RU2552222C1 - Способ измерения температурного распределения и устройство для его осуществления - Google Patents

Способ измерения температурного распределения и устройство для его осуществления Download PDF

Info

Publication number
RU2552222C1
RU2552222C1 RU2011116901/28K RU2011116901K RU2552222C1 RU 2552222 C1 RU2552222 C1 RU 2552222C1 RU 2011116901/28 K RU2011116901/28 K RU 2011116901/28K RU 2011116901 K RU2011116901 K RU 2011116901K RU 2552222 C1 RU2552222 C1 RU 2552222C1
Authority
RU
Russia
Prior art keywords
radiation
scattering
intensity
stokes
temperature
Prior art date
Application number
RU2011116901/28K
Other languages
English (en)
Inventor
Борис Георгиевич Горшков
Дмитрий Владимирович Зазирный
Максим Владимирович Зазирный
Original Assignee
Общество с ограниченной ответственностью "ПетроФайбер"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46849690&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2552222(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Общество с ограниченной ответственностью "ПетроФайбер" filed Critical Общество с ограниченной ответственностью "ПетроФайбер"
Application granted granted Critical
Publication of RU2552222C1 publication Critical patent/RU2552222C1/ru

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для распределенного измерения температуры в нефтяной, газовой промышленности, в электроэнергетике и так далее. Согласно заявленному способу регистрируют обратно рассеянное излучение на длине волны антистоксова комбинационного рассеяния с определением интенсивности антистоксова рассеяния излучения Ia. В процессе регистрации обратно рассеянного излучения на длине волны антистоксова комбинационного рассеяния дополнительно определяют интенсивность рэлеевского рассеяния излучения Ip от указанного импульсного оптического излучения. Последовательно во времени при генерировании вторым лазером импульсного оптического излучения проводят регистрацию обратно рассеянного излучения на длине волны антистоксова комбинационного рассеяния с определением интенсивности рэлеевского рассеяния излучения Ipa. Температуру Т определяют из отношения интенсивности антистоксова рассеяния излучения к интенсивности рэлеевского рассеяния излучения Ia/Ip, скорректированного с учетом интенсивности рэлеевского рассеяния излучения Ipa с условием, что температура Т пропорциональна математическому выражению. Технический результат - повышение чувствительности и точности измерений распределенного измерителя температуры при одновременном упрощении его конструкции. 2 з.п. ф-лы, 1 ил.

Description

Предложение относится к измерительной технике и может быть использовано для распределенного измерения температуры в нефтяной, газовой промышленности, в электроэнергетике и так далее. Особо значительный эффект может быть получен от его использования при добыче и транспортировке вязкой нефти.
Известен способ измерения температурного распределения с использованием оптического волокна, в котором с помощью рефлектометрии во временной области получают значения интенсивности антистоксова комбинационного (рамановского) рассеяния света, зависящие от абсолютной температуры, и значения интенсивности стоксова комбинационного рассеяния света, практически не зависящие от температуры, и по отношению интенсивностей этих двух компонент судят о температуре на каждом виртуальном отрезке оптического волокна (патент GB 2140554, 1984).
Недостатком этого способа является низкая точность измерений, обусловленная ограничением вводимой оптической мощности из-за нелинейных эффектов в волокне, служащем чувствительным элементом.
Вторым недостатком данного способа является низкая точность измерения температуры при изменении дифференциального поглощения в оптическом волокне в процессе эксплуатации в агрессивной среде (высокая температура, присутствие молекулярного водорода). Под дифференциальным поглощением понимается различное поглощение на зондирующей и сигнальной (антистоксовой комбинационной) длинах волн. Отсутствие информации о дифференциальном поглощении и о его изменении в процессе эксплуатации не позволяет корректно строить температурное распределение вдоль оптического волокна.
Указанный второй недостаток частично устранен в известном способе, раскрытом в патенте (патент US 7585107, 2009). Данный способ позволяет учитывать дифференциальное поглощение за счет снятия рефлектограмм на трех различных длинах волн. Данные о температурном распределении получают путем деления сигналов антистоксова и стоксова рассеяний с коррекцией на дифференциальное поглощение.
Однако точность измерений в этом случае оказывается невысокой за счет указанных выше нелинейных эффектов, поскольку они проявляются, прежде всего, как нелинейное возрастание сигнала стоксова рассеяния. Использовать в этом случае указанный сигнал в качестве опорного становится нецелесообразно.
Известно устройство для измерения температурного распределения, содержащее зондирующий импульсный лазер, установленный с возможностью введения оптического излучения в первый порт оптического циркулятора или ответвителя, ко второму порту которого подключен чувствительный элемент в виде отрезка оптического волокна, спектральный демультиплексор, соединенный входом с третьим портом циркулятора или ответвителя, а выходом - с двумя фотоприемниками, каждый из которых подключен к аналого-цифровому преобразователю, связанному последовательно с цифровым процессором (US 7585107, 2009).
Недостатком известного устройства является сложность конструкции, обеспечивающей его осуществление, так как включает в себя три источника оптического излучения, работающих, в числе прочих, на нестандартных для техники оптической связи длинах волн.
Известное устройство не обеспечивает необходимую чувствительность и точность измерений температурного распределения.
Известно волоконно-оптическое устройство для измерения температурного распределения, содержащее импульсный источник зондирующего излучения, соединенный через направленный оптический ответвитель, отделяющий рэлеевскую компоненту с чувствительным элементом в виде оптического волокна и систему регистрации, включающую два фотоприемных модуля и узел обработки сигналов, вход синхронизации которого связан с импульсным источником зондирующего излучения, а к выходу направленного оптического ответвителя подключен последовательно один или более дополнительный направленный оптический ответвитель, отделяющий рэлеевскую компоненту, соединенный последовательно с одним или более направленным оптическим ответвителем, разделяющим стоксову и антистоксову компоненты рассеянного излучения и направляющим их по разным фотоприемным модулям, подключенным к узлу обработки сигналов. Для увеличения мощности импульсного источника зондирующего излучения последовательно ему введен волоконно-оптический усилитель. Для увеличения мощности импульсного источника зондирующего излучения последовательно ему введен полупроводниковый усилитель с волоконными выходами.
В другом варианте в это устройство дополнительно введены оптический коммутатор, имеющий два оптических входа и четыре выхода, два из которых соединены между собой, и полупроводниковый лазер, излучающий на длине волны антистоксовой компоненты, подключенный через циркулятор, к двум выходам коммутатора, один вход коммутатора подключен к фотоприемному модулю, принимающему антистоксову компоненту, второй вход коммутатора соединен с выходом направленного ответвителя, разделяющего стоксову и антистоксову компоненты (заявка RU 2009113245/28, 2010).
Недостатки известного устройства: сложная конструкция, низкая чувствительность и точность измерений температурного распределения ввиду использования стоксова рамановского излучения в качестве опорного.
Задачей настоящего изобретения является создание простого по конструкции устройства, обладающего высокой точностью измерения в условиях изменяющегося при эксплуатации дифференциального поглощения излучения в оптическом волокне.
Техническим результатом предлагаемой группы изобретений, одно из которых предназначено для осуществления другого, является повышение чувствительности и точности измерений распределенного измерителя температуры при одновременном упрощении его конструкции.
Технический результат достигается тем, что в способе измерения температурного распределения, включающем генерирование первым лазером импульсного оптического излучения, ввод этого излучения в чувствительное оптическое волокно, имеющее тепловой контакт с объектом измерения температурного распределения, регистрацию обратно рассеянного излучения на длине волны антистоксова комбинационного рассеяния с определением интенсивности антистоксова рассеяния излучения Ia и определение температуры Т, согласно предложению в процессе регистрации обратно рассеянного излучения на длине волны антистоксова комбинационного рассеяния дополнительно определяют интенсивность рэлеевского рассеяния излучения Ip от указанного импульсного оптического излучения, а также последовательно во времени при генерировании вторым лазером импульсного оптического излучения проводят регистрацию обратно рассеянного излучения на длине волны антистоксова комбинационного рассеяния с определением интенсивности рэлеевского рассеяния излучения Ipa, причем температуру Т определяют, из отношения интенсивности антистоксова рассеяния излучения к интенсивности рэлеевского рассеяния излучения Ia/Ip, скорректированному с учетом интенсивности рэлеевского рассеяния излучения Ipa.
В конкретном случае при определении температуры Т корректировку отношения интенсивности антистоксова рассеяния излучения к интенсивности рэлеевского рассеяния излучения Ia/Ip проводят с условием, что температура Т пропорциональна выражению Ia/(Ipa·Ip)1/2,
где: Ia - интенсивность антистоксова рассеяния излучения при генерировании импульсного оптического излучения первым лазером;
Ipa - интенсивность рэлеевского рассеяния на длине волны антистоксова рассеяния при генерировании импульсного оптического излучения вторым лазером;
Ip - интенсивность рэлеевского рассеяния при генерировании импульсного оптического излучения первым лазером. Обычно регистрацию обратно рассеянного излучения осуществляют в виде рефлектограмм.
В отношении объекта изобретения - устройства технический результат достигается тем, что согласно предложению устройство для измерения температурного распределения, содержит подключенные к коммутатору зондирующий и дополнительный импульсный лазеры 1, 10, установленные параллельно друг другу с возможностью введения оптического излучения через спектральный мультиплексор 2 в первый порт оптического циркулятора или ответвителя 3, ко второму порту которого подключен чувствительный элемент в виде отрезка оптического волокна 4, спектральный демультиплексор 5, соединенный входом с третьим портом циркулятора или ответвителя, а выходом - с двумя фотоприемниками, каждый из которых подключен к аналогово-цифровому преобразователю 8, связанному последовательно с цифровым процессором 9 и коммутатором 11.
В конкретных вариантах воплощения устройства:
- чувствительный элемент - отрезок оптического волокна 4 может быть выполнен в виде одномодового или многомодового волоконного световода с малыми потерями оптического излучения, приблизительно 0,2…3 дБ/км;
- фотоприемники 6 и 7 могут быть выполнены на основе p-i-n или лавинных фотодиодов;
- зондирующий импульсный лазер 1 представляет собой твердотельный или волоконный лазер с выходной импульсной мощностью не менее сотен мВт;
- дополнительный импульсный лазер 10 выполнен полупроводниковым;
- цифровой процессор 9 выполнен на базе микроконтроллера или персонального компьютера или на основе программируемых логических интегральных схем (ПЛИС);
- коммутатор 11 выполнен с возможностью поочередной коммутации импульсов запуска зондирующего и дополнительного импульсных лазеров и может быть электронным или оптическим.
На графическом изображении представлено схематически устройство, реализующее предлагаемый способ.
Устройство для измерения температурного распределения содержит первый (зондирующий) импульсный лазер 1, работающий на длине волны λ0, спектральный мультиплексор 2, оптический циркулятор или ответвитель 3, чувствительный элемент в виде отрезка волокна 4, находящегося в тепловом контакте с объектом измерения, спектральный демультиплексор 5, два фотоприемника 6 и 7, аналого-цифровой преобразователь 8, цифровой процессор 9, второй (дополнительный) импульсный лазер 10, работающий на длине волны λа, и коммутатор 11. Зондирующий и дополнительный импульсный лазеры 1, 10 подключены входами к коммутатору 11 и установлены параллельно друг другу с возможностью введения оптического излучения через спектральный мультиплексор 2 в первый порт оптического циркулятора или ответвителя 3. Чувствительный элемент в виде отрезка оптического волокна 4 подключен ко второму порту циркулятора или ответвителя 3. Спектральный демультиплексор 5 соединен входом с третьим портом циркулятора или ответвителя 3, а выходом - с двумя фотоприемниками 6, 7, каждый из которых подключен к аналогово-цифровому преобразователю 8, связанному последовательно с цифровым процессором 9 и коммутатором 11.
Зондирующий импульсный лазер 1 может представлять собой твердотельный или волоконный лазер с выходной импульсной мощностью не менее сотен мВт. Дополнительный импульсный лазер 10 выполнен полупроводниковым. Длительность импульсов выбирается в соответствии с требуемым временным разрешением и обычно составляет единицы или десятки не. Спектральные мультиплексор 2 и демультиплексор 5 выпускаются серийно для систем со спектральным уплотнением каналов.
Чувствительный элемент в виде отрезка волокна 4 может быть выполнен в виде одномодового или многомодового волоконного световода, при этом предпочтительно использование волокон с малыми потерями (приблизительно 0,2……3дБ/км), что в настоящее время широко используется в технике связи.
Фотоприемники 6 и 7 могут быть выполнены на основе p-i-n или лавинных фотодиодов. Аналогово-цифровой преобразователь 8 может быть выполнен двухканальным. Цифровой процессор 9 сигналов может быть выполнен на базе микроконтроллера или персонального компьютера или на основе программируемых логических интегральных схем (ПЛИС). Коммутатор 11 выполнен с возможностью поочередной коммутации импульсов запуска зондирующего и дополнительного импульсных лазеров 1,10 и может быть электронным или оптическим.
Устройство работает следующим образом. Импульсный лазер 1 по команде процессора 9, поступающей через коммутатор 11, генерирует последовательность коротких и мощных импульсов на длине волны λ0. Излучение на этой длине волны с малыми потерями через спектральный мультиплексор 2 поступает в циркулятор 3, который обеспечивает ввод излучения в чувствительный элемент 4. Рассеянное в обратном направлении излучение содержит несмещенную (рэлеевскую) компоненту и две неупругие компоненты комбинационного (рамановского) рассеяния, причем стоксова компонента слабо зависит от температуры Т и в дальнейшем не подлежит регистрации, а антистоксова компонента с длиной волны λа достаточно сильно зависит от температуры Т. Представляющие интерес рэлеевская компонента с длиной волны Хо и антистоксова с длиной волны λа поступают через циркулятор 3 на узел спектрального демультиплексирования (спектральный демультиплексор 5), после чего первая компонента принимается фотоприемником 7, а вторая - фотоприемником 6. Сигналы от фотоприемников 6, 7 усиливаются и оцифровываются соответствующим устройством (аналогово-цифровым преобразователем 8), после чего поступают в цифровой процессор. Полученная приемником 7 рефлектограмма описывает распределение затухания по длине чувствительного волокна 4 на длине волны λ0. Полученный от приемника 6 сигнал есть антистоксова рамановская рефлектограмма, содержащая информацию о температурном распределении по длине чувствительного элемента. Отношение интенсивности компонент на λа и λ0 определяет температуру на каждом элементе разрешения по длине чувствительного элемента без учета неизвестного дифференциального затухания. Для определения этого дифференциального затухания по команде процессора лазер 1 отключается, а импульсный лазер 2, работающий на длине волны λа, включается. Излучение от этого лазера через мультиплексор 2 и циркулятор 3 поступает в чувствительный элемент 4, где рассеивается. Наибольшая интенсивность рассеяния приходится на несмещенную компоненту (с длиной волны λа), излучение которой поступает на фотоприемник 6. Сигнал, вырабатываемый этим фотоприемником при работе лазера 10, есть рефлектограмма на длине волны λа, позволяющая вычислить распределение потерь на этой длине волны. Результирующее температурное распределение вычисляется из трех указанных выше рефлектограмм. Изменение дифференциального затухания, обусловленное деградацией оптического волокна 4 в тяжелых условиях эксплуатации, при этом автоматически учитывается, что приводит к повышению точности измерений.
Способ измерения температурного распределения осуществляют в процессе работы устройства следующим образом. Генерируют первым (зондирующим) лазером 1 импульсное оптическое излучение, вводят это излучение в чувствительное оптическое волокно 4, имеющее тепловой контакт с объектом измерения температурного распределения. Регистрируют обратно рассеянное излучение на длине волны антистоксова комбинационного рассеяния с определением интенсивности антистоксова излучения Ia. В процессе регистрации обратно рассеянного излучения на длине волны антистоксова комбинационного рассеяния излучения первого лазера дополнительно определяют интенсивность рэлеевского рассеяния излучения Ip от импульсного оптического излучения, генерируемого первым лазером 1. Последовательно во времени при генерировании вторым (дополнительным) лазером 10 импульсного оптического излучения проводят регистрацию обратно рассеянного излучения на длине волны антистоксова комбинационного рассеяния с определением интенсивности рэлеевского рассеяния излучения Ipa. Температуру Т определяют из отношения интенсивности антистоксова рассеяния излучения к интенсивности рэлеевского рассеяния излучения Ia/Ip, скорректированному с учетом интенсивности рэлеевского рассеяния излучения Ipa. В конкретном случае при определении температуры Т корректировку отношения интенсивности антистоксова рассеяния излучения к интенсивности рэлеевского рассеяния излучения
Ia/Ip проводят с условием, что температура Т пропорциональна выражению Ia/(Ipa·Ip)1/2. Обычно регистрацию обратно рассеянного излучения осуществляют в виде рефлектограмм.
Пример. Устройство содержит в качестве чувствительного элемента 4 одномодовое оптическое волокно значительной длины (до 25-30 км). Зондирующий лазер 1 выполнен гибридным с задающим генератором и волоконным усилителем, работающим на длине волны 1550 нм. Длительность импульса выбирается, исходя из требуемого пространственного разрешения и типично составляет десятки не. Пиковая мощность - сотни мВт.Частота повторения импульсов определяется длиной чувствительного волокна 4 и при длине 25 км составляет 3 кГц. Оптический циркулятор 3, в данном примере, применен поляризационно независимый. При распространении по волокну 4 излучение испытывает рассеяние, причем для измерения температуры Т используется антистоксова компонента комбинационного рассеяния, имеющая широкий спектр с максимумом около 1460-1480 нм. Одновременно с этим происходит рэлеевское рассеяние, имеющее значительно большую интенсивность, которая практически не зависит от температуры Т, и поэтому сигнал рэлеевского рассеяния может использоваться как опорный. Разделение сигналов по спектру с границей разделения 1500 нм осуществляется спектральным мультиплексором 2, например, сплавным или тонкопленочным. Сигналы принимаются фотоприемниками 6,7, а именно фотоприемными модулями с лавинными фотодиодами, чувствительными на указанный спектральный диапазон (1460-1570 нм), оцифровываются и вводятся в память компьютера. Для того чтобы результаты измерений не зависели от дифференциальных потерь (потерь на различных длинах волн), в устройство введен импульсный лазер (дополнительный) 10, работающий на длине волны 1470 нм, который выполнен полупроводниковым и имеет мощность в единицы мВт. Этот лазер 10 включается в работу электронным коммутатором 11, в то время как импульсный зондирующий лазер 1 отключается. Этот сигнал также оцифровывается и вводится в память компьютера. Фактически он является рефлектограммой, снятой на длине волны 1470 нм. Имея рефлектограммы на двух рабочих длинах волн (1550 и 1470 нм), на основании сигнала антистоксова комбинационного рассеяния вычисляют температурное распределение, не зависящее от дифференциального затухания в чувствительном волокне 4, которое возникает при эксплуатации в условиях повышенных температур (более 100°C) и высокой концентрации водорода.
Технические характеристики описанного устройства, полученные экспериментальным путем: длина чувствительного элемента до 25 км, температурное разрешение в начале волокна 0,2 градуса, в конце 2 градуса, пространственное разрешение 2 м, время осреднения 60 с.
Использование предлагаемой группы изобретений, одно из которых предназначено для осуществления другого, позволяет повысить чувствительность и точность измерений распределенным измерителем температуры при одновременном упрощении его конструкции.

Claims (3)

1. Способ измерения температурного распределения, включающий генерирование первым лазером импульсного оптического излучения, ввод этого излучения в чувствительное оптическое волокно, имеющее тепловой контакт с объектом измерения температурного распределения, регистрацию обратно рассеянного излучения на длине волны антистоксова комбинационного рассеяния с определением интенсивности антистоксова рассеяния излучения Ia и определение температуры Т, отличающийся тем, что в процессе регистрации обратно рассеянного излучения на длине волны антистоксова комбинационного рассеяния дополнительно определяют интенсивность рэлеевского рассеяния излучения Ip от указанного импульсного оптического излучения, а также последовательно во времени при генерировании вторым лазером импульсного оптического излучения проводят регистрацию обратно рассеянного излучения на длине волны антистоксова комбинационного рассеяния с определением интенсивности рэлеевского рассеяния излучения Ipa, причем температуру Т определяют из отношения интенсивности антистоксова рассеяния излучения к интенсивности рэлеевского рассеяния излучения Ia/Ip, скорректированного с учетом интенсивности рэлеевского рассеяния излучения Ipa.
2. Способ по п.1, отличающийся тем, что при определении температуры Т корректировку отношения интенсивности антистоксова рассеяния излучения к интенсивности рэлеевского рассеяния излучения Ia/Ip проводят с условием, что температура Т пропорциональна выражению Ia/(Ipa·Ip)1/2,
где: Ia - интенсивность антистоксова рассеяния излучения при генерировании импульсного оптического излучения первым лазером;
Ipa - интенсивность рэлеевского рассеяния на длине волны антистоксова рассеяния при генерировании импульсного оптического излучения вторым лазером;
Ip - интенсивность рэлеевского рассеяния при генерировании импульсного оптического излучения первым лазером.
3. Способ по п.1, отличающийся тем, что регистрацию обратно рассеянного излучения осуществляют в виде рефлектограмм.
RU2011116901/28K 2011-04-28 2011-04-28 Способ измерения температурного распределения и устройство для его осуществления RU2552222C1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011116901/28A RU2458325C1 (ru) 2011-04-28 2011-04-28 Способ измерения температурного распределения и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2552222C1 true RU2552222C1 (ru) 2015-06-10

Family

ID=46849690

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2011116901/28K RU2552222C1 (ru) 2011-04-28 2011-04-28 Способ измерения температурного распределения и устройство для его осуществления
RU2011116901/28A RU2458325C1 (ru) 2011-04-28 2011-04-28 Способ измерения температурного распределения и устройство для его осуществления

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2011116901/28A RU2458325C1 (ru) 2011-04-28 2011-04-28 Способ измерения температурного распределения и устройство для его осуществления

Country Status (1)

Country Link
RU (2) RU2552222C1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2583060C1 (ru) * 2015-02-09 2016-05-10 Общество с ограниченной ответственностью "ПетроФайбер" Способ измерения температурного распределения в объекте и устройство для его осуществления
CN109443591B (zh) * 2018-12-27 2023-11-07 江苏明江机械制造有限公司 分布式光纤测温系统
CN111879436B (zh) * 2020-06-29 2022-05-13 太原理工大学 基于双脉冲调制的分布式光纤拉曼温度解调装置及方法
CN111795760B (zh) * 2020-07-30 2024-08-20 国兴汇金(深圳)科技有限公司 多功能光纤分布式温度传感系统、测量方法及存储介质
CN116105891B (zh) * 2023-02-10 2024-01-09 之江实验室 高温传感装置及高温传感装置的标定方法
CN116337273B (zh) * 2023-05-29 2023-07-28 中国空气动力研究与发展中心设备设计与测试技术研究所 一种基于双微透镜阵列的cars光谱多点测温装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217306A (en) * 1991-03-02 1993-06-08 Fujikura Ltd. Temperature distribution analyzer using optical fiber
US5592282A (en) * 1993-07-22 1997-01-07 York Limited Suppression of stimulated scattering in optical time domain reflectometry
US5765948A (en) * 1995-03-07 1998-06-16 Kabushiki Kaisha Toshiba Light-temperature distribution sensor using back scattering light produced by incident light pulse and temperature distribution measuring method
US7585107B2 (en) * 2006-01-17 2009-09-08 Weatherford/Lamb, Inc. Corrected DTS measurements based on Raman-Stokes signals
US7679732B2 (en) * 2005-12-01 2010-03-16 The University Of Tokyo Optical-fiber-characteristic measuring apparatus and optical-fiber-characteristic measuring method
RU2413188C2 (ru) * 2009-04-09 2011-02-27 Общество с ограниченной ответственностью "СибСенсор" Волоконно-оптическое устройство для измерения температурного распределения (варианты)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2434208C2 (ru) * 2007-01-30 2011-11-20 Курков Андрей Семенович Волоконно-оптическое устройство для измерения распределения температуры (варианты)
CN100491924C (zh) * 2007-11-15 2009-05-27 中国计量学院 超远程分布式光纤拉曼与布里渊光子传感器
CN201680924U (zh) * 2010-04-13 2010-12-22 中国计量学院 一种分布式光纤拉曼、布里渊散射传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217306A (en) * 1991-03-02 1993-06-08 Fujikura Ltd. Temperature distribution analyzer using optical fiber
US5592282A (en) * 1993-07-22 1997-01-07 York Limited Suppression of stimulated scattering in optical time domain reflectometry
US5765948A (en) * 1995-03-07 1998-06-16 Kabushiki Kaisha Toshiba Light-temperature distribution sensor using back scattering light produced by incident light pulse and temperature distribution measuring method
US7679732B2 (en) * 2005-12-01 2010-03-16 The University Of Tokyo Optical-fiber-characteristic measuring apparatus and optical-fiber-characteristic measuring method
US7585107B2 (en) * 2006-01-17 2009-09-08 Weatherford/Lamb, Inc. Corrected DTS measurements based on Raman-Stokes signals
RU2413188C2 (ru) * 2009-04-09 2011-02-27 Общество с ограниченной ответственностью "СибСенсор" Волоконно-оптическое устройство для измерения температурного распределения (варианты)

Also Published As

Publication number Publication date
RU2458325C1 (ru) 2012-08-10

Similar Documents

Publication Publication Date Title
CN107917738B (zh) 一种同时测量温度、应变和振动的分布式光纤传感系统
US9599460B2 (en) Hybrid Raman and Brillouin scattering in few-mode fibers
JP6308160B2 (ja) 光ファイバ歪み測定装置及び光ファイバ歪み測定方法
RU2413188C2 (ru) Волоконно-оптическое устройство для измерения температурного распределения (варианты)
RU2552222C1 (ru) Способ измерения температурного распределения и устройство для его осуществления
CN108663138B (zh) 一种分布式光纤温度及振动的传感系统及方法
WO2020034558A1 (zh) 一种面向分布式光纤拉曼传感器的高精度温度解调方法
CN102494801B (zh) 一种分布式光延迟光纤温度传感器
US9784567B2 (en) Distributed brillouin sensing using correlation
CN107340077B (zh) 一种全分布式光纤温度及应力的传感方法与传感系统
CN111896136B (zh) 厘米量级空间分辨率的双参量分布式光纤传感装置及方法
CN102589748A (zh) 基于光纤瑞利与布里渊原理的环境温度测量方法
CN106595837A (zh) 相干相位敏感光时域反射仪的处理方法及装置
JP5000443B2 (ja) 光ファイバの後方ブリルアン散乱光測定方法及び装置
CN111006787B (zh) 基于差分温度补偿的分布式光纤拉曼双端温度解调方法
KR101889351B1 (ko) 유효 측정점 개수가 확대된 공간선택적 브릴루앙 분포형 광섬유 센서 및 브릴루앙 산란을 이용한 센싱 방법
CN211740563U (zh) 一种光时域反射仪
JP2007240294A (ja) 光ファイバ歪測定装置
CN104482858B (zh) 一种高灵敏度和高精度的光纤识别标定方法及系统
CN202631153U (zh) 带有自动补偿功能的单端口分布式光纤温度传感器
Liu et al. Design of distributed fiber optical temperature measurement system based on Raman scattering
CN203224310U (zh) 布里渊光时域反射仪
RU123518U1 (ru) Волоконно-оптическое устройство акустического мониторинга протяженных объектов
CN213842395U (zh) 动静态联合测量分布式光纤传感系统
JP6602689B2 (ja) 光線路特性解析装置及び信号処理方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130429

BF4A Cancelling a publication of earlier date [patents]

Free format text: PUBLICATION IN JOURNAL SHOULD BE CANCELLED

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20210120

Effective date: 20210120