RU2561085C1 - Эпоксидный компаунд, наполненный модифицированными полисахаридами - Google Patents

Эпоксидный компаунд, наполненный модифицированными полисахаридами Download PDF

Info

Publication number
RU2561085C1
RU2561085C1 RU2014118169/05A RU2014118169A RU2561085C1 RU 2561085 C1 RU2561085 C1 RU 2561085C1 RU 2014118169/05 A RU2014118169/05 A RU 2014118169/05A RU 2014118169 A RU2014118169 A RU 2014118169A RU 2561085 C1 RU2561085 C1 RU 2561085C1
Authority
RU
Russia
Prior art keywords
epoxy
cellulose
composition
anhydride
modified
Prior art date
Application number
RU2014118169/05A
Other languages
English (en)
Inventor
Анна Геннадьевна Белых
Ирина Николаевна Васенева
Петр Александрович Ситников
Александр Васильевич Кучин
Елена Васильевна Удоратина
Михаил Анатольевич Торлопов
Евгений Геннадьевич Шахматов
Original Assignee
Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук filed Critical Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук
Priority to RU2014118169/05A priority Critical patent/RU2561085C1/ru
Application granted granted Critical
Publication of RU2561085C1 publication Critical patent/RU2561085C1/ru

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к эпоксидной композиции для получения высокопрочных, теплостойких материалов, которые могут быть использованы в различных отраслях промышленности.
Эпоксидная композиция горячего отверждения включает эпоксидный диановый олигомер марки ЭД-20 (100 мас.ч.), отвердитель ангидридного типа (80 мас.ч.), в качестве модифицирующей добавки она дополнительно содержит производные полисахаридов (1,0-10,0 мас.ч.). Изобретение позволяет повысить механическую прочность, модуль упругости и температуру стеклования изделий. 1 табл.

Description

Изобретение относится к эпоксидной композиции для получения высокопрочных, теплостойких композиционных материалов.
Описывается полимерная композиция, содержащая эпоксидный диановый олигомер ЭД-20, отвердитель ангидридного типа, а также модифицирующие добавки.
В качестве модифицирующих добавок в эпоксиангидридном полимере использовали следующие производные полисахаридов: микрокристаллическую целлюлозу, микрокристаллическую целлюлозу с привитыми функциональными группами (карбоксиметильными, этильными, гидроксиэтильными, аминными, тиольными и тозилатными), а также полиацетальглиоксаля и эритрозы и полиацетальглиоксаля и эритрозы с привитыми аминогруппами различной природы.
Вышеуказанные производные полисахаридов с привитыми активными группами были получены в виде порошков, размер частиц которых составлял 20-100 мкм по методикам, описанным в работах [Торлопов М.А. Синтез производных целлюлозы, содержащих фосфатные, амино- и меркаптогруппы // Известия Коми научного центра. - 2011. - Вып.3, №7. - С.23-26; Удоратина Е.В. Продукты химической модификации вторичного целлюлозного сырья // Химическая технология. - 2011. - №3. - С.157-163; Varma A.J., Chavan V.B. Cellulosic diamines as reaction-incorporated fillers in epoxy composites // J. Cellulose. - 1994. - №1. - P.215-219; Удоратина Е.В. Модифицирование целлюлозосодержащих материалов этиленоксидом // Ежегодник Института химии Коми НЦ УрО РАН. - 2009. - С.50-52; Сюткин В.Н., Николаев А.Г., Сажин С.А., Попов В.М., Заморянский А.А. Азотсодержащие производные диальдегидцеллюлозы // Химия растительного сырья. - 1999. - №2. - С.91-102].
Предложенный эпоксиполимерный композиционный материал обладает повышенной механической прочностью и высокой температурой стеклования.
Изобретение относится к эпоксидной композиции ангидридного отверждения, широко используемой для получения высокопрочных, теплостойких полимерных композиционных материалов. Полученные полимерные композиционные материалы могут применяться в различных отраслях промышленности: автомобиле- и судостроении, строительстве, лакокрасочной промышленности, а также для изготовления различных изделий из композиционных материалов.
Исследования последних лет в области создания новых композиционных материалов направлены на усовершенствование систем отверждения, улучшение прочностных и адгезионных свойств композиционных материалов за счет химической модификации эпоксидных связующих. При этом рассматриваются широкие возможности регулирования свойств за счет рецептурно-технологических факторов, введения в композиции наполнителей, в том числе нанопорошков, пластификаторов, активных катализаторов и модификаторов. Особый интерес вызывают модификаторы на основе природных биополимеров и их производных, в том числе модифицированных целлюлоз и лигнинов. При использовании их в новых композиционных материалах важным является поиск правильного соотношения компонентов, которые сохраняли бы нужные свойства, имели оптимальную цену конечного продукта и способствовали разложению композита в окружающей среде. Немаловажной задачей также является разработка методов воздействия на синтетический полимер природным материалом для увеличения их реакционной способности, что в итоге способствует сохранению и повышению эксплуатационных характеристик новых высококачественных материалов. В связи с этим актуальность работы заключается в введении модифицированных природных полимеров в эпоксиполимерную матрицу с формированием химических связей между их молекулами для увеличения физико-механических и теплофизических свойств.
Известна эпоксидная композиция, содержащая эпоксидную смолу и лигнин пальмовых деревьев [Abdul Khalil H.P.S.; Marliana M.M.; Issam A.M.; Bakare I.O. Exploring isolated lignin material from oil palm biomass waste in green composites. Mater. And Des.2011. №5. с.2604-2610]. Композитный материал содержит эпоксидную смолу и 15%, 20%, 25% и 30% лигнина. Определены зависимости механических, термических и морфологических свойств композита. Лучшие результаты получены при количестве лигнина в композитном материале 25%. Недостатками композиции являются невысокая прочность на изгиб и очень низкая прочность на разрыв.
Известна эпоксидная композиция на основе эпоксидного олигомера ЭД-20, полиэтиленполиамина и отходов обмолота проса в качестве наполнителя [Панкеев В.В.; Никифоров Е.С.; Свешникова Е.С.; Панова Л.Г. Новые наполнители эпоксидных компаундов на основе модифицированных целлюлозосодержащих отходов. Пласт. массы. 2012. №5. С.50-52]. Разработанный композиционный материал является трудносгораемым и имеет высокие значения теплостойкости по Вика, но недостаточно высокую прочность на изгиб.
Известен эпоксидно-древесный композит на основе ЭД-20, полиэтиленполиамина и маточной смолы [RU 2288929 С1, 10.12.2006 г.]. В качестве наполнителей используются резиновая крошка и сосновые опилки. Композиция имеет хорошую водостойкость и адгезию к древесине, обладает экологической безопасностью и позволяет применять отходы производства. Недостатком данного композита является невысокая механическая прочность.
Известна также эпоксидно-древесная композиция [RU 2368633 С2, 27.09.2009 г.], содержащая в качестве наполнителя сосновые опилки и пенополистирольную крошку. Композиция обладает хорошими теплофизическими свойствами, но имеет низкую прочность на изгиб.
Известно связующее для композиционных материалов, содержащее диановую эпоксидную смолу, отвердитель аминного типа и лигнин, являющийся отходом производства при переработке древесины [RU 2092506 С2, 10.10.1997 г.]. Лигнин добавлялся в стеклопластик с целью снижения плотности материала судостроительного назначения. Однако полученный материал имеет невысокие физико-механические характеристики.
Известна эпоксидная композиция, наполненная модифицированным гидролизным лигнином и отвержденная полиэтиленполиамином, взятым в количестве 15 мас.ч. на 100 мас.ч. ЭД-20 [Алалыкин А.А., Веснин Р.Л., Козулин Д.А. Получение модифицированного гидролизного лигнина и его использование для наполнения и снижения горючести эпоксидных полимеров. Журнал прикладной химии. 2011. Т.84. Вып.9. С.1567-1574]. Гидролизный лигнин, модифицированный ортофосфорной кислотой и карбамидом, вводили в композицию для понижения плотности образцов, улучшения ряда физико-механических показателей, а также для снижения горючести эпоксидных композиций. Основным недостатком данного материала является невысокая прочность на изгиб (62 МПа при количестве наполнителя 20 мас.ч. на 100 мас.ч. ЭД-20).
Наиболее близким по технической сущности к заявляемому изобретению является эпоксидный слоистый материал, армированный целлюлозными волокнами [Low I.M., McGrath M., Lawrence D., Schmidt P., Lane J., Latella B.A., Sim K.S. Mechanical and fracture properties of cellulose-fibre-reinforced epoxy laminates. Composites. A №3, 2007, т.38, стр.963-974]. Установлено, что армирование значительно увеличило деформацию при разрыве, ползучесть, вязкость при разрушении и ударную прочность. При разрушении наблюдался медленный и стабильный рост трещин. Недостатком данного материала является недостаточно высокая прочность на изгиб.
Задачей настоящего изобретения является повышение физико-механических характеристик, теплостойкости стандартной эпоксидной композиции на основе ЭД-20 и отвердителя ангидридного типа, которая вследствие своей высокой технологичности широко используется в промышленности.
Технический результат состоит в повышении механической прочности, модуля упругости и температуры стеклования изделий на основе предлагаемой композиции.
Технический результат достигается тем, что эпоксидная композиция горячего отверждения включает в себя эпоксидный диановый олигомер марки ЭД-20, отвердитель ангидридного типа, согласно изобретению в качестве модифицирующей добавки она дополнительно содержит производные полисахаридов, при следующем содержании компонентов, мас.ч.
Эпоксидный олигомер 100
Отвердитель 80
Модифицированный полисахарид 1,0-10,0
Выполнение композиции согласно изобретению позволило повысить ее физико-механические характеристики и температуру стеклования.
Способ осуществлялся следующим образом.
Методами ДСК и ИК-спектроскопии установлено, что производные полисахаридов с привитыми активными группами (этильными, гидроксиэтильными), микрокристаллическая целлюлоза и полиацетальглиоксаля и эритрозы не взаимодействуют с компонентами матрицы, т.е. на кривых ДСК нет экзотермических пиков, отвечающих за процесс полимеризации. На ИК-спектрах полосы поглощения, отвечающие за эпоксидные (950-860 см-1) и ангидридные (1790-1740 см-1) кольца смолы и отвердителя, соответственно также не изменились.
Карбоксиметилцеллюлоза с активными карбоксильными группами химически взаимодействует с ангидридом, что объясняется раскрытием ангидридного цикла на поверхности модификатора с образованием кислотных групп, установленных по ИК-спектру в области 3200-3400 и 1700 см-1.
Тиольные и тозилатные группы, привитые к макромолекуле полисахарида, приводят к их химическому взаимодействию с ангидридом, на кривых ДСК появляется экзотермический пик в области температур 175-220°C.
При исследовании взаимодействия полиацетальглиоксаля и эритрозы (с привитыми аминогруппами различной природы) с компонентами синтетической полимерной матрицы выяснено, что химическая реакция происходит с эпоксидной составляющей системы. На кривой ДСК процесс химического взаимодействия отражен появлением серии экзотермических пиков в интервале температур 130-170°C, что свидетельствует о процессе раскрытия эпоксидного цикла, а на ИК спектре полностью пропадают полосы, отвечающие за эпоксидные группы (950-860 см-1).
Аминоцеллюлоза взаимодействует с каждым из компонентов полимерной матрицы. С эпоксидным олигомером реакция взаимодействия проходит в три ступени и начинается с 70°C, а с ангидридом взаимодействует в две ступени и реакция начинается при 80°C. Такой вид кривых можно объяснить тем, что аминоцеллюлоза хорошо реагирует с компонентами полимерной матрицы, но имеет неоднородный состав по размерам частиц.
Для повышения качества смеси применялась ультразвуковая обработка наполненной композиции. Смешивание модифицированной целлюлозы с компонентами полимерной матрицы проводилось на приборе ИЛ 10-0,1 при мощности излучения 60-85 Вт/см2 и частоте звука 23 кГц.
Примеры осуществления
Пример 1.
В 80 мас.ч. ангидрида добавляют 1 мас.ч. модифицированного полисахарида (микрокристаллическую целлюлозу) и эту смесь диспергируют путем ультразвукового воздействия с помощью ультразвукового генератора IL при мощности излучения 60-85 Вт/см2 и частоте звука 23 кГц 5-10 мин. Затем добавляют диспергированную ультразвуком смесь производных полисахаридов в ангидриде в 100 мас.ч. эпоксидного олигомера марки ЭД-20, перемешивают механической мешалкой в течение 30 мин, после чего эту смесь заливают в металлические формы и отверждают по ступенчатому режиму: 100°C - 1 ч, 160°C - 3ч, 100°C - 1 ч.
Примеры 2-27 осуществляют аналогично примеру 1, вид модифицированного полисахарида, его количество и свойства полученных материалов указаны в табл. 1.
Свойства полученных материалов характеризовали с помощью стандартных методик. Разрушающее напряжение при изгибе определяли по ГОСТу 4648-71 с помощью испытательной машины ИР 5057-50. Для этого испытания были изготовлены плоские образцы 200×10×3 мм.
Температура стеклования была определена по данным дифференциальной сканирующей калориметрии (ДСК).
Из табл. 1 видно, что у полимеров, модифицированных производными полисахаридов (микрокристаллическая целлюлоза с привитыми функциональными группами: карбоксиметильными, аминными, тиольными и тозилатными, а также полиацетальглиоксаля и эритроза и полиацетальглиоксаля и эритроза с привитыми аминогруппами различной природы), прочность на изгиб повышается на 15-35% по сравнению с прототипом.
Модифицирующие добавки полиацетальглиоксаля и эритрозы с привитыми аминогруппами различной природы, аминоцеллюлоза и меркаптоцеллюлоза придают полимерному материалу повышенную теплостойкость до 135°C.
Использование производных полисахаридов в качестве активных наполнителей является перспективным направлением для получения эпоксиполимерного композиционного материала с заданными эксплуатационными характеристиками и возможностью удешевления получаемого материала.
Таблица 1
Пример Производные полисахаридов Содержание модификатора, мас.% σизг., МПа Tc, °C
Прототип Целлюлозные волокна 31,5 95 -
1 Микрокристаллическая целлюлоза 1 95±3 100
2 Микрокристаллическая целлюлоза 5 90±3 90
3 Микрокристаллическая целлюлоза 10 100±2 90
4 Карбоксиметилцеллюлоза 1 100±1 120
5 Карбоксиметилцеллюлоза 5 120±2 125
6 Карбоксиметилцеллюлоза 10 105±2 122
7 Этилцеллюлоза 1 85±1 100
8 Этилцеллюлоза 5 83±3 105
9 Этилцеллюлоза 10 76±3 95
10 Гидроксиэтилцеллюлоза 1 80±1 100
11 Гидроксиэтилцеллюлоза 5 80±1 103
12 Гидроксиэтилцеллюлоза 10 72±3 98
13 Полиацеталь глиоксаля и эритрозы 1 112±2 123
14 Полиацеталь глиоксаля и эритрозы 5 110±1 120
15 Полиацеталь глиоксаля и эритрозы 10 95±3 110
16 Аминоцеллюлоза 1 120±2 135
17 Аминоцеллюлоза 5 110±2 130
18 Аминоцеллюлоза 10 100±2 120
19 Полиацеталь глиоксаля и эритрозы с привитыми аминогруппами различной природы 1 130±1 135
20 Полиацеталь глиоксаля и эритрозы с привитыми аминогруппами различной природы 5 115±3 133
21 Полиацеталь глиоксаля и эритрозы с привитыми аминогруппами различной природы 10 80±1 125
22 Тиолцеллюлоза 1 110±1 130
23 Тиолцеллюлоза 5 98±2 130
24 Тиолцеллюлоза 10 88±3 128
25 Тозилатцеллюлоза 1 110±1 125
26 Тозилатцеллюлоза 5 95±3 123
27 Тозилатцеллюлоза 10 90±5 97

Claims (1)

  1. Эпоксидная композиция горячего отверждения включает в себя эпоксидный диановый олигомер марки ЭД-20, отвердитель ангидридного типа, отличающаяся тем, что в качестве модифицирующей добавки она дополнительно содержит производные полисахаридов, при следующем содержании компонентов, мас.ч:
    Эпоксидный олигомер 100 Отвердитель 80 Модифицированный полисахарид 1,0-10,0
RU2014118169/05A 2014-05-05 2014-05-05 Эпоксидный компаунд, наполненный модифицированными полисахаридами RU2561085C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014118169/05A RU2561085C1 (ru) 2014-05-05 2014-05-05 Эпоксидный компаунд, наполненный модифицированными полисахаридами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014118169/05A RU2561085C1 (ru) 2014-05-05 2014-05-05 Эпоксидный компаунд, наполненный модифицированными полисахаридами

Publications (1)

Publication Number Publication Date
RU2561085C1 true RU2561085C1 (ru) 2015-08-20

Family

ID=53880949

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014118169/05A RU2561085C1 (ru) 2014-05-05 2014-05-05 Эпоксидный компаунд, наполненный модифицированными полисахаридами

Country Status (1)

Country Link
RU (1) RU2561085C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU512222A1 (ru) * 1974-02-14 1976-04-30 Новочеркасский ордена Трудового Красного Знамени политехнический институт им. Серго Орджоникидзе Эпоксидна композици
SU1512996A1 (ru) * 1986-08-20 1989-10-07 Предприятие П/Я Г-4816 Покровный компаунд
SU1609799A1 (ru) * 1988-05-10 1990-11-30 Ташкентский Политехнический Институт Им.А.Р.Бируни Эпоксидна композици
RU2424263C1 (ru) * 2009-10-26 2011-07-20 Федеральное государственное унитарное предприятие "Государственный научный центр лесопромышленного комплекса" Способ получения целлюлозосодержащего полимерного суперконцентрата и композиционные материалы на его основе
RU2488606C2 (ru) * 2007-12-21 2013-07-27 Акцо Нобель Н.В. Термореактивные полисахариды

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU512222A1 (ru) * 1974-02-14 1976-04-30 Новочеркасский ордена Трудового Красного Знамени политехнический институт им. Серго Орджоникидзе Эпоксидна композици
SU1512996A1 (ru) * 1986-08-20 1989-10-07 Предприятие П/Я Г-4816 Покровный компаунд
SU1609799A1 (ru) * 1988-05-10 1990-11-30 Ташкентский Политехнический Институт Им.А.Р.Бируни Эпоксидна композици
RU2488606C2 (ru) * 2007-12-21 2013-07-27 Акцо Нобель Н.В. Термореактивные полисахариды
RU2424263C1 (ru) * 2009-10-26 2011-07-20 Федеральное государственное унитарное предприятие "Государственный научный центр лесопромышленного комплекса" Способ получения целлюлозосодержащего полимерного суперконцентрата и композиционные материалы на его основе

Similar Documents

Publication Publication Date Title
Li et al. A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives
Liu et al. “Greener” adhesives composed of urea-formaldehyde resin and cottonseed meal for wood-based composites
Liao et al. Low density sugarcane bagasse particleboard bonded with citric acid and sucrose: Effect of board density and additive content
Ping et al. Wood adhesives from agricultural by-products: Lignins and tannins for the elaboration of particleboards
CN109651782B (zh) 一种复合植物纤维生物可降解材料的制备方法
Kan et al. Novel bridge assistance strategy for tailoring crosslinking networks within soybean-meal-based biocomposites to balance mechanical and biodegradation properties
Paramarta et al. Bio-based high performance epoxy-anhydride thermosets for structural composites: The effect of composition variables
Basta et al. Performance assessment of deashed and dewaxed rice straw on improving the quality of RS-based composites
TW201336595A (zh) 取自農業廢棄物之熱塑性澱粉組成物
US20150329753A1 (en) Biobased lignin adhesives for plywood applications and manufacturing of improved wood-based products
Nourbakhsh et al. Effect of a novel coupling agent, polybutadiene isocyanate, on mechanical properties of wood-fiber polypropylene composites
CA2937338A1 (en) Low viscosity bio-oils as substrates for bpf adhesives with low free formaldehyde emission levels, their methods of preparation and use
Fakhrul et al. Properties of wood sawdust and wheat Flour Reinforced Polypropylene Composites
RU2561085C1 (ru) Эпоксидный компаунд, наполненный модифицированными полисахаридами
Anggoro Use of epoxidized waste cooking oil as bioplasticizer of sago starch-based biocomposite reinforced microfibrillated cellulose of bamboo
CN111269513A (zh) 植物粉的应用、聚乙烯醇薄膜增塑剂、聚乙烯醇组合物、聚乙烯醇薄膜母粒和薄膜
Ghahri et al. Amination and crosslinking of acetone-fractionated hardwood kraft lignin using different amines and aldehydes for sustainable bio-based wood adhesives
CN108192212A (zh) 一种环保可降解pp塑料及其制备方法
Manthey Development of hemp oil based bioresins for biocomposites
Zhang et al. Study on properties of modified low molar ratio urea-formaldehyde resins (I)
Osetrov et al. Assessment of activation energy of modified phenol-formaldehyde resin
Manenti et al. Comparison of some biocomposite board properties fabricated from lignocellulosic biomass before and after Ionic liquid pretreatment
Na et al. Structure and properties of PLA composite enhanced with biomass fillers from herbaceous plants
Ahmad et al. Evaluation of phenol formaldehyde resin synthesized from sugarcane bagasse bio-oil under optimized parameters
Chen et al. Preparation and properties of oriented cotton stalk board with konjac glucomannan-chitosan-polyvinyl alcohol blend adhesive

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200506