RU2560512C1 - Heat power plant operation mode - Google Patents

Heat power plant operation mode Download PDF

Info

Publication number
RU2560512C1
RU2560512C1 RU2014109321/02A RU2014109321A RU2560512C1 RU 2560512 C1 RU2560512 C1 RU 2560512C1 RU 2014109321/02 A RU2014109321/02 A RU 2014109321/02A RU 2014109321 A RU2014109321 A RU 2014109321A RU 2560512 C1 RU2560512 C1 RU 2560512C1
Authority
RU
Russia
Prior art keywords
steam
steam turbine
heat
condenser
low
Prior art date
Application number
RU2014109321/02A
Other languages
Russian (ru)
Inventor
Айрат Маратович Гафуров
Наиль Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2014109321/02A priority Critical patent/RU2560512C1/en
Application granted granted Critical
Publication of RU2560512C1 publication Critical patent/RU2560512C1/en

Links

Abstract

FIELD: power industry.
SUBSTANCE: invention relates to power engineering and can be used in the heat power plants (HPP) for utilisation of discharge low-grade heat in condensers of steam turbines of heat power plant, utilisation of low-grade heat of oil supply system of bearings of the steam turbine, utilisation of low-grade heat of steam of heating extraction from the steam turbine and utilisation of high-grade heat of industrial steam extraction.
EFFECT: improvement of efficiency of heat power plant which is achieved due to full use of waste low-grade heat, utilisation of low-grade heat of oil supply system of steam turbine bearings and utilisation of low-grade heat of heating extraction steam from the steam turbine for additional electric power generation, increase of service life and reliability of operation of the steam turbine condenser and decrease of thermal emissions into environment.
3 cl, 1 dwg

Description

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора.The invention relates to the field of energy and can be used at thermal power plants (TPPs) for utilization of low-grade waste heat in condensers of steam turbines of a TPP, utilization of low-grade heat of the oil supply system of bearings of a steam turbine, utilization of low-grade heat of steam of heating extracts from a steam turbine and utilization of high-grade heat of steam production selection.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU №2269656, МПК F01K 17/02, 10.02.2006).An analogue is the method of operation of a thermal power plant, in which the entire return flow of network water returned from consumers is successively heated by steam of turbine offsets in the lower and upper network heaters, and then directed to consumers, the exhaust steam is cooled by circulating water, which is used as a source low potential heat for the evaporator of the heat pump installation, while the entire flow of network water after the lower network heater is additionally heated to densifier of the heat pump installation (patent RU No. 2269656, IPC F01K 17/02, 02/10/2006).

Прототипом является тепловая электрическая станция, содержащая подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом (патент RU №2268372, МПК F01K 17/02, 20.01.2006).The prototype is a thermal power plant containing a supply and return piping of network water, a steam turbine with heating steam extraction and a condenser, to which pressure and drain pipelines of circulation water are connected, network heaters connected through a heated medium between the supply and return pipelines of network water and connected through heating medium to heating taps, a heat pump installation, the evaporator of which is connected via heating medium to a drainage pipe of circulating water, while m the condenser of the heat pump installation for the heated medium is included in the supply pipe of the network water after the network heaters, as well as the oil supply system for the bearings of the steam turbine, which contains a drain pipe, an oil tank, an oil pump and an oil cooler connected in series through the heated medium and connected to the pressure pipe through the heated medium ( patent RU No. 2268372, IPC F01K 17/02, 01/20/2006).

В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода. В паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслохладителем.In the known method, the network water coming from consumers through the return line of the network water is supplied to the network heaters by means of the network pump, where they are heated with steam from the heating taps of the turbine. The steam spent in the turbine is cooled in a condenser, for which it is fed into it through a pressure pipe and circulated water is discharged through a drain pipe. The network water heated in the network heaters is additionally heated before being supplied to consumers in the condenser of the heat pump installation, and circulating water from the drain pipe is used as a low-grade heat source in the evaporator of the heat pump installation. In a steam turbine, an oil supply system for bearings of a steam turbine with an oil cooler is used.

Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют соответственно утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем.Thus, in the known method of operating a thermal power plant, steam of heating parameters from the steam turbine’s withdrawals enters the steam space of the lower and upper network heaters, the network water is supplied from consumers via the return water pipe to the lower network heater and the upper network heater, then the network water is directed in the supply pipe of the network water, the exhaust steam comes from the steam turbine into the steam space of the condenser, condensate on the surface of the heating pipes, the condensate is sent to the regeneration system using the condensate pump of the condenser of the steam turbine, while the condensing of the exhaust steam and the steam of the heating extracts respectively utilize the waste low-potential heat energy of the steam exhausted in the turbine and utilize the low-grade heat of the steam of the heating extracts from a steam turbine using a coolant, and in the steam turbine use the oil supply system nicks steam turbine oil cooler.

Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, обусловленную наличием вторичного контура (теплонасосной установки), отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, а также отсутствия утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины, для дополнительной выработки электроэнергии.The main disadvantage of the analogue and prototype is the relatively low efficiency of TPPs for generating electric energy due to the lack of complete utilization of the latent heat of vaporization in the steam turbine condenser, due to the presence of the secondary circuit (heat pump installation), the lack of utilization of the low potential heat of the oil supply system of the steam turbine bearings, as well as the lack of utilization of low-grade heat of steam from heating steam from a steam turbine, for additional tion electricity.

Кроме этого недостатками являются низкие ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.In addition, the disadvantages are the low resource and reliability of the steam turbine condenser due to the use of technical (circulating) water, which pollutes the steam turbine condenser. Due to the increased thermal emissions of the circulation water into the cooling pond, its ecosystem is disturbed.

Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.The objective of the invention is to develop a method of utilizing the heat of a thermal power plant, which eliminates these disadvantages of the analogue and prototype.

Техническим результатом является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.The technical result is to increase the efficiency of TPPs due to the full use of waste low-grade heat, utilization of low-grade heat of the oil supply system of steam turbine bearings and utilization of low-grade heat of steam from heating taps from a steam turbine for additional generation of electric energy, increase the service life and reliability of a steam turbine condenser and reduce thermal emissions into the environment.

Технический результат достигается тем, что в способе утилизации теплоты тепловой электрической станции (ТЭС), включающий подачу отработавшего пара из паровой турбины в паровое пространство конденсатора с обеспечением его конденсации на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, причем конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а пар отопительных параметров из отборов паровой турбины направляют в паровое пространство нижнего и верхнего сетевых подогревателей с обеспечением его конденсации на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют соответственно утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем, согласно настоящему изобретению в ТЭС дополнительно используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара, и осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора, дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара, утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизацию высокопотенциальной теплоты пара производственного отбора осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе, нагревают в нижнем сетевом подогревателе паровой турбины, нагревают в верхнем сетевом подогревателе паровой турбины, нагревают и испаряют в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.The technical result is achieved by the fact that in the method of heat recovery of a thermal power plant (TPP), comprising supplying exhaust steam from a steam turbine to the steam space of the condenser to ensure its condensation on the surface of the condenser tubes, inside which coolant flows, moreover, condensate using a condenser pump the steam turbine is sent to the regeneration system, and the steam of heating parameters from the steam turbine offsets is sent to the steam space of the lower and upper of network heaters, ensuring its condensation on the surface of the heated tubes of network heaters, inside which coolant flows, while the condensation of the exhaust steam and steam of the heating taps respectively utilizes the waste low-potential heat energy of the steam spent in the turbine and utilizes the low potential heat of the steam of the heating taps from the steam turbines with coolant, and in the steam turbine use the oil supply system of steam coolers of the steam turbine with an oil cooler according to the present invention, the TPPs additionally use a condensing unit having a steam turbine condenser with production steam extraction and utilize the high potential heat of production steam, additionally utilize the low potential heat of the oil supply system of the steam turbine bearings, while disposing of the low potential waste thermal energy of steam exhausted in the turbine, low-grade utilization The heat of the oil supply system for bearings of a steam turbine, the utilization of low-grade heat of steam from heating steam from a steam turbine, and the utilization of high-potential heat of steam of production take-off is carried out using a closed-circuit heat engine operating on the organic Rankine cycle, in which a low-boiling working fluid is used as the coolant, circulating in a closed circuit, while it is compressed in a condensate pump of a heat engine, heated in condensation steam turbine torch, heated in an oil cooler, heated in a lower steam turbine network heater, heated in a steam turbine upper network heater, heated and evaporated in a steam turbine condenser with production steam extraction, expanded in a heat engine turbine expander and condensed in a heat engine heat exchanger-condenser.

В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.As a heat exchanger-condenser of a heat engine, either an air-cooled condenser, or a water-cooled condenser, or an air-cooled and water-cooled condenser are used.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора из турбины с производственным отбором пара, которые осуществляют путем последовательного нагрева соответственно в конденсаторе паровой турбины, маслоохладителе, в сетевых подогревателях и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.Thus, the technical result is achieved through the complete utilization of waste low-grade heat (latent heat of vaporization), the utilization of low-grade heat of the oil supply system of the steam turbine bearings, the utilization of low-grade heat of the steam from heating extracts from the steam turbine, and the utilization of the high-grade heat of the steam from production sampling from a turbine with production steam extraction which are carried out by sequential heating respectively in a steam turbine condenser oil cooler, in network heaters and condenser of a steam turbine with production extraction of steam, low-boiling working fluid (liquefied propane С 3 Н 8 ) of a closed-circuit heat engine operating on the organic Rankine cycle.

Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, сетевые подогреватели и конденсационную установку.The invention is illustrated in the drawing, which shows a thermal power plant having a heat engine with a heat exchanger-condenser, network heaters and a condensing unit.

На чертеже цифрами обозначены:In the drawing, the numbers indicate:

1 - паровая турбина,1 - steam turbine,

2 - конденсатор паровой турбины,2 - condenser of a steam turbine,

3 - конденсатный насос конденсатора паровой турбины,3 - condensate pump condenser of a steam turbine,

4 - основной электрогенератор,4 - the main generator

5 - тепловой двигатель с замкнутым контуром циркуляции,5 - heat engine with a closed circuit,

6 - турбодетандер,6 - turboexpander,

7 - электрогенератор,7 - electric generator,

8 - теплообменник-конденсатор,8 - heat exchanger-condenser,

9 - конденсатный насос,9 - condensate pump,

10 - верхний сетевой подогреватель,10 - upper network heater,

11 - нижний сетевой подогреватель,11 - lower network heater,

12 - система маслоснабжения подшипников паровой турбины,12 - oil supply system for bearings of a steam turbine,

13 - сливной трубопровод,13 - drain pipe

14 - маслобак,14 - oil tank

15 - маслонасос,15 - oil pump,

16 - маслоохладитель,16 - oil cooler

17 - напорный трубопровод,17 - pressure pipe

18 - конденсационная установка,18 - condensation installation

19 - паровая турбина с производственным отбором пара,19 is a steam turbine with production steam extraction,

20 - электрогенератор паровой турбины с производственным отбором пара,20 - electric generator of a steam turbine with production steam extraction,

21 - конденсатор паровой турбины с производственным отбором пара,21 is a condenser of a steam turbine with production steam extraction,

22 - конденсатный насос конденсатора паровой турбины с производственным отбором пара.22 - condensate pump of a condenser of a steam turbine with production steam extraction.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, которые между собой соединены по нагреваемой среде, а также систему 12 маслоснабжения подшипников паровой турбины 1, содержащую последовательно соединенные по греющей среде сливной трубопровод 13, маслобак 14, маслонасос 15 и маслоохладитель 16, выход которого по нагреваемой среде соединен с напорным трубопроводом 17.The thermal power plant includes a series-connected steam turbine 1, a steam turbine condenser 2 and a condenser pump 3 of a steam turbine condenser, a main electric generator 4 connected to a steam turbine 1, which is connected via heating medium to the upper 10 and lower 11 network heaters, which are interconnected on a heated medium, as well as a system 12 of oil supply for bearings of a steam turbine 1, comprising a drain pipe 13, an oil tank 14, an oil pump 15 and oil, connected in series through a heating medium cooler 16, the output of which is connected via a heated medium to a pressure pipe 17.

В тепловую электрическую станцию введены тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, и конденсационная установка 18. Конденсационная установка 18 содержит последовательно соединенные паровую турбину 19 с производственным отбором пара, имеющую электрогенератор 20, конденсатор 21 паровой турбины с производственным отбором пара и конденсатный насос 22 конденсатора паровой турбины с производственным отбором пара.A closed-loop organic engine 5 operating on the Rankine organic cycle and a condensing unit 18 are introduced into the thermal power station. The condensing unit 18 comprises a steam turbine 19 with production steam having a generator 20 in series, a condenser 21 of a steam turbine with production steam and a condensate pump 22 of a steam turbine condenser with production steam extraction.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, теплообменник-конденсатор 8, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя 16, выход маслоохладителя 16 по нагреваемой среде соединен с входом нижнего сетевого подогревателя 11, а выход верхнего сетевого подогревателя 10 соединен по нагреваемой среде с входом конденсатора 21 паровой турбины с производственным отбором пара, выход конденсатора 21 паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.The closed circulation circuit of the heat engine 5 is made in the form of a circuit with a low-boiling working fluid containing a turboexpander 6 connected in series with an electric generator 7, a heat exchanger-condenser 8, a condensate pump 9, the output of the condensate pump 9 being connected via a heated medium to the input of the condenser 2 of the steam turbine, output which is connected through a heated medium to the input of the oil cooler 16, the output of the oil cooler 16 through a heated medium is connected to the input of the lower network heater 11, and the output of the upper network heater the generator 10 is connected via a heated medium to the inlet of a condenser 21 of a steam turbine with production steam extraction, the output of the condenser 21 of a steam turbine with a production steam extraction is connected through a heated medium to the input of a turboexpander 6, forming a closed cooling circuit.

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, осуществляют следующим образом.A method of utilizing thermal energy generated by a thermal power plant is as follows.

Способ включает в себя подачу отработавшего пара из паровой турбины 1 в паровое пространство конденсатора 2 с обеспечением его конденсации на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, причем конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины 1 направляют в систему регенерации, а пар отопительных параметров из отборов паровой турбины 1 направляют в паровое пространство нижнего 11 и верхнего 10 сетевых подогревателей с обеспечением его конденсации на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют соответственно утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 при помощи охлаждающей жидкости, причем в паровой турбине 1 используют систему 12 маслоснабжения подшипников паровой турбины 1 с маслоохладителем 16.The method includes supplying the exhaust steam from the steam turbine 1 to the steam space of the condenser 2 to allow it to condense on the surface of the condenser tubes inside which the coolant flows, the condensate being sent via the condensate pump 3 of the condenser of the steam turbine 1 to the regeneration system, and the heating steam parameters from the steam turbine 1 take-offs are sent to the steam space of the lower 11 and upper 10 network heaters to ensure its condensation on the surface of the heated the side of the network heaters, inside which the coolant flows, while during the condensation of the exhaust steam and the steam of the heating taps, respectively, the waste low-potential heat energy of the steam 1 spent in the turbine is recycled and the low-grade heat of the steam of the heating taps from the steam turbine 1 is used with coolant, steam turbine 1 use the oil supply system 12 of bearings of the steam turbine 1 with oil cooler 16.

Отличием предлагаемого способа является то, что в ТЭС дополнительно используют конденсационную установку 18, имеющую конденсатор 21 паровой турбины 19 с производственным отбором пара, и осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора, дополнительно осуществляют утилизацию низкопотенциальной теплоты системы 12 маслоснабжения подшипников паровой турбины 1, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара, утилизацию низкопотенциальной теплоты системы 12 маслоснабжения подшипников паровой турбины 1, утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 и утилизацию высокопотенциальной теплоты пара производственного отбора осуществляют при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе 9 теплового двигателя 5, нагревают в конденсаторе 2 паровой турбины 1, нагревают в маслоохладителе 16, нагревают в нижнем 11 сетевом подогревателе паровой турбины 1, нагревают в верхнем 10 сетевомподогревателе паровой турбины 1, нагревают и испаряют в конденсаторе 21 паровой турбины 19 с производственным отбором пара, расширяют в турбодетандере 6 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.The difference of the proposed method is that in the thermal power plant they additionally use a condensing unit 18 having a condenser 21 of the steam turbine 19 with production steam extraction and utilize the high potential heat of the production steam, additionally utilize the low potential heat of the oil supply system 12 of the bearings of the steam turbine 1, while utilization of waste low-potential heat energy of 1 steam spent in the turbine, utilization of low-potential heat of the system 12 ma supplying the bearings of the steam turbine 1, utilizing the low potential heat of steam from the heating taps from the steam turbine 1 and utilizing the high potential heat of steam from the production tapping is carried out using a closed-loop heat engine 5 operating on the organic Rankine cycle, in which a low-boiling working fluid is used as cooling liquid circulating in a closed circuit, while it is compressed in the condensate pump 9 of the heat engine 5, heated in the condenser 2 steam turbine 1, heated in an oil cooler 16, heated in the lower 11 network heater of a steam turbine 1, heated in the upper 10 network heater of a steam turbine 1, heated and evaporated in a condenser 21 of a steam turbine 19 with production steam extraction, expanded in a turbine engine expander 6 and condensed in the heat exchanger-condenser 8 of the heat engine.

В качестве теплообменника-конденсатора 8 теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.As the heat exchanger-condenser 8 of the heat engine, either an air-cooled condenser, or a water-cooled condenser, or an air and water-cooled condenser are used.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Пример конкретного выполненияConcrete example

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан С3Н8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.The exhaust steam coming from the steam turbine 1 into the steam space of the condenser 2 condenses on the surface of the condenser tubes, inside which coolant flows (liquefied propane C 3 H 8 ). The power of the steam turbine 1 is transmitted to the main electric generator 4 connected to one shaft.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.Steam condensation is accompanied by the release of latent heat of vaporization, which is removed using coolant. The condensate formed by means of a condensate pump 3 of a steam turbine condenser is sent to a regeneration system.

Преобразование сбросной низкопотенциальной тепловой энергии, отработавшего в турбине 1 пара, низкопотенциальной тепловой энергии системы 12 маслоснабжения подшипников паровой турбины 1, а также низкопотенциальной тепловой энергии пара отопительных отборов из паровой турбины 1 и высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 19 в механическую и далее в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.Conversion of waste low-potential heat energy spent in the turbine 1 steam, low-potential heat energy of the oil supply system 12 of the bearings of the steam turbine 1, as well as low-potential heat energy of the heating steam from the steam turbine 1 and high-potential heat energy of the production steam from the steam turbine 19 to mechanical and further in the electric occurs in a closed loop circulation of the heat engine 5, operating on the organic Rankine cycle.

Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) отработавшего в турбине 1 пара, утилизацию низкопотенциальной теплоты системы 12 маслоснабженияподшипников паровой турбины 1, утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 и утилизацию высокопотенциальной теплоты пара производственного отбора из паровой турбины 19 с производственным отбором пара осуществляют путем последовательного нагрева соответственно в конденсаторе 2 паровой турбины, маслоохладителе 16, в сетевых подогревателях 11, 10 и конденсаторе 21 паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.Thus, the utilization of low-grade waste heat (latent heat of vaporization) of 1 steam spent in the turbine, the utilization of low-grade heat of the oil supply system for steam bearings of the steam turbine 1, the utilization of low-grade heat of steam from the heating taps from the steam turbine 1, and the utilization of the high-grade heat of production steam 19 from steam steam production is carried out by sequential heating, respectively, in the condenser 2 of the steam turbine, oil cooling Itel 16, in network heaters 11, 10 and condenser 21 of a steam turbine with production extraction of steam, low-boiling working fluid (liquefied propane C 3 H 8 ) of the heat engine 5 with a closed circulation loop operating on the organic Rankine cycle.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана С3Н8, который последовательно направляют на нагрев вначале в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар с температурой в интервале от 300 К до 313,15 К, далее в маслоохладитель 16, куда поступает нагретое масло системы 12 маслоснабжения подшипников паровой турбины 1, а затем в нижний сетевой подогреватель 11, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 365 К и в верхний сетевой подогреватель 10, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 400 К. При этом температура нагретого масла в маслоохладителе 16 может варьироваться в интервале от 318,15 К до 348,15 К.The whole process begins with compression in a condensate pump 9 of liquefied propane C 3 H 8 , which is subsequently directed for heating first to the condenser 2 of the steam turbine, where 1 steam spent in the turbine enters with a temperature in the range from 300 K to 313.15 K, then to oil cooler 16, where the heated oil of the oil supply system 12 of the bearings of the steam turbine 1 enters, and then to the lower network heater 11, where the heating steam from the steam turbine 1 enters at a temperature of about 365 K and to the upper network heater 10, where AET selection steam heating from the steam turbine 1 at a temperature of about 400 K. The temperature of the heated oil in the oil cooler 16 may vary in the range from 318.15 K to 348.15 K

В процессе конденсации отработавшего в турбине 1 пара в конденсаторе 2 паровой турбины и в процессе теплообмена нагретого масла с сжиженным пропаном С3Н8 в маслоохладителе 16, а также в процессе конденсации пара отопительных отборов в нижнем сетевом подогревателе 11 и в верхнем сетевом подогревателе 10 паровой турбины 1 происходит нагрев сжиженного пропана С3Н8 до критической температуры 369,89 К при сверхкритическом давлении от 4,2512 МПа до 13 МПа, и далее его направляют на нагрев и испарение в конденсатор 21 паровой турбины спроизводственным отбором пара, куда поступает пар производственного отбора из паровой турбины 19 при температуре около 573 К.In the process of condensation of 1 steam spent in the turbine in the condenser 2 of the steam turbine and in the process of heat exchange of heated oil with liquefied propane C 3 H 8 in the oil cooler 16, as well as in the process of condensation of the steam of heating selections in the lower network heater 11 and in the upper network heater 10 of the steam of turbine 1, the liquefied propane C 3 H 8 is heated to a critical temperature of 369.89 K at a supercritical pressure of 4.2512 MPa to 13 MPa, and then it is sent for heating and evaporation to the condenser 21 of the steam turbine with steam boron, where the production steam from the steam turbine 19 enters at a temperature of about 573 K.

Пар, поступающий из производственного отбора паровой турбины 19 в паровое пространство конденсатора 21, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан С3Н8). Мощность паровой турбины 19 передается соединенному на одном валу основному электрогенератору 20.The steam coming from the production selection of the steam turbine 19 into the steam space of the condenser 21 condenses on the surface of the condenser tubes, inside which coolant flows (liquefied propane C 3 H 8 ). The power of the steam turbine 19 is transmitted to the main electric generator 20 connected to one shaft.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 22 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.Steam condensation is accompanied by the release of latent heat of vaporization, which is removed using coolant. The condensate formed by means of a condensate pump 22 of a steam turbine condenser with production steam extraction is sent to a regeneration system.

В процессе конденсации пара производственного отбора в конденсаторе 21 паровой турбины происходит испарение сжиженного пропана С3Н8 и дальнейший его перегрев до сверхкритической температуры от 369,89 К до 420 К при сверхкритическом давлении от 4,2512 МПа до 13 МПа, который направляют в турбодетандер 6.During the condensation of production steam in the condenser 21 of a steam turbine, the liquefied propane C 3 H 8 evaporates and then overheats to a supercritical temperature of 369.89 K to 420 K at a supercritical pressure of 4.2512 MPa to 13 MPa, which is sent to a turbine expander 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана С3Н8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан С3Н8 имеет температуру около 288 К с влажностью, не превышающей 12%.The process is set up in such a way that in the expander 6 there is no condensation of gaseous propane C 3 H 8 during the operation of the heat transfer. The power of the turboexpander 6 is transmitted to an electric generator 7 connected to one shaft. At the outlet of the turboexpander 6, gaseous propane C 3 H 8 has a temperature of about 288 K with a humidity not exceeding 12%.

Далее при снижении температуры газообразного пропана С3Н8 происходит его сжижение в теплообменнике-конденсаторе 8, выполненном, например, в виде конденсатора воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.Further, when the temperature of gaseous propane C 3 H 8 decreases, it is liquefied in a heat exchanger-condenser 8, made, for example, in the form of an air-cooled condenser cooled by ambient air in the temperature range from 223.15 K to 283.15 K.

После теплообменника-конденсатора 8 в сжиженном состоянии пропан С3Н8 направляют для сжатия в конденсатный насос 9 теплового двигателя.After the heat exchanger-condenser 8 in a liquefied state, propane C 3 H 8 is sent for compression to the condensate pump 9 of the heat engine.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.Further, the organic Rankine cycle based on a low-boiling working fluid is repeated.

Использование в работе тепловой электрической станции конденсационной установки 18 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.The use of a condensing unit 18 in a thermal electric power station allows increasing the initial parameters of a low-boiling working fluid of a heat engine with a closed circulation circuit to supercritical parameters, which leads to an increase in heat transfer on a turbo-expander 6.

Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты отработавшего пара, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.Using the proposed method of operation of a thermal power plant will allow, in comparison with the prototype, to increase the efficiency of TPPs due to the full use of low-grade waste heat of exhaust steam, utilization of low-grade heat of the oil supply system of steam turbine bearings, utilization of low-grade heat of steam from heating extracts from a steam turbine and utilization of high-potential heats of steam of production selection from a steam turbine with production selection additional steam for electric power generation, increase the life and reliability of operation of a steam turbine condenser and reduce heat emission to the environment.

Claims (3)

1. Способ утилизации теплоты тепловой электрической станции (ТЭС), включающий подачу отработавшего пара из паровой турбины в паровое пространство конденсатора с обеспечением его конденсации на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, причем конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а пар отопительных параметров из отборов паровой турбины направляют в паровое пространство нижнего и верхнего сетевых подогревателей с обеспечением его конденсации на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют соответственно утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем, отличающийся тем, что в ТЭС дополнительно используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара, и осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора, дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара, утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизацию высокопотенциальной теплоты пара производственного отбора осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе, нагревают в нижнем сетевом подогревателе паровой турбины, нагревают в верхнем сетевом подогревателе паровой турбины, нагревают и испаряют в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.1. The method of heat recovery of a thermal power plant (TPP), including the supply of exhaust steam from a steam turbine to the steam space of the condenser to ensure its condensation on the surface of the condenser tubes, inside which coolant flows, and the condensate is sent to the system using the condensate pump of the condenser of the steam turbine regeneration, and steam of heating parameters from the steam turbine offsets is sent to the steam space of the lower and upper network heaters with the provision of its on condensation on the surface of the heated tubes of the network heaters, inside which coolant flows, while during the condensation of the exhaust steam and the steam of the heating taps, the waste low-potential heat energy of the steam spent in the turbine is respectively disposed of and the low-grade heat of the steam of the heating taps from the steam turbine is utilized using coolant moreover, in a steam turbine use the oil supply system of bearings of a steam turbine with an oil cooler, about characterized in that the TPP additionally uses a condensing unit having a steam turbine condenser with production steam extraction and utilizes the high potential heat of production steam, additionally utilizes the low potential heat of the oil supply system of the steam turbine bearings, while utilizing the low potential waste heat energy spent in the turbine steam, utilization of low-grade heat of the oil supply system of bearings steam tour In other words, the utilization of low-grade heat of steam from heating taps from a steam turbine and the utilization of high-potential heat of steam from production taps are carried out using a closed-circuit heat engine operating on the organic Rankine cycle, in which a low-boiling working fluid circulating in a closed loop is used as cooling liquid, while it is compressed in a condensate pump of a heat engine, heated in a condenser of a steam turbine, heated in an oil cooler, heated vayut preheater in the lower network of the steam turbine, is heated in the upper network preheater of the steam turbine, is heated and evaporated in the condenser of a steam turbine with productive steam extraction, is expanded in an expansion turbine of the heat engine, and condensed in exchanger-condenser heat engine. 2. Способ по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.2. The method according to p. 1, characterized in that the air-cooled condenser, or the water-cooled condenser, or the air and water-cooled condenser are used as the heat exchanger-condenser of the heat engine. 3. Способ по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8. 3. The method according to p. 1, characterized in that as a low-boiling working fluid use liquefied propane C 3 H 8 .
RU2014109321/02A 2014-03-11 2014-03-11 Heat power plant operation mode RU2560512C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014109321/02A RU2560512C1 (en) 2014-03-11 2014-03-11 Heat power plant operation mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014109321/02A RU2560512C1 (en) 2014-03-11 2014-03-11 Heat power plant operation mode

Publications (1)

Publication Number Publication Date
RU2560512C1 true RU2560512C1 (en) 2015-08-20

Family

ID=53880683

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014109321/02A RU2560512C1 (en) 2014-03-11 2014-03-11 Heat power plant operation mode

Country Status (1)

Country Link
RU (1) RU2560512C1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014850A1 (en) * 1993-11-15 1995-06-01 Enertech Environmental, Inc. Efficient utilization of chlorine and moisture-containing fuels
RU2230199C2 (en) * 2002-08-06 2004-06-10 Осыка Александр Семёнович Heat recovery method
RU2268372C2 (en) * 2004-03-05 2006-01-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Thermoelectric power station
WO2010104897A2 (en) * 2009-03-09 2010-09-16 E-Cube Energy, Inc. Systems and methods of thermal-electric power generation including latent heat utilization features
RU2476688C1 (en) * 2011-08-24 2013-02-27 Открытое акционерное общество "Конструкторское бюро химавтоматики" Power plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014850A1 (en) * 1993-11-15 1995-06-01 Enertech Environmental, Inc. Efficient utilization of chlorine and moisture-containing fuels
RU2230199C2 (en) * 2002-08-06 2004-06-10 Осыка Александр Семёнович Heat recovery method
RU2268372C2 (en) * 2004-03-05 2006-01-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Thermoelectric power station
WO2010104897A2 (en) * 2009-03-09 2010-09-16 E-Cube Energy, Inc. Systems and methods of thermal-electric power generation including latent heat utilization features
RU2476688C1 (en) * 2011-08-24 2013-02-27 Открытое акционерное общество "Конструкторское бюро химавтоматики" Power plant

Similar Documents

Publication Publication Date Title
RU2560503C1 (en) Heat power plant operation mode
RU2560502C1 (en) Heat power plant operation mode
RU2562745C1 (en) Utilisation method of heat energy generated by thermal power plant
RU2552481C1 (en) Operating method of thermal power plant
RU2560505C1 (en) Heat power plant operation mode
RU2559655C1 (en) Method of operation of thermal power plant
RU2560615C1 (en) Heat power plant operation mode
RU2560512C1 (en) Heat power plant operation mode
RU2560497C1 (en) Heat power plant operation mode
RU2560513C1 (en) Heat power plant operation mode
RU2560509C1 (en) Heat power plant operation mode
RU2564466C2 (en) Heat power plant operation mode
RU2560504C1 (en) Heat power plant operation mode
RU2560496C1 (en) Heat power plant operation mode
RU2560514C1 (en) Heat power plant operation mode
RU2570943C2 (en) Method of operation of thermal power plant
RU2568348C2 (en) Operating method of thermal power plant
RU2564470C2 (en) Operating method of thermal power plant
RU2560500C1 (en) Heat power plant operation mode
RU2570961C2 (en) Method of operation of thermal power plant
RU2560499C1 (en) Heat power plant operation mode
RU2560495C1 (en) Heat power plant operation mode
RU2560498C1 (en) Heat power plant operation mode
RU2555600C1 (en) Operating method of thermal power plant
RU2571275C2 (en) Method of operation of thermal power plant

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160312