RU2561686C1 - Способ инкапсуляции аспирина в ксантановой камеди - Google Patents

Способ инкапсуляции аспирина в ксантановой камеди Download PDF

Info

Publication number
RU2561686C1
RU2561686C1 RU2014112698/15A RU2014112698A RU2561686C1 RU 2561686 C1 RU2561686 C1 RU 2561686C1 RU 2014112698/15 A RU2014112698/15 A RU 2014112698/15A RU 2014112698 A RU2014112698 A RU 2014112698A RU 2561686 C1 RU2561686 C1 RU 2561686C1
Authority
RU
Russia
Prior art keywords
aspirin
nanocapsules
xanthan gum
suspension
encapsulation
Prior art date
Application number
RU2014112698/15A
Other languages
English (en)
Inventor
Александр Александрович Кролевец
Михаил Владимирович Покровский
Илья Александрович Богачев
Татьяна Григорьевна Покровская
Олег Сергеевич Гудырев
Владимир Исхакиевич Кочкаров
Михаил Викторович Корокин
Original Assignee
Александр Александрович Кролевец
Михаил Владимирович Покровский
Илья Александрович Богачев
Татьяна Григорьевна Покровская
Олег Сергеевич Гудырев
Владимир Исхакиевич Кочкаров
Михаил Викторович Корокин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец, Михаил Владимирович Покровский, Илья Александрович Богачев, Татьяна Григорьевна Покровская, Олег Сергеевич Гудырев, Владимир Исхакиевич Кочкаров, Михаил Викторович Корокин filed Critical Александр Александрович Кролевец
Priority to RU2014112698/15A priority Critical patent/RU2561686C1/ru
Application granted granted Critical
Publication of RU2561686C1 publication Critical patent/RU2561686C1/ru

Links

Images

Landscapes

  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к способу инкапсуляции аспирина в ксантановой камеди. Указанный способ характеризуется тем, что суспензию аспирина смешивают с бензолом и диспергируют полученную смесь в суспензию ксантановой камеди в бутаноле в присутствии препарата Е472с при перемешивании 1000 об/с, далее приливают хлороформ, полученную суспензию нанокапсул отфильтровывают и сушат, при этом соотношение оболочка/ядро в нанокапсулах составляет 1:5, 3:1 или 1:1. Изобретение обеспечивает ускорение и упрощение процесса получения нанокапсул с высоким выходом по массе. 1 ил., 1 табл., 4 пр.

Description

Изобретение относится к области нанотехнологии и медицины.
Ранее были известны способы получения микрокапсул.
В пат. 2173140, МПК А61К 009/50, А61К 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении микрокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул, отличающимся тем, что в качестве оболочки нанокапсул используется ксантановая камедь, а в качестве ядра - аспирин при получении инкапсулируемых частиц методом осаждения нерастворителем с применением хлороформа в качестве осадителя.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием хлороформа в качестве осадителя, а также использование ксантановой камеди в качестве оболочки частиц и аспирина - в качестве ядра.
Результатом предлагаемого метода является получение нанокапсул аспирина, распределение частиц по размерам в образце нанокапсул асперина и статистические характеристики распределений приведены на рис. 1 и в таблице 1.
ПРИМЕР 1
Получение нанокапсул аспирина в ксантановой камеди, соотношение оболочка:ядро 1:5
Суспензию 5 г аспирина растворяют в 5 мл бензола и диспергируют полученную смесь в суспензию ксантановой камеди в бутаноле, содержащую указанного 1 г полимера, в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1000 об/сек. Далее приливают 5 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2
Получение нанокапсул аспирина в ксантановой камеди, соотношение оболочка:ядро 3:1
Суспензию 1 г аспирина растворяют в 5 мл бензола и диспергируют полученную смесь в суспензию ксантановой камеди в бутаноле, содержащую указанного 3 г полимера, в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 3 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3
Получение нанокапсул аспирина в ксантановой камеди, соотношение оболочка:ядро 1:1
Суспензию 1 г аспирина растворяют в 2 мл бензола и диспергируют полученную смесь в суспензию ксантановой камеди в бутаноле, содержащую указанного 1 г полимера, в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 2 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4
Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.
Как видно из таблицы 1, средний размер нанокапсул аспирина в ксантановой камеди составляет 152 нм.

Claims (1)

  1. Способ инкапсуляции аспирина в ксантановой камеди, характеризующийся тем, что суспензию аспирина смешивают с бензолом и диспергируют полученную смесь в суспензию ксантановой камеди в бутаноле в присутствии препарата Е472с при перемешивании 1000 об/с, далее приливают хлороформ, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение оболочка/ядро в нанокапсулах составляет 1:5 или 3:1, или 1:1.
RU2014112698/15A 2014-04-01 2014-04-01 Способ инкапсуляции аспирина в ксантановой камеди RU2561686C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014112698/15A RU2561686C1 (ru) 2014-04-01 2014-04-01 Способ инкапсуляции аспирина в ксантановой камеди

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014112698/15A RU2561686C1 (ru) 2014-04-01 2014-04-01 Способ инкапсуляции аспирина в ксантановой камеди

Publications (1)

Publication Number Publication Date
RU2561686C1 true RU2561686C1 (ru) 2015-08-27

Family

ID=54015750

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014112698/15A RU2561686C1 (ru) 2014-04-01 2014-04-01 Способ инкапсуляции аспирина в ксантановой камеди

Country Status (1)

Country Link
RU (1) RU2561686C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013503A1 (en) * 1995-10-13 1997-04-17 The Penn State Research Foundation Synthesis of drug nanoparticles by spray drying
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013503A1 (en) * 1995-10-13 1997-04-17 The Penn State Research Foundation Synthesis of drug nanoparticles by spray drying
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAGAVARMA B. V. N. "Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23. СОЛОДОВНИК В. Д. "Микрокапсулирование", 1980, стр.136-137. *

Similar Documents

Publication Publication Date Title
RU2557900C1 (ru) Способ получения нанокапсул витаминов
RU2562561C1 (ru) Способ получения нанокапсул витаминов в каррагинане
RU2605596C1 (ru) Способ получения нанокапсул витаминов группы в
RU2590666C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием
RU2624532C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в конжаковой камеди
RU2624533C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в каррагинане
RU2639091C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2618449C1 (ru) Способ получения нанокапсул витаминов группы В в каппа-каррагинане
RU2591798C1 (ru) Способ получения нанокапсул адаптогенов в конжаковой камеди
RU2558084C1 (ru) Способ получения нанокапсул аспирина в каррагинане
RU2637629C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в ксантановой камеди
RU2633747C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в геллановой камеди
RU2642230C1 (ru) Способ получения нанокапсул кверцетина или дигидрокверцетина в каррагинане
RU2624531C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в альгинате натрия
RU2626831C2 (ru) Способ получения нанокапсул L-аргинина в геллановой камеди
RU2631886C2 (ru) Способ получения нанокапсул резвератрола в конжаковой камеди
RU2625501C2 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2569734C2 (ru) Способ получения нанокапсул резвератрола в альгинате натрия
RU2624530C1 (ru) Способ получения нанокапсул унаби в геллановой камеди
RU2609739C1 (ru) Способ получения нанокапсул резвератрола в геллановой камеди
RU2622750C1 (ru) Способ получения нанокапсул бетулина в геллановой камеди
RU2635763C2 (ru) Способ получения нанокапсул бетулина в каррагинане
RU2642054C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2605847C2 (ru) Способ получения нанокапсул розувастатина в конжаковой камеди
RU2579608C1 (ru) Способ получения нанокапсул l-аргинина и норвалина в альгинате натрия