RU2605847C2 - Способ получения нанокапсул розувастатина в конжаковой камеди - Google Patents

Способ получения нанокапсул розувастатина в конжаковой камеди Download PDF

Info

Publication number
RU2605847C2
RU2605847C2 RU2015118886/15A RU2015118886A RU2605847C2 RU 2605847 C2 RU2605847 C2 RU 2605847C2 RU 2015118886/15 A RU2015118886/15 A RU 2015118886/15A RU 2015118886 A RU2015118886 A RU 2015118886A RU 2605847 C2 RU2605847 C2 RU 2605847C2
Authority
RU
Russia
Prior art keywords
rosuvastatin
nanocapsules
konjac gum
producing
suspension
Prior art date
Application number
RU2015118886/15A
Other languages
English (en)
Other versions
RU2015118886A (ru
Inventor
Татьяна Алексеевна Денисюк
Александр Александрович Кролевец
Карен Ванушович Сароян
Михаил Владимирович Ситник
Полина Игоревна Лосенок
Михаил Владимирович Покровский
Илья Александрович Богачев
Валентина Валерьевна Автина
Александр Петрович Григорьенко
Original Assignee
Татьяна Алексеевна Денисюк
Александр Александрович Кролевец
Карен Ванушович Сароян
Михаил Владимирович Ситник
Полина Игоревна Лосенок
Михаил Владимирович Покровский
Илья Александрович Богачев
Валентина Валерьевна Автина
Александр Петрович Григорьенко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Татьяна Алексеевна Денисюк, Александр Александрович Кролевец, Карен Ванушович Сароян, Михаил Владимирович Ситник, Полина Игоревна Лосенок, Михаил Владимирович Покровский, Илья Александрович Богачев, Валентина Валерьевна Автина, Александр Петрович Григорьенко filed Critical Татьяна Алексеевна Денисюк
Priority to RU2015118886/15A priority Critical patent/RU2605847C2/ru
Publication of RU2015118886A publication Critical patent/RU2015118886A/ru
Application granted granted Critical
Publication of RU2605847C2 publication Critical patent/RU2605847C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/12Making microcapsules or microballoons by phase separation removing solvent from the wall-forming material solution
    • B01J13/125Making microcapsules or microballoons by phase separation removing solvent from the wall-forming material solution by evaporation of the solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

Изобретение относится к способу получения нанокапсул розувастатина, характеризующемуся тем, что розувастатин медленно добавляют в суспензию конжаковой камеди в гексане, в присутствии 0,005 г препарата Е472с при перемешивании 1000 об/мин, при массовом соотношении оболочка:ядро 3:1 или 1:5, затем приливают бензол, полученную суспензию отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе). 1 ил., 3 пр.

Description

Изобретение относится к области нанотехнологии и медицины.
Ранее были известны способы получения микрокапсул.
В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубл. 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения
В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул розувастатина, отличающимся тем, что в качестве оболочки нанокапсул используется конжаковая камедь, а в качестве ядра - розувастатин при получении инкапсулируемых частиц методом осаждения нерастворителем с применением бензола в качестве осадителя.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием бензола в качестве осадителя, а также использование конжаковой камеди в качестве оболочки частиц и розувастатина - в качестве ядра.
Результатом предлагаемого метода является получение нанокапсул розувастатина.
ПРИМЕР 1. Получение нанокапсул розувастатина в конжаковой камеди, соотношение оболочка: ядро 3:1.
0,3 г розувастатина медленно добавляют в суспензию конжаковой камеди в гексане, содержащую указанного 0,9 г полимера в присутствии 0,005 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 3 мл бензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 1,2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул розувастатина в конжаковой камеди, соотношение оболочка: ядро 1:5.
0,5 г розувастатина медленно добавляют в суспензию конжаковой камеди в гексане, содержащую указанного 0,1 г полимера в присутствии 0,005 г препарата Е472с при перемешивании 1000 об/мин. Далее приливают 5 мл бензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3. Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM Е2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.
Таким образом, получены нанокапсулы розувастатина с высоким выходом в течение 10 мин.

Claims (1)

  1. Способ получения нанокапсул розувастатина, характеризующийся тем, что розувастатин медленно добавляют в суспензию конжаковой камеди в гексане, в присутствии 0,005 г препарата Е472с при перемешивании 1000 об/мин, при массовом соотношении оболочка:ядро 3:1 или 1:5, затем приливают бензол, полученную суспензию отфильтровывают и сушат при комнатной температуре.
RU2015118886/15A 2015-05-19 2015-05-19 Способ получения нанокапсул розувастатина в конжаковой камеди RU2605847C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015118886/15A RU2605847C2 (ru) 2015-05-19 2015-05-19 Способ получения нанокапсул розувастатина в конжаковой камеди

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015118886/15A RU2605847C2 (ru) 2015-05-19 2015-05-19 Способ получения нанокапсул розувастатина в конжаковой камеди

Publications (2)

Publication Number Publication Date
RU2015118886A RU2015118886A (ru) 2016-12-10
RU2605847C2 true RU2605847C2 (ru) 2016-12-27

Family

ID=57759744

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015118886/15A RU2605847C2 (ru) 2015-05-19 2015-05-19 Способ получения нанокапсул розувастатина в конжаковой камеди

Country Status (1)

Country Link
RU (1) RU2605847C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678973C1 (ru) * 2018-04-04 2019-02-05 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта крапивы

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Солодовник В.Д. Микрокапсулирование/ М.: Химия, 1980 г. 216 с. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678973C1 (ru) * 2018-04-04 2019-02-05 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта крапивы

Also Published As

Publication number Publication date
RU2015118886A (ru) 2016-12-10

Similar Documents

Publication Publication Date Title
RU2557900C1 (ru) Способ получения нанокапсул витаминов
RU2626828C1 (ru) Способ получения нанокапсул резвератрола в каппа-каррагинане
RU2605596C1 (ru) Способ получения нанокапсул витаминов группы в
RU2648816C2 (ru) Способ получения нанокапсул спирулина в альгинате натрия
RU2639091C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2624532C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в конжаковой камеди
RU2624533C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в каррагинане
RU2591798C1 (ru) Способ получения нанокапсул адаптогенов в конжаковой камеди
RU2558084C1 (ru) Способ получения нанокапсул аспирина в каррагинане
RU2642230C1 (ru) Способ получения нанокапсул кверцетина или дигидрокверцетина в каррагинане
RU2637629C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в ксантановой камеди
RU2624531C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в альгинате натрия
RU2633747C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в геллановой камеди
RU2626831C2 (ru) Способ получения нанокапсул L-аргинина в геллановой камеди
RU2625501C2 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2569734C2 (ru) Способ получения нанокапсул резвератрола в альгинате натрия
RU2607589C2 (ru) Способ получения нанокапсул аминокислот в конжаковой камеди
RU2557942C1 (ru) Способ получения нанокапсул резвератрола в ксантановой камеди, обладающих супрамолекулярными свойствами
RU2605847C2 (ru) Способ получения нанокапсул розувастатина в конжаковой камеди
RU2657748C1 (ru) Способ получения нанокапсул спирулина в конжаковой камеди
RU2622750C1 (ru) Способ получения нанокапсул бетулина в геллановой камеди
RU2635763C2 (ru) Способ получения нанокапсул бетулина в каррагинане
RU2609739C1 (ru) Способ получения нанокапсул резвератрола в геллановой камеди
RU2642054C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2624530C1 (ru) Способ получения нанокапсул унаби в геллановой камеди

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170520