RU2553830C2 - Способ модификации полупроводниковой пленки лазерным излучением - Google Patents

Способ модификации полупроводниковой пленки лазерным излучением Download PDF

Info

Publication number
RU2553830C2
RU2553830C2 RU2013136844/28A RU2013136844A RU2553830C2 RU 2553830 C2 RU2553830 C2 RU 2553830C2 RU 2013136844/28 A RU2013136844/28 A RU 2013136844/28A RU 2013136844 A RU2013136844 A RU 2013136844A RU 2553830 C2 RU2553830 C2 RU 2553830C2
Authority
RU
Russia
Prior art keywords
semiconductor film
film
nanoparticles
nanostructure
laser radiation
Prior art date
Application number
RU2013136844/28A
Other languages
English (en)
Other versions
RU2013136844A (ru
Inventor
Александр Анатольевич Антипов
Стелла Владимировна Кутровская
Алексей Олегович Кучерик
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ)
Priority to RU2013136844/28A priority Critical patent/RU2553830C2/ru
Publication of RU2013136844A publication Critical patent/RU2013136844A/ru
Application granted granted Critical
Publication of RU2553830C2 publication Critical patent/RU2553830C2/ru

Links

Images

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Изобретение относится к области нанотехнологий, в частности к получению наноструктур на поверхности полупроводника. Способ модификации полупроводниковой пленки согласно изобретению заключается в том, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта превосходящей ширину запрещенной зоны в диапазоне мощности от 5 до 10 Вт, при диаметре лазерного пучка на поверхности пленки от 30 до 100 мкм, так чтобы интенсивность воздействия не превышала 106 Вт/см2, при сканировании поверхности пленки со скоростью от 40 до 160 мкм/с. Изобретение упрощает технический процесс, не требуется специального оборудования и позволяет охватывать устройства с характерным периодом расположения элементов на поверхности от 100 нм до 1 мкм.8 ил.

Description

Изобретение относится к области нанотехнологий, в частности к получению наноструктур на поверхности полупроводника при воздействии лазерного излучения. Полученные модифицированные полупроводниковые поверхности можно использовать при получении новых устройств для наноэлектроники в полупроводниковых приборах, в солнечных элементах, в приборах, работающих на квантовых эффектах.
Известен способ формирования нанорельефа на поверхностях деталей двухпереходным выглаживанием (патент №2458778, МПК B24B 39/00, B82B 3/00). Способ реализуется посредством выглаживания, которое проводят за два перехода инструментами с инденторами, имеющими полуцилиндрическую или сферическую форму рабочей части, на первом, сглаживающем переходе обработку поверхности осуществляют до Ra=(0,4-0,1) мкм, причем индентор с полуцилиндрической формой рабочей части устанавливают так, чтобы ось рабочей части индентора была расположена под углом φ=(5-30°) к оси обрабатываемой детали, а на втором переходе индентор устанавливают так, чтобы ось полуцилиндрической рабочей части индентора была расположена под углом φ=(70-85)° к оси обрабатываемой детали, обработку поверхности осуществляют до Ra≤10 нм.
Недостатками данного метода является то, что формирование нанорельефа производят инструментами инденторами в два этапа. Изготовление данных инструментов является нетривиальной задачей. К тому же произвести формирование нанорельефа на изгибах и впадинах практически не возможно.
Известен способ формирования нанорельефа на теплообменных поверхностях изделий (патент №2433949, МПК B82B 3/00, B82Y 40/00). Способ формирования нанорельефа на теплообменной поверхности изделия путем осуществления на ней кипения наножидкости заключается в том, что выбирают материал наночастиц с температурой плавления, равной 0.8-0.9 от температуры плавления изделия, получают при кипении наножидкости сплошной слой наночастиц на поверхности изделий с минимальным термическим сопротивлением, выдерживают изделие вместе со слоем наночастиц на нем в инертной атмосфере при температуре 0,7-0,8 от температуры плавления наночастиц в течение 30 мин.
Недостатками данного метода является то, что при кипении жидкости не возможно осаждение равномерного слоя наночастиц на поверхности изделия. К тому же не понятно, какого размера наночастицы и как выбирают наночастицы с температурой плавления, равной 0.8-0.9 от температуры плавления изделия (например, усадка наночастиц никеля, размерами от 70 нм до 80 нм, происходит при температуре от 100 до 200°C. Статья Степанов Ю.Н. Закономерности объединения наночастиц при их флуктуационном плавлении на начальной стадии спекания // Российские нонотехнологии. 2007. Т.2, №1-2, стр.133-135).
Известен способ формирования нанорельефа на поверхности пленок (патент №2204179, МПК H01L 21/265). Формирование нанорельефа на поверхности пленок заключается в том, что наносят на пленку слой кремния толщиной от полутора до трех глубин формирования наноструктуры в слое кремния; распыляют поверхность кремния потоком ионов молекул азота в вакууме с выбором энергии ионов азота, угла потока ионов азота по отношению к поверхности кремния, глубины формирования наноструктуры и высоты наноструктуры на основании значения длины волны наноструктуры в диапазоне от 30 до 180 нм до формирования наноструктуры, отстоящей от пленки на расстояние в одну треть длины волны по впадинам волн наноструктуры и с ориентацией гребней волн перпендикулярно направлению проекции потока ионов на поверхность кремния; переносят рельеф наноструктуры на поверхность пленки, удаляя материалы наноструктуры и пленки ионно-лучевым или плазменным травлением.
Недостатками данного метода является то, что процесс формирования требует использования большого количества операций по напылению и удалению структур кремния. Облучение поверхности потоком ионов азота требует высокого и чистого вакуума, что означает использование дорогостоящего и низкоэффеквтиного по производительности обоурдования.
Известен способ модифицирования поверхности неорганического волокна, модифицированное волокно и композиционный материал (патент №2475463, МПК C04B 35/8, D01F 9/12, В82В 3/00). Способ модифицирования поверхности неорганического волокна включает следующие стадии: (а) пропитку неорганического волокна раствором из фракции пека в органических растворителях; (б) последующую сушку пропитанного волокна; (в) термообработку пропитанного неорганического волокна при 300-600°C; (г) нанесение на поверхность термообработанного в соответствии со стадией (в) волокна соли переходного металла; (д) восстановление соли переходного металла с получением наночастиц переходного металла; (е) осаждение углерода на наночастицы переходного металла с получением углеродных наноструктур на поверхности волокна. Композиционный материал содержит модифицированное волокно, изготовленное вышеизложенным способом, и матрицу из полимера или углерода.
Недостатком данного метода является то, что данный способ модифицирования содержит много технологических этапов, что требует специального оборудования. Необходимость проведения последовательных окислительных и восстановительных операций с солями металлов должна приводить к их остаточному присутствию в получаемых структурах.
Известен способ формирования эпитаксиальных пленок кобальта на поверхности полупроводниковых подложек (патент №2465670, МПК H01F 10/16, H01F 41/30, B82B 3/00). Способ формирования эпитаксиальных пленок кобальта на поверхности полупроводниковых подложек включает нанесение буферного подслоя меди на атомарно чистой поверхности Si (111)7×7 в условиях сверхвысокого вакуума при комнатной температуре, последующее формирование в режиме послойного роста при тех же условиях ультратонких эпитаксиальных пленок Co(111)/Cu(111)/Si(111)7×7 толщиной от 1 до 6 монослоев (МС) в том случае, когда толщина буферного подслоя меди составляет 3,5 МС. При толщине медного буферного слоя от 4,5 и до 11,5 МС формируют массивы эпитаксиальных наноостровков кобальта моноатомной и биатомной высоты до величины покрытия кобальта 3 монослоя.
Недостатками данного способа является то, что для формирования эпитаксиальных пленок необходимо использовать специальное, дорогое оборудование для создания сверхвысокого вакуума, при этом скорости роста структур будут составлять порядка одного атомного слоя в час, что не позволяет применять данный метод в промышленных масштабах.
Известен способ модификации металлических поверхностей и устройство (патент №2425907, МПК C23C 4/1, C23C 16/48, C23C 16/513). Способ модификации включает формирование потока рабочего газа, содержащего несущий газ, а также химически активные реагенты и/или легирующие добавки, и направление потока рабочего газа на модифицируемую поверхность. При этом на поверхность воздействуют лазерным импульсно-периодическим излучением с образованием на поверхности и/или в ее приповерхностной области лазерной плазмы. Устройство для реализации способа содержит реакционную камеру, снабженную средством позиционирования обрабатываемого объекта, входом для потока рабочего газа и входом для лазерного излучения, источник рабочего газа, средство формирования потока рабочего газа в реакционной камере, импульсно-периодический лазер и средство доставки лазерного излучения в реакционную камеру и фокусировки луча, выполненное с возможностью направления лазерного луча на модифицируемую поверхность объекта.
Недостатками данного способа является то, что необходимо использовать химически активные реагенты в газовой фазе и/или легирующие добавки, требующие надлежащего хранения и последующей утилизации. Также требуется постоянный контроль над размерами распыляемых фракций.
Известен способ модификации поверхности материала плазменной обработкой (патент №2478141, МПК C23C 14/22, C22F 1/02). Способ включает загрузку материала в камеру, вакуумную откачку камеры, плазменную обработку поверхности материала и его выгрузку. Плазменную обработку осуществляют катодными пятнами возбуждаемого в камере вакуумного дугового разряда с обеспечением переплавления поверхностного слоя материала. Давление в камере поддерживают не более 1 Па, напряжение вакуумного дугового разряда - не менее 10 В, а ток вакуумного дугового разряда - не менее 1 А. Возбуждение и поддержание вакуумного дугового разряда осуществляют при приложении между катодом и анодом постоянного или импульсно-периодического напряжения, а локализацию катодных пятен на поверхности и управление их перемещением по осуществляют магнитным полем. Повышается эффективность и качество модификации поверхности материалов и изготовленных изделий.
Недостатками данного метода является то, что происходит переплавление материала на неизвестную и плохо контролируемую глубину от поверхности.
В качестве прототипа выбран способ формирования упорядоченных волнообразных наноструктур (варианты) (патент №2240280, МПК B82B 3/00).
Способ формирования упорядоченной волнообразной наноструктуры предусматривает облучение GaAs потоком ионов молекулярного азота N 2 +
Figure 00000001
до формирования периодической волнообразной наноструктуры на поверхности GaAs с ориентацией гребней волн наноструктуры, перпендикулярной плоскости падения ионов, с последующим дополнительным распылением GaAs потоком ионов O 2 +
Figure 00000002
в плоскости бомбардировки, совпадающей с плоскостью бомбардировки ионами
Figure 00000003
. Энергию и угол бомбардировки ионами O 2 +
Figure 00000004
устанавливают так, чтобы длины волн формирующихся волнообразных наноструктур при однократном облучении ионами N 2 +
Figure 00000005
и O 2 +
Figure 00000006
арсенида галлия совпадали. Второй вариант способа формирования упорядоченной волнообразной наноструктуры предусматривает облучение поверхности кремния потоком ионов O 2 +
Figure 00000007
до формирования малоамплитудной волнообразной наноструктуры на глубине распыления, отвечающей началу роста амплитуды наноструктуры с последующим облучением поверхности кремния потоком ионов N 2 +
Figure 00000008
в плоскости бомбардировки, совпадающей с плоскостью бомбардировки ионами O 2 +
Figure 00000009
, до насыщения амплитуды волнообразной наноструктуры. Энергию и угол бомбардировки ионов устанавливают так, чтобы длины волн формирующихся волнообразных наноструктур при однократном облучении ионами N 2 +
Figure 00000010
и O 2 +
Figure 00000011
кремния совпадали. Третий и четвертый варианты способа формирования упорядоченной волнообразной наноструктуры предусматривает предварительное направленное полирование поверхности арсенида галлия и кремния с последующим формированием волнообразной наноструктуры с ориентацией гребней волн, совпадающей с направлением.
Недостатками данного способа является то, что необходимо использовать специальное оборудование для облучения поверхности ионами N 2 +
Figure 00000012
и O 2 +
Figure 00000013
. К тому же кислород является взрывоопасным газом. Такие операции требуют выполнения в высоком вакууме с постоянной откачкой газов и распыляемого материала, что требует использования дорогостоящего оборудования. В процессе воздействия ионами возможно их глубокое проникновение в массив материала и образование сторонних фракций, что является негативным для свойств наноструктур GaAs.
Техническим результатом является модификация поверхности полупроводниковой пленки на основе халькогенидов свинца с бимодальным распределением наночастиц при воздействии непрерывного лазерного излучения. Таким образом, что размеры частиц изменяются от центра лазерного облучения к границе пучка. Это приводит к образованию наночастиц с двумя максимумами в функции распределения по размеру, что позволяет использовать данные материалы в различных областях фотоники, наноэлектроники и энергосберегающих технологиях в случае, когда требуется создание устройств с перестраиваемыми параметрами. Такой подход упрощает технический процесс, не требуется специального оборудования и позволяет охватывать устройства с характерным периодом расположения элементов на поверхности от 100 нм до 1 мкм.
Технический результат достигается тем, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта, превосходящей ширину запрещенной зоны в диапазоне мощности от 5 до 10 Вт, при диаметре лазерного пучка на поверхности пленки от 30 до 100 мкм, так, чтобы интенсивность воздействия не превышала 106 Вт/см2, при сканировании поверхности пленки со скоростью от 40 до 160 мкм/с.
Воздействуя непрерывным лазерным излучением мощности 5 Вт с диаметром пучка 30 мкм на полупроводниковую пленку PbTe при скорости сканирования 40 мкм/с, приводит к возникновению температурных градиентов, приводящих к тепловым напряжениям внутри материала без плавления. В результате на поверхности полупроводниковой пленки PbTe происходит формирование наночастиц бимодального распределения с размерами от 100 до 500 нм, изменяющимися от расстояния до центра лазерного воздействия (фиг.2, 3).
Воздействие непрерывного лазерного излучения мощности 8 Вт с диаметром пучка 60 мкм на полупроводниковую пленку PbTe при скорости сканирования 80 мкм/с приводит к возникновению температурных градиентов, приводящих к тепловым напряжениям внутри материала без плавления. В результате на поверхности полупроводниковой пленки PbTe происходит формирование наночастиц бимодального распределения с размерами от 100 до 500 нм, изменяющимися от расстояния до центра лазерного воздействия (фиг.4, 5). Количество сформированных наночастиц в области лазерного воздействия и на его периферии увеличилось.
Воздействие непрерывного лазерного излучения мощности 10 Вт с диаметром пучка 100 мкм на полупроводниковую пленку PbTe при скорости сканирования 120 мкм/с приводит к возникновению температурных градиентов, приводящих к тепловым напряжениям внутри материала без плавления. В результате на поверхности полупроводниковой пленки PbTe происходит формирование наночастиц бимодального распределения с размерами от 300 до 1000 нм, изменяющимися от расстояния до центра лазерного воздействия (фиг.6-8).
Изобретение поясняется представленными фиг.1, 2, 3: фиг.1 - принципиальная схема модификации полупроводниковой пленки лазерным излучением (1 - лазерный луч, 2 - полупроводниковая пленка, 3 - модифицированная область); фиг.2 - АСМ изображение модифицированной области полупроводниковой пленки, облученная непрерывным лазерным излучением мощностью 5 Вт, скорость сканирования 40 мкм/с; фиг.3 - гистограмма бимодального распределения наночастиц модифицированной области, облученная непрерывным лазерным излучением мощностью 5 Вт, скорость сканирования 40 мкм/с; фиг.4 - АСМ изображение модифицированной области полупроводниковой пленки, облученная непрерывным лазерным излучением мощностью 8 Вт, скорость сканирования 80 мкм/с; фиг.5 - гистограмма бимодального распределения наночастиц модифицированной области, облученная непрерывным лазерным излучением мощностью 8 Вт, скорость сканирования 80 мкм/с; фиг.6 - РЭМ изображение модифицированной области полупроводниковой пленки, облученная непрерывным лазерным излучением мощностью 10 Вт, скорость сканирования 120 мкм/с; фиг.7 - гистограмма бимодального распределения наночастиц модифицированной области, облученная непрерывным лазерным излучением мощностью 10 Вт, скорость сканирования 120 мкм/с; фиг.8 - АСМ изображение модифицированной области полупроводниковой пленки, облученная непрерывным лазерным излучением мощностью 10 Вт, скорость сканирования 120 мкм/с.

Claims (1)

  1. Способ модификации полупроводниковой пленки лазерным излучением, отличающийся тем, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта, превосходящей ширину запрещенной зоны в диапазоне мощности от 5 до 10 Вт, при диаметре лазерного пучка на поверхности пленки от 30 до 100 мкм, так, чтобы интенсивность воздействия не превышала 106 Вт/см2, при сканировании поверхности пленки со скоростью от 40 до 160 мкм/с.
RU2013136844/28A 2013-08-06 2013-08-06 Способ модификации полупроводниковой пленки лазерным излучением RU2553830C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013136844/28A RU2553830C2 (ru) 2013-08-06 2013-08-06 Способ модификации полупроводниковой пленки лазерным излучением

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013136844/28A RU2553830C2 (ru) 2013-08-06 2013-08-06 Способ модификации полупроводниковой пленки лазерным излучением

Publications (2)

Publication Number Publication Date
RU2013136844A RU2013136844A (ru) 2015-02-20
RU2553830C2 true RU2553830C2 (ru) 2015-06-20

Family

ID=53281841

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013136844/28A RU2553830C2 (ru) 2013-08-06 2013-08-06 Способ модификации полупроводниковой пленки лазерным излучением

Country Status (1)

Country Link
RU (1) RU2553830C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812668C1 (ru) * 2023-11-01 2024-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Способ формирования микро- и наноструктуры на теплообменной поверхности изделия из стали

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2240280C1 (ru) * 2003-10-10 2004-11-20 Ворлд Бизнес Ассошиэйтс Лимитед Способ формирования упорядоченных волнообразных наноструктур (варианты)
RU2347739C1 (ru) * 2007-07-25 2009-02-27 Федеральное государственное унитарное предприятие Научно-исследовательский институт комплексных испытаний оптико-электронных приборов и систем (ФГУП НИИКИ ОЭП) Способ получения наноструктур
RU2009132270A (ru) * 2009-08-26 2011-03-10 Общество с Ограниченной Ответственностью "ВладЛИТ" (ООО "ВладЛИТ") (RU) Способ формирования наноструктур на поверхности полупроводниковых пленок

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2240280C1 (ru) * 2003-10-10 2004-11-20 Ворлд Бизнес Ассошиэйтс Лимитед Способ формирования упорядоченных волнообразных наноструктур (варианты)
RU2347739C1 (ru) * 2007-07-25 2009-02-27 Федеральное государственное унитарное предприятие Научно-исследовательский институт комплексных испытаний оптико-электронных приборов и систем (ФГУП НИИКИ ОЭП) Способ получения наноструктур
RU2009132270A (ru) * 2009-08-26 2011-03-10 Общество с Ограниченной Ответственностью "ВладЛИТ" (ООО "ВладЛИТ") (RU) Способ формирования наноструктур на поверхности полупроводниковых пленок

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812668C1 (ru) * 2023-11-01 2024-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Способ формирования микро- и наноструктуры на теплообменной поверхности изделия из стали

Also Published As

Publication number Publication date
RU2013136844A (ru) 2015-02-20

Similar Documents

Publication Publication Date Title
Brodoceanu et al. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching
RU2242532C1 (ru) Способ получения наночастиц
USRE37537E1 (en) Method and apparatus for altering material
Mücklich et al. Laser Interference Metallurgy–using interference as a tool for micro/nano structuring
RU2447012C1 (ru) Способ получения наноструктурированной поверхности сталей методом лазерно-плазменной обработки
JPS5941510B2 (ja) 酸化ベリリウム膜とその形成方法
Cangueiro et al. Mechanisms of the formation of low spatial frequency LIPSS on Ni/Ti reactive multilayers
Mikolutskiy et al. Formation of various types of nanostructures on germanium surface by nanosecond laser pulses
RU2544892C1 (ru) Способ получения микро- и наноструктур на поверхности материалов
US20080187683A1 (en) Resonant infrared laser-assisted nanoparticle transfer and applications of same
CN107993923A (zh) 一种基于光热效应的可控量子点阵列制备方法
US9837599B1 (en) Films and the like produced from particles by processing with electron beams, and a method for production thereof
RU2553830C2 (ru) Способ модификации полупроводниковой пленки лазерным излучением
Murzin et al. Study of the action of a femtosecond laser beam on samples of a Cu-Zn alloy
Favazza et al. Nanoparticle ordering by dewetting of Co on SiO 2
KR101523849B1 (ko) 금속-탄소 복합 입자의 제조 방법
US9738062B2 (en) Patterning methods and products
JP6614651B2 (ja) シリコンナノ粒子の製造方法及び装置
RU2597447C2 (ru) Лазерный способ получения функциональных покрытий
Kishimoto et al. Microscopic laser patterning of functional organic molecules
Lorenz et al. Secondary electron yield engineering of copper surfaces using ultra short infrared laser pulses
Azuma et al. New surface treatment of polymers by simultaneous exposure to vacuum ultra-violet light and nanometer-sized particles
RU2688865C2 (ru) Способ модификации наноструктур материалов электронной техники газовыми кластерными ионами
CN100537835C (zh) 磁控溅射-激光加热复合渗镀工艺及设备
RU2265076C1 (ru) Способ получения наночастиц