается по впускному отверстию 26 в кольцевой зазор 31, откуда в завихритель 30 через тангенциально расположенные к внутренней поверхности завихрителя 30 дроссельные отверстия 32. Вращающийся поток жидкости из завихрителя 30 выходит через калиброванное коническое отверстие 34 соплового вкладыша 33, в результате чего образуется факел распыленной жидкости, корневой угол которого определяется величиной угла наклона конической поверхности отверстия 34. При среднем диаметре отверстия 34, находящемся в диапазоне 2,5…3,5 мм и давлении подаваемой через впускное отверстие 26 жидкости под давлением 6…9 МПа обеспечивается распыление от 400 до 1000 кг/ч жидкости. Форсунка проста в изготовлении и обслуживании.
Основным преимуществом разработанного аппарата является возможность проведения процессов увлажнения, смешения, санитарной очистки от мелкой пыли, а также возможность повторного использования тепла и влаги больших объемов рециркуляционного воздуха (до 90%). Таким образом, использование многофункционального аппарата со встречными закрученными потоками для обработки рециркуляционного воздуха при взаимодействии с малогабаритным кондиционером (на чертеже не показан) для обработки свежего воздуха (от 10%) позволяет существенным образом сократить стоимость климатического оборудования, эксплуатационные затраты, а также обеспечить более стабильную работу всей системы.
Смешение наружного воздуха с циркуляционным уже после его подогрева позволяет избежать выпадения конденсата и его обледенения на стенках лопаток воздушных клапанов, регулирующих поступление холодного воздуха в камеру смешения, в результате чего нарушается режим регулирования и возрастают износ оборудования и энергетические потери в традиционных центральных кондиционерах.

Claims (2)

1 Аппарат для тепловлажностной обработки воздуха, содержащий камеру смешения, подогреватель и блок орошения, отличающийся тем, что он состоит из двух ступеней, причем первая ступень представляет собой многофункциональный аппарат со встречными закрученными потоками и предназначена для очистки от пыли рециркуляционного воздуха, поступающего из помещения и имеющего положительную температуру, а также для увлажнения воздуха, и включает в себя корпус с емкостью для сбора жидкости, в которой расположен насос с фильтром для осуществления рециркуляции жидкости по трубопроводу и подачи ее в блок орошения, который выполнен в виде, по крайней мере, двух круговых трубчатых коллекторов с равномерно распределенными по внутренней поверхности центробежными форсунками, при этом трубопровод для рециркуляции жидкости содержит регулирующий клапан-смеситель для подключения к системе водоснабжения посредством трубопровода к источнику подачи охлажденной воды от холодильной машины, а в нижней части корпуса расположен нижний входной патрубок, а в верхней части - верхний входной патрубок, а в патрубках установлены соответственно нижний тангенциальный закручиватель и верхний тангенциальный закручиватель, при этом выхлопной патрубок соединяет первую ступень устройства со второй ступенью устройства, предназначенную для смешения потоков воздуха, поступающих из первой ступени, с потоком наружного воздуха, причем вторая ступень устройства выполнена в виде тепломассообменного аппарата смешения и включает в себя входной патрубок камеры смешения, центробежную камеру смешения, диффузор, конфузор, раскручиватель, выходной патрубок.
2. Аппарат для тепловлажностной обработки воздуха по п.1, отличающийся тем, что для оптимальной работы аппарата выполнены следующие соотношения параметров: отношение диаметра D центробежной камеры смешения к диаметру D1 корпуса многофункционального аппарата лежит в оптимальном интервале величин D/D1=1,25÷2,0; угол наклона форсунок блока орошения к горизонту лежит в оптимальном интервале величин 30÷40°; аэродинамическое сопротивление аппарата лежит в оптимальном интервале величин 600÷900 Па.
RU2008116671/06A 2008-04-30 2008-04-30 Аппарат для тепловлажностной обработки воздуха RU2363896C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008116671/06A RU2363896C1 (ru) 2008-04-30 2008-04-30 Аппарат для тепловлажностной обработки воздуха

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008116671/06A RU2363896C1 (ru) 2008-04-30 2008-04-30 Аппарат для тепловлажностной обработки воздуха

Publications (1)

Publication Number Publication Date
RU2363896C1 true RU2363896C1 (ru) 2009-08-10

Family

ID=41049644

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008116671/06A RU2363896C1 (ru) 2008-04-30 2008-04-30 Аппарат для тепловлажностной обработки воздуха

Country Status (1)

Country Link
RU (1) RU2363896C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2450213C2 (ru) * 2010-08-20 2012-05-10 Олег Савельевич Кочетов Устройство для тепловлажностной обработки воздуха
RU2450214C2 (ru) * 2010-08-20 2012-05-10 Олег Савельевич Кочетов Аппарат для тепловлажностной обработки воздуха
CN104033968A (zh) * 2014-03-21 2014-09-10 曾长水 一种能减轻旱情、驱除雾霾和增加水源的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2450213C2 (ru) * 2010-08-20 2012-05-10 Олег Савельевич Кочетов Устройство для тепловлажностной обработки воздуха
RU2450214C2 (ru) * 2010-08-20 2012-05-10 Олег Савельевич Кочетов Аппарат для тепловлажностной обработки воздуха
CN104033968A (zh) * 2014-03-21 2014-09-10 曾长水 一种能减轻旱情、驱除雾霾和增加水源的方法

Similar Documents

Publication Publication Date Title
RU2363892C1 (ru) Способ кондиционирования воздуха с комбинированным косвенным охлаждением и кондиционер для его осуществления
CN103277858B (zh) 纺织蒸发式节能净化空调系统
RU2607870C1 (ru) Устройство тепловлажностной обработки воздуха с утилизацией тепла
RU2363896C1 (ru) Аппарат для тепловлажностной обработки воздуха
RU2607878C1 (ru) Кондиционер с оптимальным орошением
RU2671690C1 (ru) Кондиционер с вихревыми элементами
CN100368666C (zh) 旋流喷雾湿化塔
RU2363893C1 (ru) Кондиционер с вихревыми элементами
CN208032248U (zh) 一种旋流塔
RU2512892C2 (ru) Способ тепловлажностной обработки воздуха с утилизацией тепла
CN207035400U (zh) 一种纺纱室空气加湿器
RU2579722C2 (ru) Кондиционер
RU2450214C2 (ru) Аппарат для тепловлажностной обработки воздуха
RU2339436C1 (ru) Многофункциональный аппарат со встречными закрученными потоками
RU2450213C2 (ru) Устройство для тепловлажностной обработки воздуха
RU2363891C1 (ru) Прямоточная многозональная система кондиционирования
RU2363894C1 (ru) Способ тепловлажностной обработки воздуха и устройство для его осуществления
RU2319905C1 (ru) Кондиционер с оптимальным орошением
RU2607872C1 (ru) Энергоресурсосберегающая система кондиционирования
RU2319906C1 (ru) Энергоресурсосберегающая система кондиционирования
RU2560256C1 (ru) Устройство тепловлажностной обработки воздуха с утилизацией тепла
RU2320934C1 (ru) Система кондиционирования с теплообменными аппаратами
RU2493501C1 (ru) Приточно-вытяжная установка с утилизацией тепла
RU2509960C2 (ru) Кондиционер
RU2473018C1 (ru) Устройство для тепловлажностной обработки воздуха