RU2560500C1 - Heat power plant operation mode - Google Patents

Heat power plant operation mode Download PDF

Info

Publication number
RU2560500C1
RU2560500C1 RU2014109210/02A RU2014109210A RU2560500C1 RU 2560500 C1 RU2560500 C1 RU 2560500C1 RU 2014109210/02 A RU2014109210/02 A RU 2014109210/02A RU 2014109210 A RU2014109210 A RU 2014109210A RU 2560500 C1 RU2560500 C1 RU 2560500C1
Authority
RU
Russia
Prior art keywords
steam
condenser
heat
low
steam turbine
Prior art date
Application number
RU2014109210/02A
Other languages
Russian (ru)
Inventor
Айрат Маратович Гафуров
Наиль Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2014109210/02A priority Critical patent/RU2560500C1/en
Application granted granted Critical
Publication of RU2560500C1 publication Critical patent/RU2560500C1/en

Links

Abstract

FIELD: power industry.
SUBSTANCE: spent steam is supplied from the steam turbine into the steam space of the condenser and the produced condensate by means of its condensate pump is supplied to the regeneration system. In the heat power plant the heat exchanger-cooler of network water is used which is installed on the network water return pipeline, and also the condenser unit, with production steam extraction and the oil supply system with the oil cooler for lubrication of its bearings. The utilisation of low-grade heat of the oil supply system of steam turbine bearings with production steam extraction, utilisation of low-grade heat of return network water and utilisation of high-grade heat of production steam extraction are performed. The named utilisations are performed by means of the heat engine with the closed circulation circuit, operating according to Rankine organic cycle where the cooling liquid is the low-boiling working body.
EFFECT: improvement of efficiency of heat power plant at the expense of full utilisation of waste low-grade heat and utilisation of excess low-grade heat of the return network water for additional generation of electric energy, increase of service and reliability of operation of the steam turbine condenser and decrease of thermal emissions into environment.
3 cl, 1 dwg

Description

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды, и утилизации высокопотенциальной теплоты пара производственного отбора.The invention relates to the field of energy and can be used at thermal power plants (TPPs) for the disposal of low-grade waste heat in condensers of steam turbines of a TPP, the recovery of low-grade heat of the oil supply system of bearings of a steam turbine with production steam extraction, the utilization of excess low-grade heat of return network water, and utilization high potential heat of steam production selection.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU №2269656, МПК F01K 17/02, 10.02.2006).An analogue is the method of operation of a thermal power plant, in which the entire return flow of network water returned from consumers is successively heated by steam of turbine offsets in the lower and upper network heaters, and then directed to consumers, the exhaust steam is cooled by circulating water, which is used as a source low potential heat for the evaporator of the heat pump installation, while the entire flow of network water after the lower network heater is additionally heated to densifier of the heat pump installation (patent RU No. 2269656, IPC F01K 17/02, 02/10/2006).

Прототипом является способ работы тепловой электрической станции, содержащей подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей (патент RU №2268372, МПК F01K 17/02, 20.01.2006).The prototype is the method of operation of a thermal power plant containing supply and return pipelines of network water, a steam turbine with heating steam extraction and a condenser, to which pressure and drain pipelines of circulating water are connected, network heaters connected via a heated medium between the supply and return pipelines of network water and connected through a heating medium to heating taps, a heat pump installation, the evaporator of which is connected through a heating medium to a drain pipe water, the condenser of the heat pump installation for the heated medium is included in the supply pipe of the network water after the network heaters (patent RU No. 2268372, IPC F01K 17/02, 01/20/2006).

В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода.In the known method, the network water coming from consumers through the return line of the network water is supplied to the network heaters by means of the network pump, where they are heated with steam from the heating taps of the turbine. The steam spent in the turbine is cooled in a condenser, for which it is fed into it through a pressure pipe and circulated water is discharged through a drain pipe. The network water heated in the network heaters is additionally heated before being supplied to consumers in the condenser of the heat pump installation, and circulating water from the drain pipe is used as a low-grade heat source in the evaporator of the heat pump installation.

Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости.Thus, in the known method of operating a thermal power plant, steam of heating parameters from the steam turbine’s withdrawals enters the steam space of the lower and upper network heaters, the network water is supplied from consumers via the return water pipe to the lower network heater and the upper network heater, then the network water is directed in the supply pipe of the network water, the exhaust steam comes from the steam turbine into the steam space of the condenser, condensate on the surface pipes containing coolant, and the condensate is sent to the regeneration system using the condensate pump of the condenser of the steam turbine, and during condensation of the steam, waste low-potential heat energy of the steam exhausted in the turbine is disposed of with the help of the coolant.

Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, обусловленную использованием вторичного контура (теплонасосной установки), а также отсутствия утилизации избыточной низкопотенциальной теплоты обратной сетевой воды, для дополнительной выработки электроэнергии.The main disadvantage of the analogue and the prototype is the relatively low efficiency of TPPs for generating electric energy due to the lack of complete utilization of the latent heat of vaporization in the condenser of a steam turbine due to the use of a secondary circuit (heat pump installation), as well as the lack of utilization of excess low-grade heat of return network water , for additional power generation.

Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.In addition, the disadvantage is the low resource and reliability of the condenser of the steam turbine due to the use of technical (circulating) water, which pollutes the condenser of the steam turbine. Due to the increased thermal emissions of the circulation water into the cooling pond, its ecosystem is disturbed.

Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.The objective of the invention is to develop a method of utilizing the heat of a thermal power plant, which eliminates these disadvantages of the analogue and prototype.

Техническим результатом является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.The technical result is to increase the efficiency of TPPs due to the full use of waste low potential heat and utilization of excess low potential heat of return network water for additional generation of electric energy, increase the life and reliability of the steam turbine condenser and reduce thermal emissions into the environment.

Технический результат достигается тем, что в способе утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий отбор пара из паровой турбины, направление пара отопительных параметров в паровое пространство нижнего и верхнего сетевых подогревателей, связанных с подающим и обратным трубопроводами сетевой воды, а отработавший пар из паровой турбины направляют в паровое пространство конденсатора, в котором пар конденсируют на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, и полученный конденсат с помощью конденсатного насоса направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара посредством охлаждающей жидкости, согласно настоящему изобретению, дополнительно используют теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, конденсационную установку, состоящую из последовательно соединенных паровой турбины с производственным отбором пара с электрогенератором, конденсатора и конденсатного насоса, и систему маслоснабжения подшипников паровой турбины с производственным отбором пара, состоящую из маслоохладителя, маслобака и маслонасоса, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, при этом упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина и состоящего из турбодетандера с электрогенератором, теплообменника-конденсатора и конденсатного насоса, при этом в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, причем упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе, нагревают в теплообменнике-охладителе сетевой воды, нагревают и испаряют в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.The technical result is achieved by the fact that in the method of utilization of thermal energy generated by a thermal power plant, including the selection of steam from a steam turbine, the direction of the steam of heating parameters to the steam space of the lower and upper network heaters associated with the supply and return pipelines of the network water, and the exhaust steam from the steam turbine is directed into the steam space of the condenser, in which the steam is condensed on the surface of the condenser tubes, inside which coolant flows and the condensate obtained is sent to a regeneration system by means of a condensate pump, and when steam is condensed, waste low-potential heat energy of the steam exhausted in the turbine is utilized by means of a cooling liquid according to the present invention, a heat exchanger-cooler of network water is additionally used, which is installed on the return line of the network water condensing unit consisting of a series-connected steam turbine with production steam extraction with electric a generator, a condenser and a condensate pump, and an oil supply system for bearings of a steam turbine with a production steam extraction, consisting of an oil cooler, an oil tank and an oil pump, and additionally utilize the high potential heat of the steam of the production selection and utilize the low potential heat of the oil supply system of the bearings of a steam turbine with a production steam extraction, at this said utilization is carried out by means of a closed-circuit heat engine, operating it according to the organic Rankine cycle and consisting of a turboexpander with an electric generator, a heat exchanger-condenser and a condensate pump, while a low-boiling working fluid circulating in a closed circuit is used as a cooling fluid, and the aforementioned low-boiling working fluid is compressed in a condensate pump of a heat engine, heated in a condenser steam turbine, heated in an oil cooler, heated in a heat exchanger-cooler of network water, heated and evaporated in a condenser of a steam turbine with -governmental steam extraction, is expanded in an expansion turbine of the heat engine, and condensed in exchanger-condenser heat engine.

В качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.An air cooling condenser or a water cooling condenser, or an air and water cooling condenser are used as a heat exchanger-condenser of a heat engine.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара, которые осуществляют путем последовательного нагрева, соответственно, в конденсаторе паровой турбины, маслоохладителе системы маслоснабжения подшипников паровой турбины с производственным отбором пара, теплообменнике-охладителе сетевой воды и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.Thus, the technical result is achieved due to the complete utilization of waste low-grade heat (latent heat of vaporization), utilization of low-grade heat of the oil supply system of bearings of a steam turbine with production steam extraction, utilization of excess low-potential heat of return network water and utilization of high-potential heat of steam of production selection from a steam turbine from a steam turbine production selection of steam, which is carried out by sequential heating, respectively , in a steam turbine condenser, oil cooler for a steam turbine bearings oil supply system with steam production, a network water heat exchanger-cooler, and a steam turbine condenser with production steam extraction, a low-boiling working fluid (liquefied propane C 3 H 8 ) of a closed-circuit heat engine on the organic Rankine cycle.

Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, теплообменник-охладитель сетевой воды и конденсационную установку.The invention is illustrated in the drawing, which shows a thermal power plant having a heat engine with a heat exchanger-condenser, a heat exchanger-cooler network water and a condensing unit.

На чертеже цифрами обозначены:In the drawing, the numbers indicate:

1 - паровая турбина,1 - steam turbine,

2 - конденсатор паровой турбины,2 - condenser of a steam turbine,

3 - конденсатный насос конденсатора паровой турбины,3 - condensate pump condenser of a steam turbine,

4 - основной электрогенератор,4 - the main generator

5 - тепловой двигатель с замкнутым контуром циркуляции,5 - heat engine with a closed circuit,

6 - турбодетандер,6 - turboexpander,

7 - электрогенератор,7 - electric generator,

8 - теплообменник-конденсатор,8 - heat exchanger-condenser,

9 - конденсатный насос,9 - condensate pump,

10 - верхний сетевой подогреватель,10 - upper network heater,

11 - нижний сетевой подогреватель,11 - lower network heater,

12 - подающий трубопровод сетевой воды,12 - supply pipe network water,

13 - обратный трубопровод сетевой воды,13 - return pipe network water,

14 - теплообменник-охладитель сетевой воды,14 - heat exchanger-cooler network water,

15 - конденсационная установка,15 - condensation installation,

16 - паровая турбина с производственным отбором пара,16 - steam turbine with production steam extraction,

17 - электрогенератор паровой турбины с производственным отбором пара,17 - an electric generator of a steam turbine with production steam extraction,

18 - конденсатор паровой турбины с производственным отбором пара,18 is a condenser of a steam turbine with production steam extraction,

19 - конденсатный насос конденсатора паровой турбины с производственным отбором пара,19 is a condensate pump of a condenser of a steam turbine with production steam extraction,

20 - система маслоснабжения подшипников паровой турбины с производственным отбором пара,20 - oil supply system for bearings of a steam turbine with production steam extraction,

21 - сливной трубопровод,21 - drain pipe

22 - маслобак,22 - oil tank

23 - маслонасос,23 - oil pump,

24 - маслоохладитель,24 - oil cooler

25 - напорный трубопровод.25 - pressure pipe.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды. В тепловую электрическую станцию введены теплообменник-охладитель 14 сетевой воды, конденсационная установка 15 и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.The thermal power plant includes a series-connected steam turbine 1, a steam turbine condenser 2 and a condenser pump 3 of the steam turbine condenser, as well as a main electric generator 4 connected to the steam turbine 1, which is connected via heating medium to the upper 10 and lower 11 network heaters connected via heated medium between the supply 12 and return 13 pipelines of network water. A heat exchanger-cooler 14 of network water, a condensing unit 15 and a heat engine 5 with a closed circulation circuit operating on the organic Rankine cycle are introduced into the thermal power station.

Вход теплообменника-охладителя 14 по нагреваемой среде соединен с обратным трубопроводом 13 сетевой воды. Выход теплообменника-охладителя 14 по нагреваемой среде соединен с нижним сетевым подогревателем 11.The input of the heat exchanger-cooler 14 through a heated medium is connected to the return pipe 13 of the network water. The output of the heat exchanger-cooler 14 through the heated medium is connected to the lower network heater 11.

Конденсационная установка 15 содержит последовательно соединенные паровую турбину 16 с производственным отбором пара, имеющую электрогенератор 17, конденсатор 18 паровой турбины с производственным отбором пара, конденсатный насос 19 конденсатора паровой турбины с производственным отбором пара, и систему 20 маслоснабжения подшипников паровой турбины с производственным отбором пара, содержащую последовательно соединенные по греющей среде сливной трубопровод 21, маслобак 22, маслонасос 23 и маслоохладитель 24, выход которого по нагреваемой среде соединен с напорным трубопроводом 25.The condensing unit 15 comprises a steam production turbine 16 connected in series with a steam production steam having an electric generator 17, a steam turbine condenser 18 with a steam production steam condensate pump 19 of a steam turbine condenser with a steam production steam, and an oil supply system 20 of steam turbine bearings with a steam production steam, comprising a drain pipe 21 connected in series through a heating medium, an oil tank 22, an oil pump 23, and an oil cooler 24, the outlet of which is via a heated medium e is connected to the discharge conduit 25.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, теплообменник-конденсатор 8, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя 24 системы маслоснабжения подшипников паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом теплообменника-охладителя 14 сетевой воды, а выход теплообменника-охладителя 14 сетевой воды по нагреваемой среде соединен с входом конденсатора 18 паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.The closed circulation circuit of the heat engine 5 is made in the form of a circuit with a low-boiling working fluid containing a turboexpander 6 connected in series with an electric generator 7, a heat exchanger-condenser 8, a condensate pump 9, the output of the condensate pump 9 being connected via a heated medium to the input of the condenser 2 of the steam turbine, output which is connected via a heated medium to the input of the oil cooler 24 of the oil supply system of bearings of a steam turbine with production steam extraction, the output of which is connected by a heated medium e with the input of the heat exchanger-cooler 14 of the network water, and the output of the heat exchanger-cooler 14 of the network water through the heated medium is connected to the input of the condenser 18 of the steam turbine with production steam extraction, the output of which is connected via the heated medium to the input of the turbine expander 6, forming a closed cooling circuit.

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, осуществляют следующим образом.A method of utilizing thermal energy generated by a thermal power plant is as follows.

Способ включает в себя отбор пара из паровой турбины 1, направление пара отопительных параметров в паровое пространство нижнего 11 и верхнего 10 сетевых подогревателей, связанных с подающим 12 и обратным 13 трубопроводами сетевой воды, а отработавший пар из паровой турбины 1 направляют в паровое пространство конденсатора 2, в котором пар конденсируют на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, и полученный конденсат с помощью конденсатного насоса 3 направляют в систему регенерации, причем приThe method includes the selection of steam from a steam turbine 1, the direction of the steam of heating parameters in the steam space of the lower 11 and upper 10 network heaters associated with the supply 12 and return 13 pipelines of network water, and the exhaust steam from the steam turbine 1 is sent to the steam space of the condenser 2 in which steam is condensed on the surface of the condenser tubes, inside which coolant flows, and the condensate obtained is sent via a condensate pump 3 to the regeneration system, wherein

конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара посредством охлаждающей жидкости.steam condensations utilize waste low-potential heat energy of 1 steam spent in the turbine by means of a cooling liquid.

Отличием предлагаемого способа является то, что дополнительно используют теплообменник-охладитель 14 сетевой воды, который устанавливают на обратном 13 трубопроводе сетевой воды, конденсационную установку 15, состоящую из последовательно соединенных паровой турбины 16 с производственным отбором пара с электрогенератором 17, конденсатора 18 и конденсатного насоса 19, и систему 20 маслоснабжения подшипников паровой турбины 16 с производственным отбором пара, состоящую из маслоохладителя 24, маслобака 22 и маслонасоса 23, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы 20 маслоснабжения подшипников паровой турбины 16 с производственным отбором пара, при этом упомянутые утилизации осуществляют посредством теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина и состоящего из турбодетандера 6 с электрогенератором 7, теплообменника-конденсатора 8 и конденсатного насоса 9, при этом в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, причем упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе 9 теплового двигателя 5, нагревают в конденсаторе 2 паровой турбины 1, нагревают в маслоохладителе 24, нагревают в теплообменнике-охладителе 14 сетевой воды, нагревают и испаряют в конденсаторе 18 паровой турбины 16 с производственным отбором пара, расширяют в турбодетандере 6 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.The difference of the proposed method is that they additionally use a heat exchanger-cooler 14 of the network water, which is installed on the return 13 of the network water pipe, a condensing unit 15, consisting of a series-connected steam turbine 16 with production steam extraction with an electric generator 17, a condenser 18 and a condensate pump 19 and an oil supply system 20 for bearings of a steam turbine 16 with steam production, consisting of an oil cooler 24, an oil tank 22 and an oil pump 23, and further implemented they utilize high-potential heat of production steam and utilize low-potential heat of the oil supply system of bearings of a steam turbine 16 with steam production, the aforementioned utilization is carried out by means of a closed-circuit heat engine 5 operating on the organic Rankine cycle and consisting of a turbine expander 6 with an electric generator 7 , a heat exchanger-condenser 8 and a condensate pump 9, while a low boiling slave is used as a coolant the other body circulating in a closed circuit, and the aforementioned low-boiling working fluid is compressed in the condensate pump 9 of the heat engine 5, heated in the condenser 2 of the steam turbine 1, heated in the oil cooler 24, heated in the heat exchanger-cooler 14 of the network water, heated and evaporated in the condenser 18 steam turbines 16 with production steam extraction, are expanded in a turbine expander 6 of a heat engine and condensed in a heat exchanger-condenser 8 of a heat engine.

В качестве теплообменника-конденсатора 8 теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.As the heat exchanger-condenser 8 of the heat engine, an air-cooled condenser or a water-cooled condenser, or an air and water-cooled condenser are used.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Пример конкретного выполнения.An example of a specific implementation.

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.The exhaust steam coming from the steam turbine 1 into the steam space of the condenser 2 condenses on the surface of the condenser tubes, inside which coolant flows (liquefied propane C 3 H 8 ). The power of the steam turbine 1 is transmitted to the main electric generator 4 connected to one shaft.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.Steam condensation is accompanied by the release of latent heat of vaporization, which is removed using coolant. The condensate formed by means of a condensate pump 3 of a steam turbine condenser is sent to a regeneration system.

Преобразование сбросной низкопотенциальной тепловой энергии, отработавшего в турбине 1 пара, низкопотенциальной тепловой энергии системы 20 маслоснабжения подшипников паровой турбины 16 с производственным отбором пара, а также избыточной низкопотенциальной тепловой энергии обратной сетевой воды, и высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 16, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.Conversion of waste low-potential heat energy spent in the turbine 1 steam, low-potential heat energy of the oil supply system 20 of the bearings of the steam turbine 16 with production steam extraction, as well as excess low-potential heat energy of the return network water, and high-potential heat energy of the production steam from the steam turbine 16, into mechanical and, further, into an electric one, takes place in a closed circuit of the circulation of a heat engine 5 operating according to the organic Rankine cycle.

Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) отработавшего в турбине 1 пара, утилизацию низкопотенциальной теплоты системы 20 маслоснабжения подшипников паровой турбины 16 с производственным отбором пара, утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора из паровой турбины 16 с производственным отбором пара осуществляют путем последовательного нагрева, соответственно, в конденсаторе 2 паровой турбины, маслоохладителе 24, теплообменнике-охладителе 14 сетевой воды и конденсаторе 18 паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.Thus, the utilization of low-grade waste heat (latent heat of vaporization) of 1 steam spent in the turbine, the utilization of low-grade heat of the oil supply system for bearings of the steam turbine 16 with production steam extraction, the utilization of the excess low-grade heat of the return network water and the utilization of the high-grade heat of production steam from the steam turbine 16 with the production selection of steam is carried out by sequential heating, respectively, in a condenser of 2 vapors nd turbine oil cooler 24, a heat exchanger-cooler 14 and the condenser water network 18 to the steam turbine steam extraction productive, low-boiling working fluid (liquefied propane C 3 H 8) of the heat engine with closed-loop circulation operation in the organic Rankine cycle.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который последовательно направляют на нагрев в начале в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар с температурой в интервале от 300 K до 313,15 K, далее в маслоохладитель 24, куда поступает нагретое масло системы 20 маслоснабжения подшипников паровой турбины 16, а затем в теплообменник-охладитель 14 сетевой воды, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура нагретого масла и обратной сетевой воды может варьироваться в интервале от 313,15 K до 343,15 K.The whole process begins with compression in a condensate pump 9 of liquefied propane C 3 H 8 , which is sequentially directed for heating at the beginning to the condenser 2 of the steam turbine, where 1 steam spent in the turbine enters with a temperature in the range from 300 K to 313.15 K, then to the oil cooler 24, where the heated oil of the oil supply system 20 of the bearings of the steam turbine 16 enters, and then to the heat exchanger-cooler 14 of the network water, where the return network water from the return pipe 13 enters. In this case, the temperature of the heated oil and return network water s can vary between 313.15 K and 343.15 K.

В процессе конденсации отработавшего в турбине 1 пара в конденсаторе 2 паровой турбины и теплообмена нагретого масла с сжиженным пропаном C3H8 в маслоохладителе 24, а также в процессе теплообмена обратной сетевой воды с сжиженным пропаном C3H8 в теплообменнике-охладителе 14 сетевой воды, происходит нагрев сжиженного пропана C3H8 в пределах критической температуры в интервале от 308,15 K до 338,15 K при сверхкритическом давлении от 4,2512 МПа до 13 МПа, и далее его направляют на нагрев и испарение в конденсатор 18 паровой турбины с производственным отбором пара, куда поступает пар производственного отбора из паровой турбины 16 при температуре около 573 К.In the process of condensation of 1 steam spent in the turbine in the condenser 2 of the steam turbine and heat exchange of heated oil with liquefied propane C 3 H 8 in oil cooler 24, as well as in the process of heat exchange of return network water with liquefied propane C 3 H 8 in heat exchanger-cooler 14 of network water , the liquefied propane C 3 H 8 is heated at a critical temperature in the range from 308.15 K to 338.15 K at a supercritical pressure of 4.2512 MPa to 13 MPa, and then it is sent for heating and evaporation to the condenser 18 of the steam turbine with production selection m steam, steam production which receives the selection of the steam turbine 16 at a temperature of about 573 K.

Пар, поступающий из производственного отбора паровой турбины 16 в паровое пространство конденсатора 18, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 16 передается соединенному на одном валу основному электрогенератору 17.The steam coming from the production selection of the steam turbine 16 into the steam space of the condenser 18 condenses on the surface of the condenser tubes, inside which coolant flows (liquefied propane C 3 H 8 ). The power of the steam turbine 16 is transmitted to the main electric generator 17 connected to one shaft.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 19 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.Steam condensation is accompanied by the release of latent heat of vaporization, which is removed using coolant. The condensate formed by means of a condensate pump 19 of a steam turbine condenser with production steam extraction is sent to the regeneration system.

В процессе конденсации пара производственного отбора в конденсаторе 18 паровой турбины, происходит нагрев сжиженного пропана C3H8 до критической температуры 369,89 K, с последующим его испарением и перегревом до сверхкритической температуры от 369,89 K до 420 K при сверхкритическом давлении от 4,2512 МПа до 13 МПа, который направляют в турбодетандер 6.During the condensation of production steam in the condenser 18 of the steam turbine, the liquefied propane C 3 H 8 is heated to a critical temperature of 369.89 K, followed by its evaporation and overheating to a supercritical temperature of 369.89 K to 420 K at a supercritical pressure of 4 , 2512 MPa to 13 MPa, which is sent to a turboexpander 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H8 имеет температуру около 288 K с влажностью не превышающей 12%.The process is configured in such a way that condensation of gaseous propane C 3 H 8 does not occur in the operation of the heat transfer in the turbine expander 6. The power of the turboexpander 6 is transmitted to an electric generator 7 connected to one shaft. At the outlet of the turboexpander 6, gaseous propane C 3 H 8 has a temperature of about 288 K with a humidity not exceeding 12%.

Далее, при снижении температуры газообразного пропана C3H8, происходит его сжижение в теплообменнике-конденсаторе 8, выполненного, например, в виде конденсатора воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 K до 283,15 K.Further, when the temperature of the propane gas C 3 H 8 decreases, it is liquefied in the heat exchanger-condenser 8, made, for example, in the form of an air-cooled condenser cooled by ambient air in the temperature range from 223.15 K to 283.15 K.

После теплообменника-конденсатора 8 в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя.After the heat exchanger-condenser 8 in a liquefied state, propane C 3 H 8 is sent for compression to the condensate pump 9 of the heat engine.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.Further, the organic Rankine cycle based on a low-boiling working fluid is repeated.

Использование в работе тепловой электрической станции конденсационной установки 15 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.The use of a condensing unit 15 in a thermal power plant allows increasing the initial parameters of a low-boiling working fluid of a heat engine with a closed circulation circuit to supercritical parameters, which leads to an increase in heat transfer on a turbo-expander 6.

Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты отработавшего пара, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.Using the proposed method of operation of a thermal power plant will allow, in comparison with the prototype, to increase the efficiency of TPPs due to the full use of low-grade waste heat of exhaust steam, utilization of low-grade heat of the oil supply system of steam turbine bearings with production steam extraction, utilization of excess low-grade heat of return network water and utilization of high potential heat of steam of production selection for additional production electric energy, increase the resource and reliability of the steam turbine condenser and reduce heat emissions into the environment.

Claims (3)

1. Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий отбор пара из паровой турбины, направление пара отопительных параметров в паровое пространство нижнего и верхнего сетевых подогревателей, связанных с подающим и обратным трубопроводами сетевой воды, а отработавший пар из паровой турбины направляют в паровое пространство конденсатора, в котором пар конденсируют на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, и полученный конденсат с помощью конденсатного насоса направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара посредством охлаждающей жидкости, отличающийся тем, что дополнительно используют теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, конденсационную установку, состоящую из последовательно соединенных паровой турбины с производственным отбором пара с электрогенератором, конденсатора и конденсатного насоса, и систему маслоснабжения подшипников паровой турбины с производственным отбором пара, состоящую из маслоохладителя, маслобака и маслонасоса, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, при этом упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина и состоящего из турбодетандера с электрогенератором, теплообменника-конденсатора и конденсатного насоса, при этом в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, причем упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе, нагревают в теплообменнике-охладителе сетевой воды, нагревают и испаряют в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.1. The method of utilization of thermal energy generated by a thermal power plant, including the selection of steam from a steam turbine, the direction of the steam of heating parameters into the steam space of the lower and upper network heaters associated with the supply and return pipelines of the network water, and the exhaust steam from the steam turbine is sent to the steam the space of the condenser, in which steam is condensed on the surface of the condenser tubes, inside which coolant flows, and the condensate obtained using condensate of the pump is sent to the regeneration system, and during steam condensation, the waste low-potential heat energy of the steam exhausted in the turbine is utilized by means of a coolant, characterized in that they additionally use a network water heat exchanger-cooler, which is installed on the return line of the network water, a condensation unit consisting of series-connected steam turbines with production steam extraction with an electric generator, condenser and condensate pump, and sys the topic of oil supply for bearings of a steam turbine with production steam extraction, consisting of an oil cooler, oil tank and oil pump, and they additionally utilize the high potential heat of production steam and utilize the low potential heat of the oil supply system of bearings of a steam turbine with production steam extraction, with the said utilization being carried out by means of a heat engine with closed loop operating on the organic Rankine cycle and consisting of turbo an expander with an electric generator, a heat exchanger-condenser and a condensate pump, in this case, a low boiling medium circulating in a closed circuit is used as coolant, the aforementioned low boiling medium being compressed in a condensate pump of a heat engine, heated in a steam turbine condenser, heated in an oil cooler, heated in a heat exchanger-cooler of network water, they heat and evaporate in a condenser of a steam turbine with production steam extraction, expand thermally in a turboexpander th engine and condense in the heat exchanger-condenser of the heat engine. 2. Способ по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.2. The method according to p. 1, characterized in that the air-cooled condenser or the water-cooled condenser, or the air and water-cooled condenser are used as the heat exchanger-condenser of the heat engine. 3. Способ по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан C3H8. 3. The method according to p. 1, characterized in that as a low-boiling working fluid use liquefied propane C 3 H 8 .
RU2014109210/02A 2014-03-11 2014-03-11 Heat power plant operation mode RU2560500C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014109210/02A RU2560500C1 (en) 2014-03-11 2014-03-11 Heat power plant operation mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014109210/02A RU2560500C1 (en) 2014-03-11 2014-03-11 Heat power plant operation mode

Publications (1)

Publication Number Publication Date
RU2560500C1 true RU2560500C1 (en) 2015-08-20

Family

ID=53880674

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014109210/02A RU2560500C1 (en) 2014-03-11 2014-03-11 Heat power plant operation mode

Country Status (1)

Country Link
RU (1) RU2560500C1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2268372C2 (en) * 2004-03-05 2006-01-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Thermoelectric power station
RU2269015C2 (en) * 2004-03-12 2006-01-27 Государственное образовательное учреждение высшего пофессионального образования "Ульяновский государственный технический университет" Thermal power station
EP1701006A2 (en) * 2005-02-22 2006-09-13 Kabushiki Kaisha Toshiba Electric power-generating and desalination combined plant and operation method of the same
RU2320879C1 (en) * 2006-08-14 2008-03-27 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Coaxial-face thermal tube engine
US20080141672A1 (en) * 2006-12-15 2008-06-19 Minish Mahendra Shah Electrical power generation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2268372C2 (en) * 2004-03-05 2006-01-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Thermoelectric power station
RU2269015C2 (en) * 2004-03-12 2006-01-27 Государственное образовательное учреждение высшего пофессионального образования "Ульяновский государственный технический университет" Thermal power station
EP1701006A2 (en) * 2005-02-22 2006-09-13 Kabushiki Kaisha Toshiba Electric power-generating and desalination combined plant and operation method of the same
RU2320879C1 (en) * 2006-08-14 2008-03-27 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Coaxial-face thermal tube engine
US20080141672A1 (en) * 2006-12-15 2008-06-19 Minish Mahendra Shah Electrical power generation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
АНДРЮЩЕНКО В.И. и др. "Теплофикационные установки и их использование", М.,Высшая школа, 1989, с.233-235 *

Similar Documents

Publication Publication Date Title
RU2560503C1 (en) Heat power plant operation mode
RU2559655C9 (en) Method of operation of thermal power plant
RU2560502C1 (en) Heat power plant operation mode
RU2560505C1 (en) Heat power plant operation mode
RU2560500C1 (en) Heat power plant operation mode
RU2562745C1 (en) Utilisation method of heat energy generated by thermal power plant
RU2552481C1 (en) Operating method of thermal power plant
RU2560615C1 (en) Heat power plant operation mode
RU2562730C1 (en) Utilisation method of thermal energy generated by thermal power plant
RU2560496C1 (en) Heat power plant operation mode
RU2560499C1 (en) Heat power plant operation mode
RU2560504C1 (en) Heat power plant operation mode
RU2560497C1 (en) Heat power plant operation mode
RU2564470C2 (en) Operating method of thermal power plant
RU2560514C1 (en) Heat power plant operation mode
RU2570961C2 (en) Method of operation of thermal power plant
RU2560507C1 (en) Heat power plant operation mode
RU2560512C1 (en) Heat power plant operation mode
RU2560498C1 (en) Heat power plant operation mode
RU2570943C2 (en) Method of operation of thermal power plant
RU2568348C2 (en) Operating method of thermal power plant
RU2560509C1 (en) Heat power plant operation mode
RU2564466C2 (en) Heat power plant operation mode
RU2560495C1 (en) Heat power plant operation mode
RU2564748C1 (en) Operating method of thermal power plant

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160312