RU2554000C1 - Способ получения алифатических карбоновых кислот - Google Patents

Способ получения алифатических карбоновых кислот Download PDF

Info

Publication number
RU2554000C1
RU2554000C1 RU2014132335/04A RU2014132335A RU2554000C1 RU 2554000 C1 RU2554000 C1 RU 2554000C1 RU 2014132335/04 A RU2014132335/04 A RU 2014132335/04A RU 2014132335 A RU2014132335 A RU 2014132335A RU 2554000 C1 RU2554000 C1 RU 2554000C1
Authority
RU
Russia
Prior art keywords
carboxylic acids
acid
mmol
sub
corresponds
Prior art date
Application number
RU2014132335/04A
Other languages
English (en)
Inventor
Валентин Николаевич Пармон
Зинаида Петровна Пай
Полина Викторовна Оленева
Полина Вениаминовна Бердникова
Людмила Васильевна Малышева
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Priority to RU2014132335/04A priority Critical patent/RU2554000C1/ru
Application granted granted Critical
Publication of RU2554000C1 publication Critical patent/RU2554000C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к области органического синтеза, а именно к способу получения алифатических карбоновых кислот С7 (н-С6Н13СООН, н-гептановая (энантовая) кислота), С9 (н-C8H17COOH, н-нонановая (пеларгоновая) кислота) и С11 (н-C10H21COOH, н-ундекановая (ундециловая) кислота) каталитическим окислением соответствующих альфа-алкенов. Способ получения алифатических карбоновых кислот осуществляют окислением соответствующего алкена раствором пероксида водорода в двухфазной системе в присутствии катализатора. Процесс проводят в присутствии металлокомплексного катализатора с общей формулой Q3{PO4[W(O)(O2)2]4}, где: Q - четвертичный аммониевый катион - [(R1)3NR2]+, где: R1, R2 содержат от 1 до 16 атомов углерода, либо с формулой [C5H5N(n-C16H33)]3{PO4[W(O)(O2)2]4}. Технический результат - высокие выход и селективность целевой алифатической карбоновой кислоты. 5 з.п. ф-лы, 12 пр., 1 табл.

Description

Изобретение относится к области органического синтеза, а именно к способу получения алифатических карбоновых кислот С7 (н-С6Н13СООН, н-гептановая (энантовая) кислота), С9 (н-C8H17COOH, н-нонановая (пеларгоновая) кислота) и С11 (н-С10Н21СООН, н-ундекановая (ундециловая) кислота) каталитическим окислением соответствующих альфа-алкенов раствором пероксида водорода.
В пищевой промышленности применяют сложные эфиры гептановой кислоты в качестве ароматизаторов и вкусовых добавок (метиловый, этиловый), а также для маркировки таких продуктов, как мясо (глицеролтригептаноат) и масла. В парфюмерной промышленности гептановая кислота используется для производства синтетических ароматизаторов. В химической и нефтехимической промышленности гептановую кислоту используют в качестве сомономера алкидных смол, производства смазочных материалов для летательных аппаратов и гидравлических жидкостей. В фармацевтической промышленности гептановую кислоту используют для производства гормональных препаратов (энантаты тестостерона, тренболона, дростанолона, метенолона).
Нонановую кислоту применяют в производстве лаков, пластиков, гидротропных солей, фармацевтических препаратов, синтетических ароматизаторов и вкусовых добавок, флотореагентов, смазочных материалов, пластификаторов, добавок к бензину. В агрохимической промышленности нонановую кислоту используют в производстве гербицидов (нонаноат аммония) и регуляторов цветения растений. В пищевой промышленности нонановую кислоту применяют в качестве пищевой добавки, а также в качестве компонента раствора для чистки овощей и фруктов. В фармацевтической промышленности нонановую кислоту для модификации антибиотиков (например, фениколов) с целью усиления их эффекта. Морфолид пеларгоновой кислоты является боевым отравляющим веществом и входит в состав перцовых спреев.
Ундекановую кислоту также применяют в парфюмерной (производство ароматических веществ), химической (производство эмульгаторов, ПАВ) и пищевой промышленности (пищевые добавки и маскирующие агенты).
В середине XX столетия алифатические карбоновые кислоты получали окислением непредельных жирных кислот, входящих в состав природных животных и растительных жиров. Нонановую и азелаиновую кислоты получали в смеси окислением олеиновой кислоты концентрированной (>80%) азотной кислотой в присутствии соединений ванадия при атмосферном давлении и повышенной температуре (до 100°C) [US 2,203,680, C07C 51/275, 1940; GB 524,163, C07C 51/275, 1940] (1):
Figure 00000001
После разделения карбоновых кислот выход нонановой кислоты достигал 20-57%.
С тех пор предложены десятки способов по улучшению процесса получения карбоновых кислот путем окислительного расщепления непредельных жирных. Основные направления модификации метода сводились к:
- повышению эффективности метода очистки и разделения образующихся карбоновых кислот [US 2,560,156, C07C 51/493, 1951; US 2,862,942, C07C 51/27, 1958];
- снижению концентрации используемой азотной кислоты за счет повышения температуры и давления [US 2,773,095, 1956];
- поиску новых катализаторов, позволяющих проводить реакцию в более мягких условиях [US 2,847,431, C07C 51/25, 1958];
- проведению окисления сильными минеральными кислотами в комбинации с другими окислителями, например, пероксидом водорода [US 5,864,049, B01J 27/13, 1999; US 2012/0302778, C07C 51/16, 2012].
Параллельно с целью создания эффективного процесса получения карбоновых кислот из непредельных кислот были разработаны способы окисления кислородом с использованием: различных катализаторов - соединений Co, Mn, Cu, Cr [GB 813,842,
С07С 51/25; С07С 51/27, 1959], Се [US 3,407,221, С07С 51/25, 1968], а также использованию в качестве окислителя озона или озон-содержащих смесей [GB 809,451, С07С 51/215; C11С 3/00, 1959; GB 841,653, С07С 51/34, 1960].
Однако использование в качестве исходного сырья непредельных карбоновых кислот растительного происхождения в большей степени доступно для стран с теплым климатом. Поэтому в качестве альтернативного исходного сырья с 50-х годов рассматриваются продукты нефтехимического производства - углеводороды.
В результате парциального окисления углеводородного сырья смешанного состава кислородом воздуха образуется смесь кислородсодержащих органических соединений [US 2288769, С10М 1/08, 1942; US 2810739, С07С 1/04, 1954]. Выделение карбоновых кислот из смеси продуктов достаточно трудоемко, в связи с чем в промышленности этот процесс на сегодняшний день не используется.
С 1970-х годов широко исследуемым методом переработки алкенов в карбоновые кислоты является карбоксилирование - присоединение молекул монооксида углерода и воды по двойной связи алкенов. Развитие метода заключается преимущественно в варьировании методов активирования реакции - предлагают применение HF [US 3,005,846, С07С 51/14, 1961], соли Pb [GB 1,066,772, B01J 31/16, 1967], воздействие УФ-излучения [GB 1,267,273, С07С 51/00, 1972]. Наилучшие результаты в реакции карбонилирования алкенов с целью получения карбоновых кислот показали фосфиновые комлексы Rh, Pd [US 4,257,973, С07С 51/14, 1981; US 4,273,936, C07C 51/145, 1981]. Однако реакцию карбоксилирования необходимо проводить в достаточно жестких условиях - при давлении до 8 МПа и температуре до 200°C.
Окисление органических соединений при атмосферном давлении и температуре до 100°C возможно с использованием экологически благоприятного окислителя - раствора пероксида водорода. Окисление алкенов пероксидом водорода в присутствии металлокомплексных катализаторов было предложено Милласом (Nicolas A. Milas) [US 2,437,648, С07С 45/27, С07С 45/28, 1948]. В ходе реакции образуются гликоли, которые в дальнейшем могут быть окислены до карбоновых кислот. Прямое окисление алкенов до карбоновых кислот возможно, но требует большого избытка пероксида водорода. Получение карбоновых кислот окислением ненасыщенных соединений в одном реакторе провел Сиби [US 5,939,572, С07С2 33/05, 1999]. Реакция протекает в присутствии оксидов металлов (W, Mo, Nb, Yt и др.). Однако для окисления промежуточных гликолей до карбоновых кислот метод также требует введения в зону реакции дополнительного окислителя - молекулярного кислорода. Несмотря на то, что вышеописанные процессы могут быть отнесены к экологически безопасным, многостадийность делает их менее привлекательными для реализации в промышленности. Прямое окисление алкенов в карбоновые кислоты раствором пероксида водорода возможно с применением каталитических систем на основе пероксополиоксометаллатов.
Наиболее близким является способ получения моно- или дикарбоновых кислот (гептановой и нонановой кислот) окислительным расщеплением алкенов [US 4,532,079, С07С 51/285, 1985]. В качестве катализатора используют комплексное соединение с общей формулой Q3XW4O24-2n, где: Q - «ониевый» катион (R5R6R7R8)M+, Μ - из ряда Ν, Р, As, Sb; R5, R6, R7, R8 содержат от 20 до 70 углеродных атомов и могут быть как одинакового, так и разного строения; X - атом Ρ или As; n - 0, 1, 2.
Реакцию окисления органических субстратов проводят в двухфазной системе: водная фаза, содержащая пероксид водорода до 70%, и органическая фаза, содержащая органический растворитель (ароматический или хлорсодержащий углеводород, например бензол или дихлорэтан) при температуре от 20 до 120°C и атмосферном давлении (для поддержания газообразных алкенов в жидком состоянии давление может быть увеличено вплоть до 100 атм). Реагенты берутся в стехиометрических количествах или с небольшим избытком пероксида водорода. Количества катализатора берутся из расчета 0,01-1 г-атом W на 1 моль субстрата (т.е. [Sub]/[Cat]=4-400). Выход гептановой кислоты при каталитическом окислении октена-1 составляет 65% за 6,5 ч при [H2O2]/[Sub]=5,5; ундекановой кислоты - 49% при окислении додецена-1 в тех же условиях.
Основными, существенными недостатками известного способа являются: проведение реакции окисления в присутствии органического растворителя, низкий выход целевых карбоновых кислот, длительное время проведения реакции, а также использование для приготовления катализатора экологически опасных As, Sb, WCl6, WOCl4, хлорсодержащих углеводородов.
Изобретение решает задачу увеличения эффективности процесса получения алифатических карбоновых кислот, таких как гептановая или нонановая, или ундекановая.
Задача решается способом получения алифатических карбоновых кислот, а именно гептановой, нонановой и ундекановой окислением соответствующего алкена раствором пероксида водорода в двухфазной системе в присутствии металлокомплексного катализатора с общей формулой Q3{PO4[W(O)(O2)2]4}, где: Q - четвертичный аммониевый катион - [(R1)3NR2]+, где: R1, R2 содержат от 1 до 16 атомов углерода, либо с формулой [C5H5N(n-C16H33)]3{PO4[W(O)(O2)2]4}.
Каталитический комплекс синтезируется по известной методике [РФ 2,335,341, B01J 31/18.2008].
В качестве алкена - субстрата используют октен-1 или децен-1, или додецен-1. Используют разбавленные растворы пероксида водорода с концентрацией 25-35%.
Процесс осуществляют в двухфазной системе «органическая фаза - водная фаза», где роль органической фазы выполняет субстрат (алкен) при температуре 60-95°C и общем давлении 1 атм при следующих соотношениях компонентов: [Sub]/[Cat]=100-500: [H2O2]/|Sub]=4-6.
Сущность изобретения иллюстрируется следующими примерами.
Получение карбоновых кислот осуществляют следующим способом.
Реакцию селективного каталитического окисления алкенов (1) проводят в термостатированной конической колбе с использованием магнитной мешалки (500-750 об./мин). Реактор снабжен обратным холодильником.
Последовательность приготовления реакционной смеси: в реактор помещают навеску катализатора, добавляют рассчитанный объем алкена, перемешивают, вводят раствор пероксида водорода в соответствии со стехиометрией реакции (2) и включают нагрев. Температуру поддерживают с помощью водяного термостата с точностью ±0,1°C.
Figure 00000002
Для определения конверсии исходного алкена и выхода целевого продукта полученную смесь продуктов анализировали с помощью метода газовой
хроматографии. По полученным значениям рассчитывали полную селективность процесса.
Пример 1.
К навеске катализатора [(n-C8H17)3NCH3]3{PO4[WO(O2)2]4} (1,2177 г, 0,5397 ммоль) добавляют октен-1 (16,94 мл, 107,94 ммоль) и 30%-ный раствор H2O2 (54,63 мл, 539,70 ммоль), что соответствует соотношению исходных компонентов: [Sub]/[Cat]=200, [Ox]/[Sub]=5. Подключают предварительно разогретый до 90°C термостат. Перемешивают смесь в течение 4 ч, после чего фазы разделяют.
Содержание гептановой кислоты в органической фазе, определенное с помощью метода ГХ, соответствует выходу 94,7%. Содержание октена-1 в органической фазе, определенное с помощью метода ГХ, соответствует конверсии 98,0%. Полная селективность реакции равна 96,6%.
Пример 2.
К навеске катализатора [(n-C8H17)3NCH3]3{PO4[WO(O2)2]4} (0,6232 г, 0,2762 ммоль) добавляют октен-1 (21,67 мл, 138,10 ммоль) и 30%-ный раствор H2O2 (69,89 мл, 690,50 ммоль), что соответствует соотношению исходных компонентов: [Sub]/[Cat]=500, [Ox]/[Sub]=6. Подключают предварительно разогретый до 95°C термостат. Перемешивают смесь в течение 3 ч, после чего фазы разделяют.
Содержание гептановой кислоты в органической фазе, определенное с помощью метода ГХ, соответствует выходу 88,0%. Содержание октена-1 в органической фазе, определенное с помощью метода ГХ, соответствует конверсии 95,2%. Полная селективность реакции равна 92,5%.
Пример 3.
К навеске катализатора [(n-C8H17)3NCH3]3{PO4[WO(O2)2]4} (1,2211 г, 0,5412 ммоль) добавляют октен-1 (16,99 мл, 108,24 ммоль) и 35%-ный раствор H2O2 (46,95 мл, 541,20 ммоль), что соответствует соотношению исходных компонентов: [Sub]/[Cat]=200, [Ox]/[Sub]=5. Подключают предварительно разогретый до 90°C термостат. Перемешивают смесь в течение 4 ч, после чего фазы разделяют.
Содержание гептановой кислоты в органической фазе, определенное с помощью метода ГХ, соответствует выходу 92,8%. Содержание октена-1 в
органической фазе, определенное с помощью метода ГХ, соответствует конверсии 96,4%. Полная селективность реакции равна 96,3%.
Пример 4.
К навеске катализатора [(n-C8H17)3NCH3]3{PO4[WO(O2)2]4} (1,1683 г, 0,5178 ммоль) добавляют октен-1 (16,25 мл, 103,56 ммоль) и 30%-ный раствор H2O2 (52,41 мл, 517,18 ммоль), что соответствует соотношению исходных компонентов: [Sub]/[Cat]=200, [Ox]/[Sub]=5. Подключают предварительно разогретый до 60°C термостат. Перемешивают смесь в течение 6 ч, после чего фазы разделяют.
Содержание гептановой кислоты в органической фазе, определенное с помощью метода ГХ, соответствует выходу 56,4%. Содержание октена-1 в органической фазе, определенное с помощью метода ГХ, соответствует конверсии 61,9%. Полная селективность реакции равна 91,1%.
Пример 5.
К навеске катализатора [C5H5H(n-C16H33)]3{PO4[WO(O2)2]4} (1,5047 г, 0,7291 ммоль), предварительно растворенной в небольшом количестве 1,2-дихлорэтана (5 мл), добавляют октен-1 (17,16 мл, 109,37 ммоль) и 30%-ный раствор H2O2 (44,28 мл, 437,46 ммоль), что соответствует соотношению исходных компонентов: [Sub]/[Cat]=150, [Ox]/[Sub]=4. Подключают предварительно разогретый до 90°C термостат. Перемешивают смесь в течение 3 ч, после чего фазы разделяют.
Содержание гептановой кислоты в органической фазе, определенное с помощью метода ГХ, соответствует выходу 90,3%. Содержание октена-1 в органической фазе, определенное с помощью метода ГХ, соответствует конверсии 94,1%. Полная селективность реакции равна 95,9%.
Пример 6.
К навеске катализатора [C5H5H(n-C16H33)]3{PO4[WO(O2)2]4} (1,3798 г, 0,6686 ммоль), предварительно растворенной в небольшом количестве 1,2-дихлорэтана (5 мл), добавляют октен-1 (15,74 мл, 100,29 ммоль) и 25%-ный раствор H2O2 (60,91 мл, 501,45 ммоль), что соответствует соотношению исходных компонентов: [Sub]/[Cat]=150, [Ox]/[Sub]=5. Подключают предварительно разогретый до 90°C термостат. Перемешивают смесь в течение 4 ч, после чего фазы разделяют.
Содержание гептановой кислоты в органической фазе, определенное с помощью метода ГХ, соответствует выходу 89,9%. Содержание октена-1 в органической фазе, определенное с помощью метода ГХ, соответствует конверсии 97,1%. Полная селективность реакции равна 92,6%.
Пример 7.
К навеске катализатора [n-Bu4N]3{PO4[WO(O2)2]4} (2,0993 г, 1,1181 ммоль), предварительно растворенной в небольшом количестве 1,2-дихлорэтана (5 мл), добавляют октен-1 (17,55 мл, 111,81 ммоль) и 30%-ный раствор H2O2 (67,90 мл, 670,86 ммоль), что соответствует соотношению исходных компонентов: [Sub]/[Cat]=100, [Ox]/[Sub]=6. Подключают предварительно разогретый до 80°C термостат. Перемешивают смесь в течение 6 ч, после чего фазы разделяют.
Содержание гептановой кислоты в органической фазе, определенное с помощью метода ГХ, соответствует выходу 17,8%. Содержание октена-1 в органической фазе, определенное с помощью метода ГХ, соответствует конверсии 68,9%. Полная селективность реакции равна 25,9%.
Пример 8.
К навеске катализатора [(n-C8H17)3NCH3]3{PO4[WO(O2)2]4} (1,1527 г, 0,5109 ммоль) добавляют децен-1 (19,34 мл, 102,18 ммоль) и 30%-ный раствор H2O2 (51,71 мл, 510,90 ммоль), что соответствует соотношению исходных компонентов: [Sub]/[Cat]=200, [Ox]/[Sub]=5. Подключают предварительно разогретый до 90°C термостат. Перемешивают смесь в течение 5 ч, после чего фазы разделяют.
Содержание нонановой кислоты в органической фазе, определенное с помощью метода ГХ, соответствует выходу 89,4%. Содержание децена-1 в органической фазе, определенное с помощью метода ГХ, соответствует конверсии 96,6%. Полная селективность реакции равна 92,6%.
Пример 9.
К навеске катализатора [C5H5N(n-C16H33)]3{PO4[WO(O2)2]4} (1,4440 г, 0,6997 ммоль), предварительно растворенной в небольшом количестве 1,2-дихлорэтана (5 мл), добавляют децен-1 (19,87 мл, 104,96 ммоль) и 30%-ный раствор H2O2 (53,12 мл, 524,78 ммоль) ), что соответствует соотношению исходных компонентов: [Sub]/[Cat]=150,
[Ox]/[Sub]=5. Подключают предварительно разогретый до 95°C термостат. Перемешивают смесь в течение 3 ч, после чего фазы разделяют.
Содержание нонановой кислоты в органической фазе, определенное с помощью метода ГХ, соответствует выходу 86,9%. Содержание децена-1 в органической фазе, определенное с помощью метода ГХ, соответствует конверсии 96,8%. Полная селективность реакции равна 89,8%.
Пример 10.
К навеске катализатора [n-Bu4N]3{PO4[WO(O2)2]4} (1,9938 г, 1,0619 ммоль), предварительно растворенной в небольшом количестве 1,2-дихлорэтана (5 мл), добавляют децен-1 (20,10 мл, 106,19 ммоль) и 30%-ный раствор H2O2 (64,49 мл, 637,14 ммоль), что соответствует соотношению исходных компонентов: [Sub]/[Cat]=100, [Ox]/|Sub]=6. Подключают предварительно разогретый до 80°C термостат. Перемешивают смесь в течение 6 ч, после чего фазы разделяют.
Содержание нонановой кислоты в органической фазе, определенное с помощью метода ГХ, соответствует выходу 16,4%. Содержание децена-1 в органической фазе, определенное с помощью метода ГХ, соответствует конверсии 66,9%. Полная селективность реакции равна 24,5%.
Пример 11.
К навеске катализатора [(n-C8H17)3NCH3]3{PO4[WO(O2)2]4} (1,1297 г, 0,5007 ммоль) добавляют додецен-1 (22,47 мл, 100,14 ммоль) и 30%-ный раствор H2O2 (50,68 мл, 500,70 ммоль), что соответствует соотношению исходных компонентов: [Sub)/[Cat]=200, [Ox]/[Sub]=5. Подключают предварительно разогретый до 90°C термостат. Перемешивают смесь в течение 4 ч, после чего фазы разделяют.
Содержание ундекановой кислоты в органической фазе, определенное с помощью метода ГХ, соответствует выходу 82,2%. Содержание додецена-1 в органической фазе, определенное с помощью метода ГХ, соответствует конверсии 96,2%. Полная селективность реакции равна 85,4%.
Пример 12.
К навеске катализатора [C5H5N(n-C16H33)]3{PO4[WO(O2)2]4} (1,4647 г, 0,7097 ммоль), предварительно растворенной в небольшом количестве 1,2-дихлорэтана (5 мл),
добавляют додецен-1 (23,89 мл, 106,46 ммоль) и 30%-ный раствор H2O2 (53,88 мл, 532,28 ммоль), что соответствует соотношению исходных компонентов: [Sub]/[Cat]=150, [Ox]/[Sub]=5. Подключают предварительно разогретый до 90°C термостат. Перемешивают смесь в течение 4 ч, после чего фазы разделяют.
Содержание ундекановой кислоты в органической фазе, определенное с помощью метода ГХ, соответствует выходу 80,8%. Содержание додецена-1 в органической фазе, определенное с помощью метода ГХ, соответствует конверсии 97,4%. Полная селективность реакции равна 83,0%.
Примеры получения карбоновых кислот приведены в таблице.
Figure 00000003
Таким образом, как видно из приведенных примеров и таблицы, предлагаемый способ позволяет получать востребованные в промышленности карбоновые кислоты C7 и выше окислением доступных алкенов экологически безопасным и дешевым пероксидом водорода в мягких условиях с высокими выходами и селективностями.

Claims (6)

1. Способ получения алифатических карбоновых кислот, а именно гептановой, нонановой и ундекановой, окислением соответствующего алкена раствором пероксида водорода в двухфазной системе в присутствии катализатора, отличающийся тем, что процесс проводят в присутствии металлокомплексного катализатора с общей формулой Q3{PO4[W(O)(O2)2]4}, где: Q - четвертичный аммониевый катион - [(R1)3NR2]+, где: R1, R2 содержат от 1 до 16 атомов углерода, либо с формулой [C5H5N(n-C16H33)]3{PO4[W(O)(O2)2]4}.
2. Способ по п. 1, отличающийся тем, что в качестве алкена - субстрата используют октен-1 или децен-1, или додецен-1.
3. Способ по п. 1, отличающийся тем, что процесс осуществляют при температуре 60-95°C и общем давлении 1 атм.
4. Способ по п. 1, отличающийся тем, что используют следующие соотношения компонентов: [Sub]/[Cat] = 100-500; [H2O2]/[Sub] = 4-6.
5. Способ по п. 1, отличающийся тем, что используют разбавленные растворы пероксида водорода с концентрацией 25-35%.
6. Способ по п. 1, отличающийся тем, что процесс осуществляют в присутствии 1,2-дихлорэтана.
RU2014132335/04A 2014-08-05 2014-08-05 Способ получения алифатических карбоновых кислот RU2554000C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014132335/04A RU2554000C1 (ru) 2014-08-05 2014-08-05 Способ получения алифатических карбоновых кислот

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014132335/04A RU2554000C1 (ru) 2014-08-05 2014-08-05 Способ получения алифатических карбоновых кислот

Publications (1)

Publication Number Publication Date
RU2554000C1 true RU2554000C1 (ru) 2015-06-20

Family

ID=53433867

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014132335/04A RU2554000C1 (ru) 2014-08-05 2014-08-05 Способ получения алифатических карбоновых кислот

Country Status (1)

Country Link
RU (1) RU2554000C1 (ru)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532079A (en) * 1983-04-15 1985-07-30 Montedison S.P.A. Process for the preparation of carboxylic acids starting from olefines or vicinal dihydroxy compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532079A (en) * 1983-04-15 1985-07-30 Montedison S.P.A. Process for the preparation of carboxylic acids starting from olefines or vicinal dihydroxy compounds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Д.П. Тучапская и др. "Каталитическое окисление первичных алифатических спиртов пероксидом водорода" В мире научных открытий, 2010, N4(10) часть 15, стр. 20-21, найдено в Интернет http://nkras.ru/vmno/archive/articles/2010/4-15.pdf. З.П. Пай и др. "Каталитическое окисление олефинов и спиртов пероксидом водорода до моно- и дикарбоновых кислот в двухфазной системе", Известия Академии наук. Серия химическая, 2005, N8, стр. 1794-1801. *
З.П. Пай и др. "Межфазное каталитическое окисление органических соединений пероксидом водорода в присутствии пероксополиоксометаллатов" Катализ в промышленности, N5, 2006, сс. 12-23. *

Similar Documents

Publication Publication Date Title
Hay et al. Autoxidation reactions catalyzed by cobalt acetate bromide
JP6077654B2 (ja) 2−エチルヘキサノールからイソノナン酸を製造する方法
RU2439047C2 (ru) Способ получения 1,2-пропандиола гидрогенолизом глицерина
EP0128484B1 (en) Process for preparing carboxylic acid
BR112014012936B1 (pt) processo de clivagem de cadeias graxas insaturadas
RU2436761C2 (ru) Способ получения 1,2-пропандиола гидрогенолизом глицерина
Cousin et al. Recent trends in the development of sustainable catalytic systems for the oxidative cleavage of cycloalkenes by hydrogen peroxide
CA2768604A1 (en) Process for preparing decanecarboxylic acids
US9359280B2 (en) Process for preparing a carboxylic acid from a diol or from an epoxide by oxidative cleavage
Dapurkar et al. Catalytic oxidation of oleic acid in supercritical carbon dioxide media with molecular oxygen
Liu et al. Conversion of Levulinate into Succinate through Catalytic Oxidative Carbon Carbon Bond Cleavage with Dioxygen.
Jalil et al. Degradation oxirane ring kinetics of epoxidized palm kernel oil-based crude oleic acid
RU2554000C1 (ru) Способ получения алифатических карбоновых кислот
Engl et al. Acrylate Esters by ethenolysis of maleate esters with Ru metathesis catalysts: an HTE and a technoeconomic study
JP6153271B2 (ja) 2−エチルヘキサノール由来のイソノナン酸のビニルエステル、それの製造方法並びにそれの使用
Vu et al. Organocatalytic Cleavage of Fatty 1, 2-Diketones to Esters
US4421691A (en) Preparation of fatty acid esters
US11406968B2 (en) Mixed oxides for the oxidative cleavage of lipids using oxygen to afford mono- and di-carboxylic acids
EP3463647B1 (en) Mixed oxides for the oxidative cleavage of lipids using oxygen to afford mono- and di-carboxylic acids
US10421925B2 (en) Process for the oxidative cleavage of vicinal diols
JP2005154298A (ja) 第三級カルボン酸
Wolfson et al. Transfer hydrogenation of a carbonyl compound in glycerol-based solvent mixtures
KR20200137015A (ko) 알파-, 베타-디하이드록시 카르보닐 화합물의 탈수 및 락트산 및 기타 다른 생성물로의 분해
JP4041897B2 (ja) 脂肪族飽和カルボン酸の製造方法
RU2697582C1 (ru) Способ получения изовалериановой кислоты