RU2583060C1 - Способ измерения температурного распределения в объекте и устройство для его осуществления - Google Patents

Способ измерения температурного распределения в объекте и устройство для его осуществления Download PDF

Info

Publication number
RU2583060C1
RU2583060C1 RU2015104081/28A RU2015104081A RU2583060C1 RU 2583060 C1 RU2583060 C1 RU 2583060C1 RU 2015104081/28 A RU2015104081/28 A RU 2015104081/28A RU 2015104081 A RU2015104081 A RU 2015104081A RU 2583060 C1 RU2583060 C1 RU 2583060C1
Authority
RU
Russia
Prior art keywords
optical
radiation
signal
stokes raman
scattered
Prior art date
Application number
RU2015104081/28A
Other languages
English (en)
Inventor
Борис Георгиевич Горшков
Георгий Борисович Горшков
Дмитрий Владимирович Зазирный
Максим Владимирович Зазирный
Original Assignee
Общество с ограниченной ответственностью "ПетроФайбер"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ПетроФайбер" filed Critical Общество с ограниченной ответственностью "ПетроФайбер"
Priority to RU2015104081/28A priority Critical patent/RU2583060C1/ru
Application granted granted Critical
Publication of RU2583060C1 publication Critical patent/RU2583060C1/ru

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Изобретение относится к области термометрии и может применяться для решения широкого круга задач в нефтяной и газовой промышленности. Располагают чувствительное оптическое волокно в тепловом контакте с объектом, организуют рефлектометрическую измерительную схему, содержащую оптический путь обратно рассеянного излучения, Подключают оптический путь обратно рассеянного излучения через оптический фильтр, выполненный с возможностью селекции обратно рассеянного антистоксова рамановского сигнала, к фотоприемнику. Генерируют оптические импульсы и вводят их в чувствительное оптическое волокно. Осуществляют фотоприем, оцифровку и цифровое накопление сигнала обратно рассеянного антистоксова рамановского излучения до достижения заданного отношения сигнал/шум. Затем подключают оптический путь обратно рассеянного излучения через оптический фильтр, выполненный с возможностью селекции обратно рассеянного опорного сигнала стоксова рамановского или рэлеевского излучения, к фотоприемнику. Генерируют оптические импульсы и вводят их в чувствительное оптическое волокно. Осуществляют фотоприем, оцифровку и цифровое накопление обратно рассеянного опорного сигнала стоксова рамановского или рэлеевского излучения до достижения заданного отношения сигнал/шум. Температурное распределение в объекте определяют расчетом исходя из отношения обратно рассеянных сигнала антистоксова рамановского излучения и опорного сигнала стоксова рамановского или рэлеевского излучения, после чего осуществляют архивацию полученного результата или передачу его вовне. Также предложено устройство для реализации указанного выше способа определения температурного распределения в объекте. Технический результат - уменьшение влияния на точность измерений различия характеристик двух фотоприемных каналов при достаточном для регистрации уровне мощности двух принимаемых сигналов - измерительного и опорного. 2 н. и 4 з.п. ф-лы, 1 ил.

Description

Предложение относится к волоконно-оптическим информационно-измерительным системам и может применяться для решения широкого круга задач в нефтяной и газовой промышленности, в строительстве, системах пожарной сигнализации и т.д.
Известны способы измерения температурного распределения и основанные на них распределенные датчики температуры, базирующиеся на оптической рефлектометрии и измерении интенсивности антистоксовой компоненты комбинационного (рамановского) рассеяния света (например, патенты США №5054935, 1991 и №5102232, 1992).
Известно, что интенсивность указанной компоненты достаточно сильно зависит от температуры, на чем и основаны температурные измерения. Поскольку в условиях реальной эксплуатации потери оптического излучения могут изменяться, в качестве опорного сигнала используется либо стоксова составляющая комбинационного рассеяния (патент США 5054935), либо рэлеевское (упругое) рассеяние (патент РФ №2458325, 2012). При этом антистоксово рамановское излучение принимается одновременно одним фотоприемником и последующей электронной схемой, а опорный сигнал - другим фотоприемником с соответствующей схемой, причем регистрация производится при одном и том же уровне входной оптической мощности. Температурное распределение вычисляется из отношения интенсивностей антистоксовой и стоксовой компонент рамановского рассеяния.
Указанные технические решения имеют два общих недостатка. Во-первых, сигналы проходят по двум разным каналам, имеющим различные нелинейные искажения, различные амплитудно-частотные характеристики и различные электромагнитные наводки, которые при синхронном накоплении сигнала, несмотря на свою незначительную величину, могут определять в конечном счете точностные характеристики датчика. Во-вторых, для регистрации антистоксовой и стоксовой компонент рамановского рассеяния ввиду наличия нелинейных эффектов оптимальный уровень пиковой мощности зондирующих сигналов различный.
Известно техническое решение (патент США №7350972, 2008), в котором фотоприем ведется на один приемник, предваряемый оптическим фильтром, пропускающим длину волны антистоксова рамановского рассеяния, а для разделения измерительного и опорного каналов используются два различных режима работы импульсного оптического источника - лазерный для получения сигнала антистоксовой компоненты рамановского рассеяния и светодиодный для регистрации сигнала рэлеевского рассеяния.
Недостатком указанного технического решения является крайне низкий уровень оптической мощности, который может быть получен от лазерного диода в режиме светодиода. В особенности это касается ситуации, когда диапазон длин волн, выделяемый оптическим фильтром, не только не соответствует спектральному максимуму светодиода, но и отстоит от него весьма далеко (типичный сдвиг рамановского рассеяния составляет 70 нм при рабочей длине волны 1550 нм). По этой причине чувствительность и точность измерений оказываются недостаточными.
Известное устройство для измерения температурного распределения (патент США №5102232, 1992) содержит импульсный лазер, направленный ответвитель, чувствительное оптическое волокно, узел оптических фильтров (выделяющий стоксову и антистоксову компоненты рамановского рассеяния), два преобразователя света в электрический ток (фотоприемники), два предусилителя и узел обработки сигнала.
Известно также волоконно-оптическое устройство для измерения распределения температуры (варианты). Устройство содержит импульсный источник оптического излучения, оптическое волокно, являющееся чувствительным элементом, направленный ответвитель, блок спектрального разделения, два фотоприемных модуля, фотоприемный модуль синхронизации и блок обработки. Направленный ответвитель соединен с импульсным источником оптического излучения, со входом блока спектрального разделения, со входом фотоприемного модуля синхронизации и с чувствительным элементом. Блок спектрального разделения соединен с фотоприемными модулями, которые в свою очередь соединены с блоком обработки. Чувствительный элемент выполнен в виде одномодового волокна, блок спектрального разделения содержит волоконный фильтр на брэгговской решетке и волоконный мультиплексор на два канала, настроенных на пропускание стоксовской и антистоксовской компоненты. Вариантом является устройство, в котором вместо направленного ответвителя используется циркулятор. Технический результат - повышение надежности и улучшение отношения сигнал/шум (патент РФ №2434208, 2011).
Недостатком данных описанных устройств является недостаточная точность измерений, обусловленная различием характеристик двух оптоэлектронных каналов измерения (включающих фотоприемник, усилитель и подразумеваемое последующее устройство оцифровки). Кроме того, не имеется возможности регистрации полезного сигнала и опорного сигнала при разных, оптимальных для каждого, уровнях мощности зондирующего оптического импульса.
Задачей настоящего предложения (группы технических решений, объединенных единым изобретательским замыслом) является повышение точностных характеристик распределенного средства (датчика температуры), основанного на регистрации интенсивности рамановского рассеяния света.
Технический результат заключается в уменьшении влияния на точность измерений различия характеристик двух фотоприемных каналов при достаточном для регистрации уровне мощности двух принимаемых сигналов - измерительного и опорного.
Технический результат в отношении объекта изобретения - способа достигается тем, что согласно предлагаемому способу определения температурного распределения в объекте располагают чувствительное оптическое волокно в тепловом контакте с объектом, организуют рефлектометрическую измерительную схему, содержащую оптический путь обратно рассеянного излучения, подключают оптический путь обратно рассеянного излучения через оптический фильтр, выполненный с возможностью селекции обратно рассеянного антистоксова рамановского сигнала, к фотоприемнику, генерируют оптические импульсы и вводят их в чувствительное оптическое волокно, осуществляют фотоприем, оцифровку и цифровое накопление сигнала обратно рассеянного антистоксова рамановского излучения до достижения заданного отношения сигнал/шум, затем подключают оптический путь обратно рассеянного излучения через оптический фильтр, выполненный с возможностью селекции обратно рассеянного опорного сигнала стоксова рамановского или рэлеевского излучения, к фотоприемнику, генерируют оптические импульсы и вводят их в чувствительное оптическое волокно, осуществляют фотоприем, оцифровку и цифровое накопление обратно рассеянного опорного сигнала стоксова рамановского или рэлеевского излучения до достижения заданного отношения сигнал/шум, а температурное распределение в объекте определяют расчетом исходя из отношения обратно рассеянных сигнала антистоксова рамановского излучения и опорного сигнала стоксова рамановского или рэлеевского излучения, после чего осуществляют архивацию полученного результата или передачу его вовне.
В частном случае возможна модификация способа, в соответствии с которой генерируют оптические импульсы таким образом, чтобы уровень сигнала от рассеянного излучения на фотоприемнике был приблизительно одинаковым.
Технический результат в отношении объекта изобретения - устройства достигается тем, что устройство для определения температурного распределения в объекте содержит связанные с блоком управления и обработки сигналов последовательно соединенные источник оптического излучения, ответвитель или циркулятор и чувствительное оптическое волокно, при этом блок управления и обработки сигналов связан с электрически управляемым оптическим коммутатором и блоком регистрации и накопления рефлектограмм в цифровой форме, имеющим связь с фотоприемником, а электрически управляемый оптический коммутатор также связан с фотоприемником и через блок оптической спектральной фильтрации, имеющий два выхода для организации измерительного и опорного каналов, и один вход - с ответвителем или циркулятором для организации рефлектометрического канала.
Способствует достижению технического результата то, что в устройстве источник оптического излучения выполнен с возможностью изменения пиковой мощности при переключении электрически управляемого оптического коммутатора с измерительного канала на опорный канал, а также то, что блок управления и обработки сигналов выполнен с возможностью установки уровня оптической мощности источника оптического излучения несколько ниже порога появления нелинейных эффектов в чувствительном оптическом волокне.
Предпочтительно, чтобы источник оптического излучения был выполнен в виде лазера.
Предложение поясняется схематическим изображением устройства, реализующего предложенный способ.
Устройство для определения температурного распределения в объекте содержит связанные с блоком 1 управления и обработки сигналов последовательно соединенные источник 2 оптического излучения (лазер), ответвитель или циркулятор 3 и чувствительное оптическое волокно 4. Блок 1 управления и обработки сигналов связан с электрически управляемым оптическим коммутатором 5 и блоком 6 регистрации и накопления рефлектограмм в цифровой форме, имеющим связь с фотоприемником 7. Электрически управляемый оптический коммутатор 5 также связан с фотоприемником 7 и через блок 8 оптической спектральной фильтрации, имеющий два выхода для организации измерительного и опорного каналов, и один вход - с ответвителем или циркулятором 3 для организации рефлектометрического канала.
В устройстве источник 2 оптического излучения выполнен с возможностью изменения пиковой мощности при переключении электрически управляемого оптического коммутатора 5 с измерительного канала на опорный канал. Блок 1 управления и обработки сигналов выполнен с возможностью установки уровня оптической мощности источника 2 оптического излучения несколько ниже порога появления нелинейных эффектов в чувствительном оптическом волокне 4.
Способ определения температурного распределения в объекте осуществляют следующим образом. Располагают чувствительное оптическое волокно 4 в тепловом контакте с объектом, например трубопроводом. Организуют рефлектометрическую измерительную схему, содержащую оптический путь обратно рассеянного излучения. Подключают оптический путь обратно рассеянного излучения через оптический фильтр, выполненный с возможностью селекции обратно рассеянного антистоксова рамановского сигнала, к фотоприемнику 7 и входящий в состав блока 8 оптической спектральной фильтрации.
Для организации рефлектометрического канала блок 8 оптической спектральной фильтрации имеет два выхода для организации измерительного и опорного каналов и один вход, связанный с ответвителем или циркулятором 3.
Генерируют оптические импульсы и вводят их в чувствительное оптическое волокно 4, осуществляют фотоприем, оцифровку и цифровое накопление сигнала обратно рассеянного антистоксова рамановского излучения до достижения заданного отношения сигнал/шум.
Затем подключают оптический путь обратно рассеянного излучения через оптический фильтр, выполненный с возможностью селекции обратно рассеянного опорного сигнала стоксова рамановского или рэлеевского излучения, к фотоприемнику 7 и входящий также в состав блока 8 оптической спектральной фильтрации.
Генерируют оптические импульсы и вводят их в чувствительное оптическое волокно 4, осуществляют фотоприем, оцифровку и цифровое накопление обратно рассеянного опорного сигнала стоксова рамановского или рэлеевского излучения до достижения заданного отношения сигнал/шум.
Температурное распределение в объекте определяют расчетом (с помощью блока 1 управления и обработки сигналов вычисляют температурное распределение) исходя из отношения обратно рассеянных сигнала антистоксова рамановского излучения и опорного сигнала стоксова рамановского или рэлеевского излучения, после чего осуществляют архивацию полученного результата или передачу его вовне.
В частном случае возможна модификация способа, в соответствии с которой генерируют оптические импульсы таким образом, чтобы уровень сигнала от рассеянного излучения на фотоприемнике 7 был приблизительно одинаковым.
Электрические сигналы формируются одним и тем же каналом с характерными для него нелинейными искажениями и электромагнитными наводками, которые в значительной степени нивелируются при делении информационного сигнала на опорный.
В частном случае реализации способа одновременно с оптической коммутацией антистоксова и опорного сигналов дополнительно переключают уровень оптической мощности генерируемых оптических импульсов, в частности, таким образом, чтобы уровень указанных сигналов оказался приблизительно одинаковым.
Введенный в устройство электрически управляемый оптический коммутатор 5, установленный после оптических фильтров блока 8 оптической спектральной фильтрации, подключает их выходы ко входу фотоприемника 7 последовательно во времени. Кроме того, источник 2 импульсного оптического излучения выполнен с возможностью переключения уровня пиковой мощности с управлением от блока 1 управления и обработки сигналов.
Чувствительное оптическое волокно 4 располагают в тепловом контакте с объектом мониторинга. В частности, оно может располагаться, например, внутри нефтяной или газовой скважины. Блок 1 управления и обработки сигналов устанавливает уровень оптической мощности лазера 2 несколько ниже порога появления нелинейных эффектов в чувствительном оптическом волокне 4. Одновременно он же дает команду электрически управляемому оптическому коммутатору 5 на пропускание сигнала антистоксова рассеяния из блока 8 оптической спектральной фильтрации на фотоприемник 7. Далее производятся регистрация и накопление рефлектограмм в цифровой форме. Назовем этот процесс первым измерением. После накопления достаточного числа рефлектограмм (что обеспечивает заданное отношение сигнал/шум) блок 1 управления и обработки сигналов осуществляет коммутацию фотоприемника 7 на выход фильтра блока 8 оптической спектральной фильтрации, который представляет опорный канал. Одновременно с этим блок 1 управления и обработки сигналов уменьшает выходную пиковую мощность лазера 2 до уровня, при котором сигнал с фотоприемника 7 окажется примерно равным сигналу при первом измерении. Это второе измерение производится до достижения заданного отношения сигнал/шум. Далее блок 1 управления и обработки сигналов вычисляет температурное распределение.
Пример. При работе, в частности, на длине волны 1550 нм вводимая в одномодовое чувствительное оптическое волокно мощность (пиковая) составляет 900 мВт при измерении антистоксовой компоненты и 150 мВт - стоксовой компоненты. Технические характеристики при длительности зондирующего импульса 10 нс в результате такие: пространственное разрешение 1 м, температурное разрешение 0,25 градуса C, время накопления 10 с, длина одномодового чувствительного оптического волокна 2500 м.

Claims (6)

1. Способ определения температурного распределения в объекте, в соответствии с которым располагают чувствительное оптическое волокно в тепловом контакте с объектом, организуют рефлектометрическую измерительную схему, содержащую оптический путь обратно рассеянного излучения, подключают оптический путь обратно рассеянного излучения через оптический фильтр, выполненный с возможностью селекции обратно рассеянного антистоксова рамановского сигнала, к фотоприемнику, генерируют оптические импульсы и вводят их в чувствительное оптическое волокно, осуществляют фотоприем, оцифровку и цифровое накопление сигнала обратно рассеянного антистоксова рамановского излучения до достижения заданного отношения сигнал/шум, затем подключают оптический путь обратно рассеянного излучения через оптический фильтр, выполненный с возможностью селекции обратно рассеянного опорного сигнала стоксова рамановского или рэлеевского излучения, к фотоприемнику, генерируют оптические импульсы и вводят их в чувствительное оптическое волокно, осуществляют фотоприем, оцифровку и цифровое накопление обратно рассеянного опорного сигнала стоксова рамановского или рэлеевского излучения до достижения заданного отношения сигнал/шум, а температурное распределение в объекте определяют расчетом исходя из отношения обратно рассеянных сигнала антистоксова рамановского излучения и опорного сигнала стоксова рамановского или рэлеевского излучения, после чего осуществляют архивацию полученного результата или передачу его вовне.
2. Способ по п. 1, в котором генерируют оптические импульсы таким образом, чтобы уровень сигнала от рассеянного излучения на фотоприемнике был приблизительно одинаковым.
3. Устройство для определения температурного распределения в объекте, содержащее связанные с блоком управления и обработки сигналов последовательно соединенные источник оптического излучения, ответвитель или циркулятор и чувствительное оптическое волокно, при этом блок управления и обработки сигналов связан с электрически управляемым оптическим коммутатором и блоком регистрации и накопления рефлектограмм в цифровой форме, имеющим связь с фотоприемником, а электрически управляемый оптический коммутатор также связан с фотоприемником и через блок оптической спектральной фильтрации, имеющий два выхода для организации измерительного и опорного каналов, и один вход - с ответвителем или циркулятором для организации рефлектометрического канала.
4. Устройство по п. 3, в котором источник оптического излучения выполнен с возможностью изменения пиковой мощности при переключении электрически управляемого оптического коммутатора с измерительного канала на опорный канал.
5. Устройство по п. 3, в котором блок управления и обработки сигналов выполнен с возможностью установки уровня оптической мощности источника оптического излучения несколько ниже порога появления нелинейных эффектов в чувствительном оптическом волокне.
6. Устройство по п. 3, в котором источник оптического излучения выполнен в виде лазера.
RU2015104081/28A 2015-02-09 2015-02-09 Способ измерения температурного распределения в объекте и устройство для его осуществления RU2583060C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015104081/28A RU2583060C1 (ru) 2015-02-09 2015-02-09 Способ измерения температурного распределения в объекте и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015104081/28A RU2583060C1 (ru) 2015-02-09 2015-02-09 Способ измерения температурного распределения в объекте и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2583060C1 true RU2583060C1 (ru) 2016-05-10

Family

ID=55959754

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015104081/28A RU2583060C1 (ru) 2015-02-09 2015-02-09 Способ измерения температурного распределения в объекте и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2583060C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323502A (zh) * 2016-08-31 2017-01-11 镇江大全赛雪龙牵引电气有限公司 一种高压配电柜监控系统
CN111207854A (zh) * 2020-01-13 2020-05-29 国兴汇金(深圳)科技有限公司 一种基于分布式光纤温度传感器的数据处理算法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102232A (en) * 1989-06-08 1992-04-07 Asahi Glass Company Ltd. Temperature-measuring method and distributed optical fiber temperature sensor
US5217306A (en) * 1991-03-02 1993-06-08 Fujikura Ltd. Temperature distribution analyzer using optical fiber
US7350972B2 (en) * 2002-09-27 2008-04-01 Peter Seebacher Distributed temperature sensor using optical reflectometry
RU2434208C2 (ru) * 2007-01-30 2011-11-20 Курков Андрей Семенович Волоконно-оптическое устройство для измерения распределения температуры (варианты)
US8152370B2 (en) * 2007-07-31 2012-04-10 Politecnico Di Milano Sensor and method for determining temperature along an optical fibre
RU2458325C1 (ru) * 2011-04-28 2012-08-10 Общество с ограниченной ответственностью "ПетроФайбер" Способ измерения температурного распределения и устройство для его осуществления
RU137374U1 (ru) * 2013-09-13 2014-02-10 Кирилл Рудольфович Карлов Волоконно-оптическое устройство для измерения распределения температуры

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102232A (en) * 1989-06-08 1992-04-07 Asahi Glass Company Ltd. Temperature-measuring method and distributed optical fiber temperature sensor
US5217306A (en) * 1991-03-02 1993-06-08 Fujikura Ltd. Temperature distribution analyzer using optical fiber
US7350972B2 (en) * 2002-09-27 2008-04-01 Peter Seebacher Distributed temperature sensor using optical reflectometry
RU2434208C2 (ru) * 2007-01-30 2011-11-20 Курков Андрей Семенович Волоконно-оптическое устройство для измерения распределения температуры (варианты)
US8152370B2 (en) * 2007-07-31 2012-04-10 Politecnico Di Milano Sensor and method for determining temperature along an optical fibre
RU2458325C1 (ru) * 2011-04-28 2012-08-10 Общество с ограниченной ответственностью "ПетроФайбер" Способ измерения температурного распределения и устройство для его осуществления
RU137374U1 (ru) * 2013-09-13 2014-02-10 Кирилл Рудольфович Карлов Волоконно-оптическое устройство для измерения распределения температуры

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323502A (zh) * 2016-08-31 2017-01-11 镇江大全赛雪龙牵引电气有限公司 一种高压配电柜监控系统
CN111207854A (zh) * 2020-01-13 2020-05-29 国兴汇金(深圳)科技有限公司 一种基于分布式光纤温度传感器的数据处理算法

Similar Documents

Publication Publication Date Title
CN107917738B (zh) 一种同时测量温度、应变和振动的分布式光纤传感系统
CN108663138B (zh) 一种分布式光纤温度及振动的传感系统及方法
US9810556B2 (en) Apparatus for measuring optical signals from multiple optical fiber sensors
US9599460B2 (en) Hybrid Raman and Brillouin scattering in few-mode fibers
CN102506904B (zh) 一种基于超导纳米线单光子探测器的自发布里渊散射光时域反射仪
US9140582B2 (en) Optical sensor and method of use
EP0983486B1 (en) Distributed sensing system
RU2413188C2 (ru) Волоконно-оптическое устройство для измерения температурного распределения (варианты)
US10731969B2 (en) In-line fiber sensing, noise cancellation and strain detection
WO2010009007A1 (en) Frequency-scanned optical time domain reflectometry
KR101817295B1 (ko) 온도 측정 지원형 광섬유 음향센서
US9726546B2 (en) Distributed optical sensing with two-step evaluation
CN102645236A (zh) 基于梳状频谱连续探测光的botda系统
Franciscangelis et al. Real-time distributed fiber microphone based on phase-OTDR
KR101195596B1 (ko) 구조물 물리량 측정 시스템
US8797541B2 (en) Optical network configuration with intrinsic delay for swept-wavelength interferometry systems
RU2583060C1 (ru) Способ измерения температурного распределения в объекте и устройство для его осуществления
RU2552222C1 (ru) Способ измерения температурного распределения и устройство для его осуществления
JP2015031594A (ja) 多チャンネルfbgセンサモニタシステム及び多チャンネルfbgセンサモニタ方法
RU2532562C1 (ru) Распределенный датчик акустических и вибрационных воздействий
CN212363486U (zh) 一种测温系统
RU2695058C1 (ru) Многоканальное волоконно-оптическое устройство регистрации вибрационных воздействий с одним приёмным модулем регистрации
CN103245422A (zh) 一种多点化光纤光栅传感器阵列解调系统
JP3222970U (ja) 分布型光ファイバセンサ
RU111635U1 (ru) Распределенная волоконно-оптическая система контроля температуры на основе вынужденного комбинационного рассеяния