RU2559582C2 - Халькогенидная подложка для биочипа - Google Patents

Халькогенидная подложка для биочипа Download PDF

Info

Publication number
RU2559582C2
RU2559582C2 RU2013152482/15A RU2013152482A RU2559582C2 RU 2559582 C2 RU2559582 C2 RU 2559582C2 RU 2013152482/15 A RU2013152482/15 A RU 2013152482/15A RU 2013152482 A RU2013152482 A RU 2013152482A RU 2559582 C2 RU2559582 C2 RU 2559582C2
Authority
RU
Russia
Prior art keywords
substrate
glass
chalcogenide
biochip
chalcogenide glass
Prior art date
Application number
RU2013152482/15A
Other languages
English (en)
Other versions
RU2013152482A (ru
Inventor
Андрей Станиславович Тверьянович
Юрий Станиславович Тверьянович
Алексей Валерьевич Поволоцкий
Алина Анвяровна Маньшина
Анна Сергеевна Васильева
Алексей Андреевич Киреев
Original Assignee
Федеральное государственное бюджетное образовательно учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательно учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ) filed Critical Федеральное государственное бюджетное образовательно учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ)
Priority to RU2013152482/15A priority Critical patent/RU2559582C2/ru
Publication of RU2013152482A publication Critical patent/RU2013152482A/ru
Application granted granted Critical
Publication of RU2559582C2 publication Critical patent/RU2559582C2/ru

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Изобретение относится к средствам для анализа белков и может найти применение в клинических и биологических лабораториях. Подложка для биочипа в соответствии с настоящим изобретением выполнена из халькогенидного стекла на стеклянной основе и имеет функциональное покрытие из неорганического материала. В качестве функционального покрытия из неорганического материала подложка содержит слой металлических наночастиц толщиной не более 200 нм. Наночастицы имеют размер не более 50 нм и состоят из инертного металла или смеси нескольких инертных металлов, выбранных из группы, включающей золото, серебро, платину. Изобретение характеризуется высокой чувствительностью и высоким пределом обнаружения. 4 ил., 1 пр.

Description

Изобретение относится к области медицины, в частности к средствам для иммунологических исследований биологических материалов, и может найти применение в клинических и биологических лабораториях.
Известны белковые биочипы, которые применяются в таких областях исследований, как фундаментальные биологические научные исследования для характеристики ассоциированных с заболеваниями белковых каскадов; для оценки токсичности лекарственных препаратов; для медицинской диагностики и др., что значительно повышает производительность и биологическую значимость экспериментов по анализу экспрессии белков [1].
Для клинической медицинской диагностики большой интерес представляют биочипы с иммобилизованными аффинными захватывающими агентами (антителами, антигенами, аптамерами). Для иммобилизации захватывающих агентов используется субстрат с нанесенной на него подложкой. К подложке предъявляется ряд требований, выполнение которых необходимо для корректного выполнения иммунологических исследований. Подложка должна иметь высокую связывающую способность и способность сохранять функциональную активность антител, а также высокое соотношение сигнал-шум при последующем сканировании связанных материалов.
В качестве субстрата могут применяться стекло, силиконовые материалы, а также синтетические полимеры, такие как полистирол, нитроцеллюлоза, поливинилиденфторид. В качестве подложки используется широкий спектр материалов, способных образовывать со связываемыми белками химические связи; это могут быть гидрогель на основе декстрана, агароза, пористый акриламидный гидрогель, гидрофильные полимеры или полиаминокислоты, тонкие полоски металлов и т.п.
Известна подложка для биочипа, у которой область, предназначенная для иммобилизации антител, ограничена по периметру бортиком, который может быть выполнен съемным или отламывающимся [2]. Известное устройство позволяет сокращать непроизводительные расходы исследуемого материала и реактивов, но оно сложно в исполнении, имеет недостаточно высокий предел обнаружения, так как не достигает оптимального соотношения сигнал-шум, так как не исключает перетекания антител через бортики и связывания их с субстратом подложки.
Известна подложка для биочипа, имеющая, по крайней мере, один контрольный участок, «обеспечивающий прочность связывания клеток, заведомо меньшую, чем прочность их специфического связывания в области любого из участков с иммобилизованными антителами, но заведомо большую, чем прочность неспецифического связывания клеток с подложкой» [3]. Известная подложка позволяет повысить точность анализа за счет контроля качества отмывки биочипа, однако это решение не влияет на соотношение сигнал-шум, свойственное используемой подложке.
Известна подложка для биочипа [4], наиболее близкая по решаемой технической задаче и совокупности существенных признаков к заявляемому изобретению, которая представляет собой стеклянную пластину с нанесенным на нее функциональным покрытием из халькогенидного стекла. Пластина для микроскопических исследований фирмы «Chemints» выполнена из покровного боросиликатного стекла, обладающего гидролитической устойчивостью и высокой устойчивостью к химически агрессивным средам, и содержит покрытие из халькогенидного стекла, полученное напылением с помощью излучения XeCl эксимерного лазера. Тем самым достигается повышение адсорбирующей способности и возможность избирательного травления поверхности, что позволяет формировать заданную геометрию распределения активного слоя на поверхности подложки.
Недостатком известной подложки для биочипа является низкая чувствительность и низкий предел обнаружения проводимого с ее использованием анализа за счет отсутствия усиления полезного сигнала.
Заявляемое изобретение свободно от указанного недостатка.
Технический результат, достигаемый в заявляемом изобретении, заключается в увеличении чувствительности анализа в несколько десятков раз за счет усиления полезного сигнала люминесценции благодаря использованию эффекта плазменного резонанса на металлических наночастицах.
Указанный технический результат достигается тем, что в халькогенидной подложке для биочипа на стеклянной основе, в соответствии с заявленным изобретением, функциональный слой из халькогенидного стекла имеет дополнительное покрытие толщиной не более 200 нм, которое состоит из гомогенных частиц металлов, входящих в группу, включающую серебро, золото, платину, размер которых не более 50 нм.
В качестве стеклянной основы использовали покровные стекла для микроскопических исследований фирмы «Chemints», выполненные из боросиликатного стекла, обладающего гидролитической устойчивостью и высокой устойчивостью к химически агрессивным средам. Указанные стекла наиболее подходят для флуоресцентной микроскопии, так как падающие УФ-лучи с длиной волны не менее 320 нм не вызывают автофлуоресценцию стекол.
Сущность заявляемого изобретения иллюстрируется Фиг.1-4. На Фиг.1 представлена схема подложки биочипа. Заявленная подложка содержит пластинку из оксидного стекла 1, на которой находится слой халькогенидното стекла 2. На халькогенидном стекле расположен слой 3 металлических частиц, имеющих неплотную упаковку. Толщина слоя (L) не превосходит 200 нм. Размер металлических частиц (d) не превышает 50 нм. На Фиг.2 приведены электронномикроскопические фотографии подложки для биочипа с нанесенным слоем металлических частиц различной толщины. Продолжительность нанесения металлических наночастиц составляет 1 минуту (на Фиг.2 такая продолжительность составляет 1 и 10 минут и на Фиг.2 соответственно 2 минуты. Благодаря рыхлой упаковке металлических наночастиц остаются участки слоя халькогенидного стекла, открытые для доступа раствора антител. Это обеспечивает высокую адгезию последних, характерную для взаимодествия антител с халькогенидным стеклом. Это подтверждается Фиг.3, на которой представлено изображение пленки с напечатанными белками (крысиные моноклональные антитела, полученные к иммуноглобулинам мыши), полученное на флуоресцентном сканере (активировался краситель Су3) до (1) и после промывки в буферном растворе в течение 5 минут с перемешиванием при комнатной температуре (2). Вместе с тем присутствующие на подложке металлические наночастицы благодаря эффекту плазменного резонанса усиливают интенсивность сигнала люминесценции в 70-80 раз, что повышает чувствительность анализа (повышает отношение сигнал-шум). Это показано на Фиг.4, где приведены спектры люминесценции антител, нанесенных на подложки биочипа: 1 - без нанесенного слоя металлических наночастиц (увеличен на вставке); 2 - с нанесенным в течение 5 минут слоем металлических наночастиц; 3 - с нанесенным в течение 15 минут слоем металлических наночастиц.
Заявленное изобретение было испытано в лабораторных условиях в ФБГУ НИИ гриппа Минздравсоцразвития РФ (Санкт-Петербург), в режиме реального времени.
Результаты апробации представлены в виде примера конкретной реализации
Пример.
Халькогенидные стекла получали охлаждением соответствующих расплавов в вакуумированных кварцевых ампулах. Исходными веществами служили галлий, германий медь, индий, мышьяк, сера и селен чистоты выше 99.999%.
Халькогенидное стекло (соединения или сплавы) наносили на стеклянную основу следующим образом.
Покровные стекла мыли мыльным раствором, после чего выдерживали в растворе перманганата калия в течение 15 мин, ополаскивали дистиллированной водой и высушивали.
Напыление халькогенидного стекла производилось в вакуумной камере при базовом давлении 10-5 мм рт.ст. Образец халькогенидного стекла облучался XeCl эксимерным лазером, генерирующим 20 нс импульсы на длине волны 308 нм с энергией импульса 10-40 мДж. Лазерный луч фокусировали на мишени (образце халькогенидного стекла) под углом 45°. Поток формирующейся плазмы направляли на предметное стекло, где происходило формирование пленки.
Формирование гетерометаллических наночастиц проводилось с помощью лазерно-индуцированного синтеза из раствора. В качестве источника лазерного излучения использовался гелий-кадмиевый лазер с длиной волны 325 нм, работающий в непрерывном режиме. Свежеприготовленным раствором металлорганического комплекса покрывалась поверхность подложки биочипа, которая подвергалась затем лазерному облучению. Продолжительность лазерного воздействия не превышала 15 минут. После проведения синтеза подложки с полученными наночастицами промывались ацетоном и высушивались.
Для проведения лазерно-индуцированного синтеза наночастиц из раствора использовались светочувствительные металлорганические комплексы, например [Au12Ag12(C2Ph)18Br3(PPh2(C6H4)3PPh2)3](PF6)3. В качестве растворителя использовался 1,2-дихлорэтан.
Способность полученной подложки к адсорбции белка определяли с помощью зеленого флуоресцирующего белка. Печать проводилась на споттере SpotArray 24 при 50% влажности и температуре 25°C с использованием одной иглы SMP3 (Telechem, USA). Данная игла при установленных по умолчанию параметрах забирает 250 нл образца за один раз и наносит по 0.6 нл на каждый спот. После печати слайды были оставлены на 1 час при комнатной температуре.
Сканирование биочипов проводилось путем рассеивающего сканирования на длине волны 570 нм на сканере ScanArray Express (PerkinElmer, USA) с разрешением 10 µm и РМТ=70 по задаваемому протоколу сканирования.
Обработка получаемых изображений проводилась с использованием программного обеспечения ScanArray и QuantArray 3.0. Microanalysis Software (Perkin Elmer, USA).
На Фиг.3 представлены результаты сканирования напечатанного на подложку белка (крысиные моноклональные антитела, полученные к иммуноглобулинам мыши) до и после отмывки в буферном растворе в течение 5 минут с перемешиванием при комнатной температуре. Как показывают результаты апробации, белок превосходно адсорбируется, о чем свидетельствует сохранение интенсивности люминесценции после промывки.
Технико-экономическая эффективность заявленного изобретения состоит в том, что наряду со свойственными прототипу высокой адсорбирующей способностью и возможностью избирательного травления поверхности для формирования заданной геометрии распределения активного слоя на поверхности подложки, преимуществом данной подложки является (как видно из Фиг.4) усиление полезного сигнала люминесценции в несколько десятков раз за счет эффекта плазменного резонанса на металлических наночастицах. Это дает возможность повысить предел обнаружения анализируемых белков и использовать более простую аппаратуру для считывания сигнала. Заявленное изобретение может стать эффективной основой для изготовления диагностических систем, доступных для широкого использования стандартно оснащенными лабораториями, в частности биохимическими, иммунологическими, микробиологическими и др.
Список использованных источников информации
1. Hall E.A.H. In Handbook of Biosensors and Biochips. Eds. Wiley, Chichester, 2007, v.2, ch.72, p.1111-1129.
2. Патент РФ №86091, МПК A61B 10/00, 2009.
3. Патент РФ №86090, МПК A61B 10/00, 2009.
4. Патент РФ №121081, МПК G01N 33/48, 2012] (прототип).

Claims (1)

  1. Халькогенидная подложка для биочипов на стеклянной основе, отличающаяся тем, что функциональный слой из халькогенидного стекла имеет дополнительное покрытие толщиной не более 200 нм, которое состоит из гомогенных частиц металлов, входящих в группу, включающую серебро, золото, платину, размер которых не более 50 нм.
RU2013152482/15A 2013-11-27 2013-11-27 Халькогенидная подложка для биочипа RU2559582C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013152482/15A RU2559582C2 (ru) 2013-11-27 2013-11-27 Халькогенидная подложка для биочипа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013152482/15A RU2559582C2 (ru) 2013-11-27 2013-11-27 Халькогенидная подложка для биочипа

Publications (2)

Publication Number Publication Date
RU2013152482A RU2013152482A (ru) 2015-06-10
RU2559582C2 true RU2559582C2 (ru) 2015-08-10

Family

ID=53285032

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013152482/15A RU2559582C2 (ru) 2013-11-27 2013-11-27 Халькогенидная подложка для биочипа

Country Status (1)

Country Link
RU (1) RU2559582C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2705593C1 (ru) * 2019-06-28 2019-11-11 Общество с ограниченной ответственностью Владикавказский Технологический центр "Баспик" (ООО ВТЦ "Баспик") Способ изготовления волоконно-оптической матрицы для биочипа (варианты)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104808A1 (fr) * 2002-06-06 2003-12-18 Chengdu Kuachang Science & Technology Co., Ltd. Nouvelle plaque de sondes pour reaction antigene-anticorps, trousse de reactif et procede utilisant cette plaque
RU2298797C2 (ru) * 2005-05-03 2007-05-10 Закрытое акционерное общество Научный центр "БИАХРОМ" Биочип и способ его изготовления
RU2411180C1 (ru) * 2009-12-22 2011-02-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет информационных технологий, механики и оптики" Подложка для биочипа и способ ее изготовления
RU121081U1 (ru) * 2012-03-12 2012-10-10 Федеральное государственное бюджетное учреждение "Российский научно-исследовательский институт гематологии и трансфузиологии" Федерального медико-биологического агентства (ФГБУ "РосНИИГТ" ФМБА России) Подложка для биочипа

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104808A1 (fr) * 2002-06-06 2003-12-18 Chengdu Kuachang Science & Technology Co., Ltd. Nouvelle plaque de sondes pour reaction antigene-anticorps, trousse de reactif et procede utilisant cette plaque
RU2298797C2 (ru) * 2005-05-03 2007-05-10 Закрытое акционерное общество Научный центр "БИАХРОМ" Биочип и способ его изготовления
RU2411180C1 (ru) * 2009-12-22 2011-02-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет информационных технологий, механики и оптики" Подложка для биочипа и способ ее изготовления
RU121081U1 (ru) * 2012-03-12 2012-10-10 Федеральное государственное бюджетное учреждение "Российский научно-исследовательский институт гематологии и трансфузиологии" Федерального медико-биологического агентства (ФГБУ "РосНИИГТ" ФМБА России) Подложка для биочипа

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2705593C1 (ru) * 2019-06-28 2019-11-11 Общество с ограниченной ответственностью Владикавказский Технологический центр "Баспик" (ООО ВТЦ "Баспик") Способ изготовления волоконно-оптической матрицы для биочипа (варианты)

Also Published As

Publication number Publication date
RU2013152482A (ru) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5127718B2 (ja) 複雑な組成を有する生物学的起源のサンプル中の1種若しくはそれ以上の被検体の測定方法およびその使用
Von Philipsborn et al. Microcontact printing of axon guidance molecules for generation of graded patterns
TWI303314B (en) Methods and systems for detecting biomolecular binding using terahertz radiation
US7297497B2 (en) Substrates for isolating, reacting and microscopically analyzing materials
US7738096B2 (en) Surface enhanced Raman spectroscopy (SERS) systems, substrates, fabrication thereof, and methods of use thereof
US7583379B2 (en) Surface enhanced raman spectroscopy (SERS) systems and methods of use thereof
Serra et al. Laser direct writing of biomolecule microarrays
JP2005537487A (ja) 試料中において任意には分画された後の試料中において、固定化特異的結合パートナーとして測定される分析対象物を用いる分析プラットフォーム及び検出法
JP6297065B2 (ja) 低蛍光器具
CN1954213A (zh) 用于产生细胞群体的蛋白表达谱的分析平台和方法
JP2009150708A (ja) 標的物質の検出方法及び検査キット
JP2005537486A (ja) 分析対象物が試料中で固定化された特異的結合パートナーとして測定される分析プラットフォーム及び検出法
Dong et al. Microchannel chips for the multiplexed analysis of human immunoglobulin G–antibody interactions by surface plasmon resonance imaging
RU2559582C2 (ru) Халькогенидная подложка для биочипа
Qi et al. Phage M13KO7 detection with biosensor based on imaging ellipsometry and AFM microscopic confirmation
Lee et al. Gold-nanopatterned single interleukin-6 sandwich immunoassay chips with zeptomolar detection capability based on evanescent field-enhanced fluorescence imaging
WO2014132717A1 (ja) 相互作用解析装置
RU141359U1 (ru) Подложка для биочипа
Aoyama et al. Enhanced immunoadsorption on imprinted polymeric microstructures with nanoengineered surface topography for lateral flow immunoassay systems
RU121081U1 (ru) Подложка для биочипа
JP2012502273A (ja) 改良されたワイヤグリッド基板構造及び斯かる基板を製造する方法
JP2007267727A (ja) 細胞解析用チップ、細胞解析用システム及び細胞解析方法
De et al. Diatoms as sensors and their applications
Gajos et al. Covalent and non-covalent in-flow biofunctionalization for capture assays on silicon chips: white light reflectance spectroscopy immunosensor combined with TOF-SIMS resolves immobilization stability and binding stoichiometry
JP2009014491A (ja) 標的物質検出用素子および標的物質検出装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171128