RU2559482C2 - Способ получения диборида титана - Google Patents

Способ получения диборида титана Download PDF

Info

Publication number
RU2559482C2
RU2559482C2 RU2013156224/05A RU2013156224A RU2559482C2 RU 2559482 C2 RU2559482 C2 RU 2559482C2 RU 2013156224/05 A RU2013156224/05 A RU 2013156224/05A RU 2013156224 A RU2013156224 A RU 2013156224A RU 2559482 C2 RU2559482 C2 RU 2559482C2
Authority
RU
Russia
Prior art keywords
titanium diboride
carbon
mixture
carbon material
temperature
Prior art date
Application number
RU2013156224/05A
Other languages
English (en)
Other versions
RU2013156224A (ru
Inventor
Юрий Леонидович Крутский
Елена Владимировна Антонова
Александр Георгиевич Баннов
Павел Борисович Курмашов
Владимир Васильевич Соколов
Андрей Юрьевич Пичугин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет"
Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет", Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет"
Priority to RU2013156224/05A priority Critical patent/RU2559482C2/ru
Publication of RU2013156224A publication Critical patent/RU2013156224A/ru
Application granted granted Critical
Publication of RU2559482C2 publication Critical patent/RU2559482C2/ru

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к порошковой металлургии, в частности к синтезу диборида титана, и может быть использовано для производства керамической брони, изготовления нагревателей высокотемпературных электропечей сопротивления, ванн и тиглей - испарителей металлов, деталей металлопроводов и электромагнитных насосов для перекачивания расплавленных металлов, узлов химической аппаратуры. Способ получения диборида титана состоит в нагреве шихты из смеси двуокиси титана, химического реагента, содержащего бор, и углеродного материала при температуре 1500-1700°C в течение 20-25 минут. Смешение компонентов шихты осуществляется при совместном просеивании. В качестве углеродного материала используют высокодисперсный порошок нановолокнистого углерода с удельной поверхностью 138-160 м2/г. Изобретение позволяет упростить процесс получения диборида титана.

Description

Предлагаемое изобретение относится к порошковой металлургии, в частности к синтезу диборида титана, и может быть использовано для производства керамической брони, изготовления нагревателей высокотемпературных электропечей сопротивления, ванн и тиглей - испарителей металлов, деталей металлопроводов и электромагнитных насосов для перекачивания расплавленных металлов, узлов химической аппаратуры.
Известен способ получения диборида титана восстановлением порошкообразного диоксида титана пропаном в присутствии порошка бора в азотном плазменном потоке (Галевский Г.В., Руднева В.В. Особенности процессов боридообразования в условиях плазменного потока /Вестник горно-металлургической секции РАЕН. Отделение металлургии: сборник научных трудов/ СибГИУ - Новокузнецк, 2010. - Вып.26. - С.111-116).
Однако указанный способ имеет следующие недостатки. Использование в качестве источника углерода горючего газа (пропана) может при разгерметизации плазмохимического реактора привести к образованию взрывоопасной пропановоздушной смеси. Кроме того, получить данным процессом чистый, без примесей, диборид титана невозможно, поскольку по данным рентгенофазового анализа в продуктах реакции после закалки наряду с ним содержится и титан.
Кроме того, известен способ получения диборида титана (заявка US 2013/0251595 кл. С01В 35/04, 26.09.2013), являющийся прототипом предлагаемого изобретения и заключающийся в нагреве шихты из смеси двуокиси титана, химического реагента, содержащего бор, и углеродного материала [0042] при температуре 1500-1700°C в течение 20-25 минут [0038]-[0041].
Однако указанный способ имеет недостаток. Это смешение компонентов шихты в жидкостях с последующей сушкой суспензии [0046], что усложняет процесс. В качестве жидкостей могут применяться органические и неорганические материалы с кислой, основной или нейтральной реакцией [0048]. Этот недостаток связан со сравнительно невысокой дисперсностью применяемых углеродных материалов, в качестве которых заявляются: carbon black (сажа), synthetic carbon (искусственный графит) и calcined petroleum coke (прокаленный нефтяной кокс) [0042]-[0045]. Сведения об их дисперсности (или удельной поверхности) в тексте прототипа не приводятся. Однако известно [Gruner W., Stolle S., Wetzig K. Formation of COx species during the carbothermal reduction of oxides of Zr, Si, Ti, Cr, W and Mo. International Journal of Refractory Metals & Hard Materials 18 (2000) 137-139], что удельная поверхность сажи составляет 80,2 м2/г, а порошка графита 19,5 м2/г. Известно также, что прокаленный нефтяной кокс [Соседов В.П., Чалых Е.Ф. Графитация углеродистых материалов. - М.: Металлургия, 1987, с. 23.] является сырьем для получения графита. Поэтому можно предположить, что при одинаковых условиях измельчения прокаленного нефтяного кокса и искусственного графита значения дисперсности (и удельной поверхности) порошков этих материалов будут сопоставимы.
Задачей предлагаемого изобретения является упрощение процесса.
Поставленная задача достигается тем, что в известном способе получения диборида титана, заключающемся в нагреве шихты из смеси двуокиси титана, химического реагента, содержащего бор, и углеродного материала при температуре 1500-1700°C в течение 20-25 минут, смешение компонентов шихты осуществляется при совместном просеивании, а в качестве углеродного материала используют высокодисперсный порошок нановолокнистого углерода с удельной поверхностью 138…160 м2/г. Порошок нановолокнистого углерода получается растиранием в ступке его гранул размером 4-8 мм, изготовленных каталитическим разложением газообразных предельных углеводородов на никелевом катализаторе при температуре 550°C. Гранулы образованы плотно переплетенными нитями нановолокнистого углерода длиной до 4 мкм и диаметром 10-100 нм (средний диаметр 73 нм). Содержание примесей (остатков катализатора) в нановолокнистом углероде невелико и не превышает 1% масс. Использование в качестве углеродного материала нановолокнистого углерода приводит к следующему. Поскольку величина удельной поверхности нановолокнистого углерода значительно выше, чем у сажи, искусственного графита и прокаленного нефтяного кокса, при смешении реагентов (двуокиси титана, химического реагента, содержащего бор, и
углеродного материала - в данном случае нановолокнистого углерода) обеспечивается более тесный контакт между твердыми частицами реагентов. Это, в свою очередь, способствует повышению интенсивности процесса синтеза диборида титана. По этой причине отпадает необходимость в дополнительных операциях (смешение компонентов шихты в жидкостях с последующей сушкой суспензии), усложняющих процесс.
Способ осуществляется следующим образом. Порошки двуокиси титана, карбида бора и углеродного материала (нановолокнистого углерода) с удельной поверхностью 138…160 м2/г просеиваются через сито с размером ячейки 100 мкм. При просеивании происходит перемешивание компонентов шихты. Далее шихта загружается в тигель из стеклоуглерода внутренним диаметром 15 мм и высотой внутреннего пространства 60 мм. Тогда внутренний объем тигля 10,603 см3. При плотности шихты 2,5 г/см3 масса ее примерно равна 26 г. Тигель из стеклоуглерода закрывается графитовой крышкой и помещается в кварцевый реактор, который в свою очередь вставляется в индуктор индукционной печи. Для предотвращения азотирования карбида бора кварцевый реактор продувается аргоном. Нагрев шихты производят при температуре 1500…1700°C в течение 20…25 минут.
Температура в реакторе контролируется оптическим пирометром. После остывания реактора прекращается подача аргона, из реактора извлекается тигель, из тигля высыпается продукт реакции (порошок диборида титана).
При температурах ниже 1500°C диборид титана не образуется, о чем свидетельствует отсутствие его рефлексов на дифрактограммах. При температурах, превышающих 1700°C, имеют место непроизводительные энергозатраты. При времени процесса менее 20 минут диборид титана не образуется, о чем свидетельствует отсутствие его рефлексов на дифрактограммах. При времени процесса более 25 минут имеют место непроизводительные энергозатраты. При уменьшении величины удельной поверхности порошка нановолокнистого углерода ниже 138 м2/г времени 25 минут и температуры 1700°C оказывается недостаточно для полного завершения процесса образования диборида титана, о чем свидетельствует наличие на дифрактограммах рефлексов исходных реагентов - двуокиси титана и карбида бора. Увеличение значения удельной поверхности порошка нановолокнистого углерода выше 160 м2/г невозможно при любом времени измельчения.
Таким образом, предлагаемый способ позволяет упростить процесс.
Пример реализации изобретения
Порошки двуокиси титана, карбида бора со средним размером частиц 0,8 мкм и нановолокнистого углерода с удельной поверхностью 144 м2/г совместно просеиваются через сито с размером ячейки 100 мкм. Далее готовая шихта засыпается в тигель из стеклоуглерода. Тигель закрывается графитовой крышкой и помещается в кварцевый реактор, который в свою очередь вставляется в индуктор индукционной печи. Кварцевый реактор продувается аргоном. Температура процесса 1600°C, время выдержки при этой температуре 22 минуты. Рентгенофазовым анализом установлено наличие в продуктах реакции (термообработанной шихте) только одной фазы - диборида титана.

Claims (1)

  1. Способ получения диборида титана, состоящий в нагреве шихты из смеси двуокиси титана, химического реагента, содержащего бор, и углеродного материала при температуре 1500-1700°C в течение 20-25 минут, отличающийся тем, что смешение компонентов шихты осуществляется при совместном просеивании, а в качестве углеродного материала используют высокодисперсный порошок нановолокнистого углерода с удельной поверхностью 138-160 м2/г.
RU2013156224/05A 2013-12-17 2013-12-17 Способ получения диборида титана RU2559482C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013156224/05A RU2559482C2 (ru) 2013-12-17 2013-12-17 Способ получения диборида титана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013156224/05A RU2559482C2 (ru) 2013-12-17 2013-12-17 Способ получения диборида титана

Publications (2)

Publication Number Publication Date
RU2013156224A RU2013156224A (ru) 2015-06-27
RU2559482C2 true RU2559482C2 (ru) 2015-08-10

Family

ID=53497099

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013156224/05A RU2559482C2 (ru) 2013-12-17 2013-12-17 Способ получения диборида титана

Country Status (1)

Country Link
RU (1) RU2559482C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2723859C1 (ru) * 2019-09-13 2020-06-17 Евгений Сергеевич Горланов Способ низкотемпературного синтеза диборида титана
RU2805065C1 (ru) * 2022-12-20 2023-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Способ получения порошка диборида титана

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498880C1 (ru) * 2012-08-13 2013-11-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Способ получения порошка диборида титана для материала смачиваемого катода алюминиевого электролизера

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498880C1 (ru) * 2012-08-13 2013-11-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Способ получения порошка диборида титана для материала смачиваемого катода алюминиевого электролизера

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КАРАСЕВ А.И., Получение порошков технических боридов титана, циркония, хрома и вольфрама борокарбидным методом, Порошковая металлургия, 1973, N10, с.1-5. САМСОНОВ Г.В., СЕРЕБРЯКОВА Т.И., НЕРОНОВ В.А., Бориды, Москва, Атомиздат, 1975, с.209. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2723859C1 (ru) * 2019-09-13 2020-06-17 Евгений Сергеевич Горланов Способ низкотемпературного синтеза диборида титана
RU2805065C1 (ru) * 2022-12-20 2023-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Способ получения порошка диборида титана

Also Published As

Publication number Publication date
RU2013156224A (ru) 2015-06-27

Similar Documents

Publication Publication Date Title
Mukasyan et al. Direct combustion synthesis of silicon carbide nanopowder from the elements
Moshtaghioun et al. Rapid carbothermic synthesis of silicon carbide nano powders by using microwave heating
KR101909626B1 (ko) 합성 가스 제조를 위한 프로세스
Mukasyan Combustion synthesis of silicon carbide
CN103073320A (zh) 一种ZrB2-SiC(w)陶瓷原料的制备方法
Martinez et al. Production of β-SiC by pyrolysis of rice husk in gas furnaces
Krutskii et al. Synthesis of fine dispersed titanium diboride from nanofibrous carbon
Li et al. Synthesis of potassium hexatitanate whiskers with high thermal stability from Ti-bearing electric arc furnace molten slag
RU2559482C2 (ru) Способ получения диборида титана
Lotfian et al. Alternative reducing agents in metallurgical processes: gasification of shredder residue material
Krishnarao et al. Thermite assisted synthesis of ZrB 2 and ZrB 2–SiC through B 4 C reduction of ZrO 2 and ZrSiO 4 in air
KR100959931B1 (ko) 질화티타늄 분말의 제조 방법
WO2016021173A1 (ja) マイクロ波複合加熱炉
RU2550848C2 (ru) Способ получения карбида бора
JP2019085303A (ja) シリコンの製造方法及び製造装置
CN105297129A (zh) 一种氮氧化硅晶须的合成方法
Vijay et al. Carbothermal reduction of sillimanite in a transferred arc thermal plasma reactor
Wang et al. Preparation of hollow SiC spheres by combustion synthesis
RU2599757C2 (ru) Способ получения карбида ванадия
Garg et al. Synthesis of nano-silicon carbide by SiO–C reaction
RU2559485C1 (ru) Способ получения диборида циркония
Miller et al. Submicron boron carbide synthesis through rapid carbothermal reduction
Forouzan et al. A three-step synthesis process of submicron boron carbide powders using microwave energy
CN101734659A (zh) 高频感应-碳热还原制备碳化钛粉的方法
RU2576041C2 (ru) Способ получения полидисперсного порошка карбида бора

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181218