RU2561522C2 - Летательный аппарат, включающий в себя электрический стартер-генератор для каждого турбореактивного двигателя и шасси, оснащенное электродвигателем для руления - Google Patents

Летательный аппарат, включающий в себя электрический стартер-генератор для каждого турбореактивного двигателя и шасси, оснащенное электродвигателем для руления Download PDF

Info

Publication number
RU2561522C2
RU2561522C2 RU2012131175/11A RU2012131175A RU2561522C2 RU 2561522 C2 RU2561522 C2 RU 2561522C2 RU 2012131175/11 A RU2012131175/11 A RU 2012131175/11A RU 2012131175 A RU2012131175 A RU 2012131175A RU 2561522 C2 RU2561522 C2 RU 2561522C2
Authority
RU
Russia
Prior art keywords
generator
starter
converter
electric
power
Prior art date
Application number
RU2012131175/11A
Other languages
English (en)
Other versions
RU2012131175A (ru
Inventor
Серж БЕРЕНЖЕР
Дидье Франсуа Мари ГОДАР
Original Assignee
Испано-Сюиза
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Испано-Сюиза filed Critical Испано-Сюиза
Publication of RU2012131175A publication Critical patent/RU2012131175A/ru
Application granted granted Critical
Publication of RU2561522C2 publication Critical patent/RU2561522C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/405Powered wheels, e.g. for taxing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/14Transmitting means between initiating means and power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2221/00Electric power distribution systems onboard aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/80Energy efficient operational measures, e.g. ground operations or mission management

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Летательный аппарат содержит не менее двух турбореактивных двигателей, оснащенных электрическими стартерами-генераторами, шасси, оснащенное электродвигателем, преобразователь и модуль распределения электроэнергии, вспомогательный бортовой силовой модуль, генератор электроэнергии. Преобразователь электроэнергии соединен со стартером-генератором, с электродвигателем, с генератором электроэнергии и со входом внешнего питания через модуль распределения электроэнергии разными способами, образуя различные конфигурации. Обеспечивается запуск турбореактивного двигателя и руление самолета на земле. 7 з.п. ф-лы, 6 ил.

Description

Область техники
Изобретение относится к летательному аппарату, имеющему один или более турбореактивных двигателей, каждый из которых оснащен электрическим стартером-генератором, а также имеющему шасси, оснащенное электродвигателем для руления между точкой посадки и взлетно-посадочной полосой. Более конкретно, изобретение относится к усовершенствованию, обеспечивающему распределение функций определенных подсистем таким образом, чтобы предоставлять энергию, необходимую для запуска турбореактивного двигателя(ей), а также для руления воздушным судном.
Предшествующий уровень техники
В современных самолетах растет необходимость заменять гидравлические или пневматические вспомогательные системы электрооборудованием. Таким образом, известен стартер для каждого турбореактивного двигателя, который содержит электрический стартер-генератор, т.е. обратимую подсистему, которая выступает в качестве электродвигателя при запуске, если в нее подается электроэнергия, или, в противном случае, в качестве генератора электроэнергии, если она приводится во вращение посредством турбореактивного двигателя после его запуска. Одна такая подсистема стартера-генератора ассоциирована с каждым турбореактивным двигателем. Кроме того, известно шасси, которое оснащено электродвигателем для использования при рулении. Электродвигатель обеспечивает возможность перемещения летательного аппарата на земле между местом посадки и взлетно-посадочной полосой. Он зачастую встроен в ступицу колеса шасси.
Краткое изложение существа изобретения
Изобретение нацелено на оптимизацию такого электромеханического оборудования. В результате наблюдается, что характеристики электрооборудования, необходимого для запуска турбореактивного двигателя, и характеристики электрооборудования для приведения в действие шасси при рулении являются очень похожими и, следовательно, они могут быть комбинированы.
Более конкретно, изобретение предоставляет летательный аппарат, имеющий первый турбореактивный двигатель, оснащенный первым электрическим стартером-генератором, и шасси, оснащенное электродвигателем для руления на земле, причем летательный аппарат отличается тем, что включает в себя преобразователь электроэнергии, подходящий для соединения с стартером-генератором или с электродвигателем для руления через конфигурируемый модуль распределения электроэнергии.
Преимущественно, летательный аппарат имеет вспомогательный бортовой силовой модуль, содержащий, в частности, генератор электроэнергии. Генератор подключается к модулю распределения электроэнергии, чтобы снабжать электроэнергией преобразователь. Упомянутый вспомогательный силовой модуль необязательно может быть топливным элементом.
Согласно другой преимущественной характеристике, модуль распределения электроэнергии дополнительно включает в себя вход питания для питания преобразователя от внешнего источника, т.е. от генератора электроэнергии, который доступен в аэропорту.
С использованием этих подсистем может быть доступно множество конфигураций посредством модуля распределения электроэнергии для подключения преобразователя электроэнергии (по существу содержащего инвертор) к определенным выбранным элементам оборудования, чтобы иметь возможность выбирать между различными вариантами для запуска турбореактивного двигателя или для руления самолетом. Эти варианты включают в себя, в частности:
- запуск турбореактивного двигателя с использованием собственного стартера, при этом сам преобразователь запитан посредством источника электроэнергии, расположенного вне самолета;
- запуск того же турбореактивного двигателя таким же образом, но от вспомогательного бортового силового модуля. Следует напомнить, что этот вспомогательный модуль может состоять из небольшого газотурбинного двигателя (например, подходящего для запуска от внешнего источника энергии), который механически приводит в действие вышеуказанный генератор электроэнергии, который сам подключен к входу инвертора;
- запуск другого турбореактивного двигателя с использованием собственного электрического стартера-генератора через преобразователь, получающий свою энергию от турбореактивного двигателя, который уже запущен, через электрический стартер-генератор этого турбореактивного двигателя, работающий в качестве генератора;
- руление самолетом посредством питания электродвигателя шасси с помощью преобразователя, получающего свою электроэнергию от турбореактивного двигателя, который уже запущен, причем преобразователь получает электроэнергию от соответствующего стартера-генератора, работающего в качестве генератора; и
- руление самолетом посредством питания электродвигателя шасси с помощью преобразователя, получающего свою энергию от вспомогательного бортового силового модуля.
Краткое описание чертежей
В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопроводительные чертежи, на которых:
Фиг. 1 изображает общий схематический вид, показывающий архитектуру, которая является общей для средства стартера турбореактивного двигателя(ей) и для средства питания электродвигателя для руления, связанного с шасси для маневрирования на земле;
Фиг. 2 изображает вид, аналогичный фиг. 1, показывающий первую возможную конфигурацию модуля распределения электроэнергии;
Фиг. 3 изображает вид, аналогичный фиг. 1, показывающий вторую возможную конфигурацию модуля распределения электроэнергии;
Фиг. 4 изображает вид, аналогичный фиг. 1, показывающий третью возможную конфигурацию модуля распределения электроэнергии;
Фиг. 5 изображает вид, аналогичный фиг. 1, показывающий четвертую возможную конфигурацию модуля распределения электроэнергии; и
Фиг. 6 изображает вид, аналогичный фиг. 1, показывающий пятую возможную конфигурацию модуля распределения электроэнергии.
Описание предпочтительных вариантов воплощения изобретения
Фиг. 1 показывает электрооборудование с распределением функций, выполненное с возможностью как пуска турбореактивного двигателя(ей) M1, M2, так и руления самолетом на земле, посредством электродвигателя 17, расположенного в шасси 16. В дополнение к вышеозначенным подсистемам, установка имеет преобразователь 14 электроэнергии, конфигурируемый модуль 12 распределения электроэнергии, вспомогательный бортовой силовой модуль 20, который связан с генератором 22 электроэнергии, также на борту, и электрические стартеры-генераторы DG1 и DG2, соответственно, связанные с турбореактивными двигателями M1 и M2. Механический вход для пуска турбореактивного двигателя M1 соединяется с валом электрического стартера-генератора DG1. Механический вход для пуска турбореактивного двигателя M2 соединяется с валом электрического стартера-генератора DG2. Электрические точки доступа к электрическим стартерам-генераторам DG1 и DG2 подключаются к модулю 12 распределения электроэнергии. Вход и выход преобразователя 14 подключаются к модулю 12 распределения электроэнергии. Этот модуль распределения электроэнергии подключается к электродвигателю 17, чтобы снабжать его электроэнергией. Вспомогательный бортовой силовой модуль 20 в этом примере является небольшим топливным двигателем, имеющим выходной вал, приводящий в действие генератор 22 электроэнергии. Электрический выход из генератора подключается к модулю 12 распределения электроэнергии. Стартер вспомогательного силового модуля 20 в этом примере приводится в действие посредством сжатого воздуха, доставляемого посредством компрессора, расположенного на земле и подключенного посредством пневматического соединения 24 к стартеру. После пуска этот модуль 20 продолжает вращаться с потреблением топлива, подаваемого самолетом.
Модуль 12 распределения электроэнергии также имеет электрический силовой вход 26 питания для снабжения энергией преобразователя 14. Эта электроэнергия подается посредством генератора, расположенного на земле и подключенного к силовому входу 26.
Модуль 12 распределения электроэнергии содержит набор управляемых переключателей типа, конструкция которого известна специалистам в данной области техники, которые имеют функцию избирательного межсоединения вышеописанных подсистем в предварительно определенных конфигурациях. Из вышеприведенного описания, безусловно, можно видеть, что преобразователь может принимать электроэнергию через модуль 12 распределения электроэнергии на входе E и может одновременно подавать электроэнергию (электроэнергию переменного тока (AC) на регулируемой частоте) в модуль распределения электроэнергии через выход S. Каждый электрический стартер-генератор DG1, DG2 может принимать электроэнергию через модуль распределения электроэнергии, и при этом он составляет стартер связанного с ним турбореактивного двигателя. Он является обратимой машиной, которая также может составлять генератор электроэнергии, которая распределяется через модуль 12 распределения электроэнергии после того, как вал стартера приведен в действие посредством соответствующего турбореактивного двигателя M1, M2, после запуска.
Генератор 22 электроэнергии приводится в действие посредством двигателя вспомогательного модуля 20, и он, следовательно, доставляет электроэнергию в другие подсистемы через модуль 12 распределения электроэнергии. Электроэнергия, подаваемая к входу 26, может быть использована.
Ниже приводится описание различных возможных вариантов запуска одного из турбореактивных двигателей, в частности первого турбореактивного двигателя M1, с использованием вышеописанной системы.
В конфигурации по фиг. 2 электроэнергия доставляется посредством соединения 26, подключенного к генератору электроэнергии на земле. Модуль распределения выполнен так, что эта электроэнергия подается к входу E преобразователя 14. Выход S преобразователя подключается к электрическому стартеру-генератору DG1, который, таким образом, выступает в качестве стартера. При таких условиях, стартер DG1 приводит в действие вал турбореактивного двигателя M1 до тех пор, пока он не запущен, и затем продолжает работать с расходованием топлива самолета.
Альтернативно, как показано на фиг. 3, вспомогательный силовой модуль 20 приводится в действие, например, с использованием сжатого воздуха, доставляемого с земли через соединение 24, тем самым эффективно приводя в действие генератор 22. Модуль 12 распределения выполнен так, что электроэнергия, доставляемая посредством генератора 22, подается к входу E преобразователя 14, и так, что выход S из этого преобразователя подается к электрическому входу электрического стартера-генератора, так что он может запускать турбореактивный двигатель M1.
На фиг. 4 турбореактивный двигатель M1 уже запущен, и он, следовательно, приводит в действие вал электрического стартера-генератора DG1, который после этого выступает в качестве генератора электроэнергии и, следовательно, доставляет электроэнергию в модуль 12 распределения. Модуль выполнен так, что эта электроэнергия подается к входу преобразователя 14, и так, что выход S из преобразователя подается к электрическому входу электрического стартера-генератора DG2, работающего в качестве стартера, тем самым предоставляя возможность запуска турбореактивного двигателя M2.
Естественно, эта система может быть расширена до большего числа турбореактивных двигателей, каждый из которых содержит собственный электрический стартер-генератор.
Ниже приводится описание использования этой установки для снабжения энергией электродвигателя 17 для перемещений при рулении самолетом на земле.
Фиг. 5 показывает конфигурацию модуля 12 распределения, в которой электрический стартер-генератор, приводимый в действие посредством турбореактивного двигателя M1, доставляет электроэнергию, которая подается к входу E преобразователя 14. Выход S преобразователя 14 подключается к электродвигателю 17 через модуль 12 распределения.
Напротив, в конфигурации по фиг. 6, именно вспомогательный бортовой силовой модуль 20 действует через генератор 22 электроэнергии, чтобы подавать электроэнергию к входу E преобразователя 14 через модуль 12 распределения. Модуль распределения также подключает выход S преобразователя 14 к электродвигателю 17.
Вышеописанная система с различными конфигурациями, в частности, является преимущественной, поскольку функции запуска турбореактивного двигателя и предоставления электропривода для руления на земле имеют множество общих аспектов. В частности, можно отметить следующее:
- очень высокий крутящий момент в состоянии покоя вследствие инерции и трения турбореактивного двигателя или колес шасси;
- ограниченное во времени использование (несколько минут);
- использование осуществляется по существу на земле (повторный запуск в полете требует наполовину больше мощности); и
- электрическая частота инвертора является относительно низкой при запрашиваемой мощности в обеих из функций.
Таким образом, распределение этих функций запуска и руления выполнено с возможностью оптимизировать преобразователь мощности, в частности, относительно его охлаждения. Больше нет необходимости предоставлять охлаждение для его оборудования посредством циркуляции жидкости, а наоборот, можно предусматривать его охлаждение воздухом, возможное посредством естественной конвекции. Этот режим охлаждения посредством воздуха является, в частности, подходящим, когда двигатели находятся под крыльями, и в окружающих условиях, которые являются сравнимыми с окружающими условиями шасси. Электромагнитная фильтрация также упрощается.

Claims (7)

1. Летательный аппарат, содержащий первый турбореактивный двигатель (M1), оснащенный первым электрическим стартером-генератором (DG1), и шасси (16), оснащенное электродвигателем (17) для руления на земле, причем летательный аппарат отличается тем, что включает в себя преобразователь (14) электроэнергии, подходящий для соединения с стартером-генератором или с электродвигателем для руления через конфигурируемый модуль (12) распределения электроэнергии, при этом модуль (12) распределения электроэнергии дополнительно включает в себя вход (26) электропитания для внешнего питания преобразователя.
2. Летательный аппарат по п. 1, отличающийся тем, что дополнительно включает в себя вспомогательный бортовой силовой модуль (20), оснащенный генератором (22) электроэнергии, и отличающийся тем, что генератор электроэнергии подключен к модулю (12) распределения электроэнергии, чтобы питать преобразователь (14) электроэнергии.
3. Летательный аппарат по п. 1, отличающийся тем, что модуль (12) распределения электроэнергии включает в себя конфигурацию, подключающую вход (26) электропитания к входу преобразователя, а выход преобразователя - к первому стартеру-генератору (DG1), работающему в качестве стартера.
4. Летательный аппарат по п. 2, отличающийся тем, что модуль (12) распределения электроэнергии включает в себя конфигурацию, подключающую выход генератора электроэнергии к входу преобразователя, а выход преобразователя (14) - к первому электрическому стартеру-генератору (DG1), работающему в качестве стартера.
5. Летательный аппарат по п. 1, отличающийся тем, что модуль распределения электроэнергии включает в себя конфигурацию, подключающую первый стартер-генератор (DG1), работающий в качестве генератора, к входу преобразователя, а выход преобразователя - к электродвигателю (17) для руления шасси.
6. Летательный аппарат по любому из пп. 2-5, отличающийся тем, что модуль (12) распределения электроэнергии включает в себя конфигурацию, подключающую генератор (22) электроэнергии к входу преобразователя, а выход преобразователя - к электродвигателю (17) для руления шасси.
7. Летательный аппарат по п. 1, отличающийся тем, что включает в себя, по меньшей мере, один второй турбореактивный двигатель (М2), оснащенный вторым электрическим стартером-генератором (DG2), при этом модуль распределения электроэнергии включает в себя конфигурацию, подключающую первый стартер-генератор (DG1), работающий в качестве генератора, к входу преобразователя, а выход преобразователя (14) - ко второму стартеру-генератору (DG2), действующему в качестве стартера.
RU2012131175/11A 2009-12-23 2010-12-15 Летательный аппарат, включающий в себя электрический стартер-генератор для каждого турбореактивного двигателя и шасси, оснащенное электродвигателем для руления RU2561522C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0959540 2009-12-23
FR0959540A FR2954283B1 (fr) 2009-12-23 2009-12-23 Aeronef comportant un demarreur-generateur electrique pour le ou chaque turboreacteur et un train d'aterrissage equipe d'un moteur electrique de manoeuvre au sol
PCT/FR2010/052734 WO2011086258A1 (fr) 2009-12-23 2010-12-15 Aeronef comportant un demarreur-generateur electrique pour le ou chaque turboreacteur et un train d'atterrissage equipe d'un moteur electrique de manoeuvre au sol

Publications (2)

Publication Number Publication Date
RU2012131175A RU2012131175A (ru) 2014-01-27
RU2561522C2 true RU2561522C2 (ru) 2015-08-27

Family

ID=42245994

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012131175/11A RU2561522C2 (ru) 2009-12-23 2010-12-15 Летательный аппарат, включающий в себя электрический стартер-генератор для каждого турбореактивного двигателя и шасси, оснащенное электродвигателем для руления

Country Status (9)

Country Link
US (1) US9227725B2 (ru)
EP (1) EP2516265B1 (ru)
JP (1) JP2013515644A (ru)
CN (1) CN102686479B (ru)
BR (1) BR112012015746B1 (ru)
CA (1) CA2785309C (ru)
FR (1) FR2954283B1 (ru)
RU (1) RU2561522C2 (ru)
WO (1) WO2011086258A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690779C1 (ru) * 2015-12-02 2019-06-05 АйЭйчАй КОРПОРЕЙШН Электрическая система руления летательного аппарата и способ для управления системой

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2398316B1 (es) * 2011-07-18 2014-04-29 Airbus Operations, S.L. Sistema versátil de potencia en aeronaves
FR2978878B1 (fr) 2011-08-04 2013-08-09 Hispano Suiza Sa Dispositif d'alimentation electrique d'un aeronef au sol.
FR2988694B1 (fr) * 2012-03-30 2014-03-28 Hispano Suiza Sa Dispositif d'alimentation electrique d'un aeronef au sol
EP2842873B1 (en) 2013-08-30 2017-06-14 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Short term, autonomous, electrical power supply system
FR3019218B1 (fr) * 2014-03-27 2016-03-18 Turbomeca Architecture d'un systeme propulsif d'un helicoptere multi-moteur et helicoptere correspondant
US20150283908A1 (en) * 2014-04-02 2015-10-08 Hamilton Sundstrand Corporation Systems utilizing a controllable voltage ac generator system
US9771149B2 (en) 2015-10-30 2017-09-26 Honeywell International Inc. Gate departure system for aircraft
FR3046598B1 (fr) * 2016-01-11 2018-02-02 Liebherr-Aerospace Toulouse Sas Architecture electrique d'un aeronef a plaque de refroidissement
FR3047771A1 (fr) * 2016-02-16 2017-08-18 Airbus Operations Sas Systeme et procede de demarrage des moteurs d'un aeronef bimoteur
WO2021064819A1 (ja) * 2019-09-30 2021-04-08 株式会社テクノスヤシマ エンジン始動装置
CN111516887A (zh) * 2020-04-30 2020-08-11 中国商用飞机有限责任公司 自动滑行系统、供电系统、飞行器及供电方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2233989C1 (ru) * 2003-05-30 2004-08-10 Государственное унитарное предприятие Тушинское машиностроительное конструкторское бюро "Союз" - дочернее предприятие Федерального государственного унитарного предприятия "Российская самолетостроительная корпорация "МиГ" Способ и система для запуска газотурбинного двигателя

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967096A (en) * 1989-01-26 1990-10-30 Sundstrand Corporation Cross-start bus configuration for a variable speed constant frequency electric power system
US6037752A (en) * 1997-06-30 2000-03-14 Hamilton Sundstrand Corporation Fault tolerant starting/generating system
US6018233A (en) * 1997-06-30 2000-01-25 Sundstrand Corporation Redundant starting/generating system
US7210653B2 (en) * 2002-10-22 2007-05-01 The Boeing Company Electric-based secondary power system architectures for aircraft
US6778414B2 (en) * 2002-12-20 2004-08-17 The Boeing Company Distributed system and methodology of electrical power regulation, conditioning and distribution on an aircraft
US7237748B2 (en) * 2003-12-15 2007-07-03 Delos Aerospace, Llc Landing gear method and apparatus for braking and maneuvering
US7406370B2 (en) * 2004-08-24 2008-07-29 Honeywell International Inc. Electrical energy management system on a more electric vehicle
US7439634B2 (en) * 2004-08-24 2008-10-21 Honeywell International Inc. Electrical starting, generation, conversion and distribution system architecture for a more electric vehicle
US20060174629A1 (en) * 2004-08-24 2006-08-10 Honeywell International, Inc Method and system for coordinating engine operation with electrical power extraction in a more electric vehicle
US7445178B2 (en) * 2004-09-28 2008-11-04 The Boeing Company Powered nose aircraft wheel system
US7513119B2 (en) * 2005-02-03 2009-04-07 The Boeing Company Systems and methods for starting aircraft engines
US7975960B2 (en) * 2005-08-29 2011-07-12 Borealis Technical Limited Nosewheel control apparatus
FR2900635B1 (fr) * 2006-05-05 2008-07-25 Hispano Suiza Sa Systeme d'alimentation et de commande d'equipements electriques d'un moteur d'aeronef ou de son environnement
FR2900636B1 (fr) * 2006-05-05 2009-03-06 Hispano Suiza Sa Circuit d'alimentation en energie electrique pour des equipements electriques d'un moteur d'aeronef ou de son environnement
US20070284939A1 (en) * 2006-06-12 2007-12-13 Honeywell International Aircraft electric brake and generator therefor
US8155876B2 (en) * 2006-09-07 2012-04-10 The Boeing Company Systems and methods for controlling aircraft electrical power
FR2907762B1 (fr) * 2006-10-27 2009-12-18 Airbus France Systeme de generation, conversion, distribution et demarrage electrique a bord d'un aeronef
US7615892B2 (en) * 2006-11-09 2009-11-10 Honeywell International Inc. Modular and scalable power conversion system for aircraft
FR2909233B1 (fr) * 2006-11-23 2011-03-04 Hispano Suiza Sa Alimentation d'un aeronef en energie electrique
US20080217466A1 (en) * 2007-03-08 2008-09-11 Bhargava Brij B Auxiliary on board power system for an aircraft
US8123163B2 (en) * 2007-04-20 2012-02-28 The Boeing Company Aircraft kinetic landing energy conversion system
US7800245B2 (en) * 2007-07-09 2010-09-21 Honeywell International Inc. Method and architecture for reduction in vehicle wiring
US8220740B2 (en) * 2007-11-06 2012-07-17 Borealis Technical Limited Motor for driving aircraft, located adjacent to undercarriage wheel
DE102008011791B4 (de) * 2008-02-29 2013-09-19 Airbus Operations Gmbh Integriertes multifunktionales Radantriebssystem für Luftfahrzeuge
US7936086B2 (en) * 2008-03-06 2011-05-03 Honeywell International, Inc. Paralleled HVDC bus electrical power system architecture
GB0806660D0 (en) * 2008-04-11 2008-05-14 Airbus Uk Ltd Aircraft landing gear
US8102077B2 (en) * 2009-07-14 2012-01-24 Wabtec Holding Corp. Power generation and distribution system configured to provide power to a motor
US8657227B1 (en) * 2009-09-11 2014-02-25 The Boeing Company Independent power generation in aircraft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2233989C1 (ru) * 2003-05-30 2004-08-10 Государственное унитарное предприятие Тушинское машиностроительное конструкторское бюро "Союз" - дочернее предприятие Федерального государственного унитарного предприятия "Российская самолетостроительная корпорация "МиГ" Способ и система для запуска газотурбинного двигателя

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690779C1 (ru) * 2015-12-02 2019-06-05 АйЭйчАй КОРПОРЕЙШН Электрическая система руления летательного аппарата и способ для управления системой

Also Published As

Publication number Publication date
FR2954283A1 (fr) 2011-06-24
CA2785309C (fr) 2017-11-07
BR112012015746A2 (pt) 2016-05-17
EP2516265B1 (fr) 2014-07-02
US20130048781A1 (en) 2013-02-28
FR2954283B1 (fr) 2012-03-02
CN102686479B (zh) 2016-09-07
CA2785309A1 (fr) 2011-07-21
BR112012015746B1 (pt) 2020-07-28
WO2011086258A1 (fr) 2011-07-21
RU2012131175A (ru) 2014-01-27
JP2013515644A (ja) 2013-05-09
EP2516265A1 (fr) 2012-10-31
US9227725B2 (en) 2016-01-05
CN102686479A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
RU2561522C2 (ru) Летательный аппарат, включающий в себя электрический стартер-генератор для каждого турбореактивного двигателя и шасси, оснащенное электродвигателем для руления
US11597504B2 (en) Architecture for a propulsion system of a helicopter including a hybrid turboshaft engine and a system for reactivating said hybrid turboshaft engine
US10737802B2 (en) Non-propulsive utility power (NPUP) generation system for providing secondary power in an aircraft
US11371430B2 (en) Power system for aircraft parallel hybrid gas turbine electric propulsion system
RU2692513C2 (ru) Гибридная силовая установка многомоторного летательного аппарата
EP3002435B1 (en) Accessory drive system for a gas turbine engine
RU2629621C2 (ru) Способ и конструкция оптимизированной передачи энергии между вспомогательным силовым двигателем и основными двигателями вертолета
ES2946176T3 (es) Funcionamiento de motores de aeronaves en condiciones transitorias
RU2669759C2 (ru) Двигатель летательного аппарата и соответствующий способ приведения в действие вентилятора с помощью вала низкого давления во время операций руления
KR102285093B1 (ko) 적어도 2개의 프리-터빈 엔진을 갖는 항공기의 프리-터빈 엔진을 위한 조력 장치
US11623757B2 (en) Hybrid electric taxi system (HETS) or full electric taxi system (FETS)
US9242726B2 (en) Method for powering autonomous drive motors for an aircraft
CA2736474A1 (en) Power distribution system
US11585232B2 (en) Electrical system for aircraft
EP2815966A1 (en) Rotary wing aircraft with a propulsion system
US11718408B2 (en) Electric power system for powerplants of a multi-engine aircraft
US20240055957A1 (en) Electrical energy system for barring rotor
US20240056007A1 (en) Gas-turbine electrical start system
CA3072944A1 (en) Electric power system for powerplants of a multi-engine aircraft
CN114583825A (zh) 一种b737飞机主交流电源空中工作方法

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20160322

PD4A Correction of name of patent owner