RU2551355C1 - Способ определения координат источника радиоизлучения - Google Patents

Способ определения координат источника радиоизлучения Download PDF

Info

Publication number
RU2551355C1
RU2551355C1 RU2013158899/07A RU2013158899A RU2551355C1 RU 2551355 C1 RU2551355 C1 RU 2551355C1 RU 2013158899/07 A RU2013158899/07 A RU 2013158899/07A RU 2013158899 A RU2013158899 A RU 2013158899A RU 2551355 C1 RU2551355 C1 RU 2551355C1
Authority
RU
Russia
Prior art keywords
coordinates
iri
lps
bearings
signals
Prior art date
Application number
RU2013158899/07A
Other languages
English (en)
Inventor
Анатолий Антонович Грешилов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана)
Priority to RU2013158899/07A priority Critical patent/RU2551355C1/ru
Application granted granted Critical
Publication of RU2551355C1 publication Critical patent/RU2551355C1/ru

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - повышение точности и уменьшение времени определения координат источника радиоизлучения (ИРИ). Указанный результат достигается за счет использования при определении пеленгов ИРИ универсальной формулы описания комплексной огибающей выходов элементов антенной системы, позволяющей получить явные выражения для расчета амплитуды, пеленгов и начальной фазы сигналов. По значениям пеленгов от разных устройств регистрации сигнала ИРИ с применением методов конфлюэнтного анализа получают уравнения прямых на плоскости и в пространстве, пересечения которых определяют точечные оценки координат источника излучения. Для оценок пеленгов и координат источника излучения получают ковариационные матрицы рассеяния оценок и определяют эллипс или эллипсоид рассеяния измеренных величин. 1 ил.

Description

Область техники
Изобретение относится к радиотехнике, в частности к радиопеленгации.
Уровень техники
Пеленгация источников радиоизлучения (ИРИ) имеет место в процессе мониторинга радиоэлектронной обстановки. При этом необходимо определять азимутальные, угломестные пеленги ИРИ и амплитуду сигнала, по которым определяют координаты источника радиоизлучения. Пеленгатор регистрирует излучение путем записи сигналов на элементах антенной системы АС, на вибраторах. Выполняя различные действия над сигналами с вибраторов, определяют параметры излучения, а затем - координаты источника радиоизлучения. Проблема состоит в том, какие действия над сигналами окажутся более эффективными.
Имеются патенты, посвященные данной проблеме. В качестве прототипа выбран патент RU 2419106 Способ и устройство определения координат источника радиоизлучения (МПК G01S 13/46, опубл. 20.05.2011), как наиболее полно рассматривающий проблему. В прототипе поставленная цель достигается тем, что в способе определения координат источника радиоизлучения, включающем прием сигналов ИРИ в заданной полосе частот ΔF перемещающимся в пространстве бортовым пеленгатором на летно-подъемном средстве (ЛПС), измерение пространственно-информационных параметров обнаруженных сигналов: азимута θi и угла места βi в системе координат антенной системы с одновременным определением местоположения ЛПС {Blps, Llps, Hlps}, где Blps, Llps и Hlps соответственно широта, долгота и высота ЛПС, предварительное определение удаления ИРИ от ЛПС di и координат ИРИ в момент времени ti V П i = { X 0 , Y 0 , Z 0 } i
Figure 00000001
в левосторонней системе декартовых координат антенной системы пеленгатора, корректируют координаты ИРИ V Y i = { X 0 ' , Y 0 ' , Z 0 ' } i
Figure 00000002
с учетом априорно известной ориентации антенной системы бортового пеленгатора относительно ЛПС {kant, lant, ζant} путем последовательного умножения значений координат V П i
Figure 00000003
на соответствующие углам Эйлера матрицы поворота. После чего определяют истинные геоцентрические координаты местоположения ИРИ V Г Ц i = { X 0 ' ' , Y 0 ' ' , Z 0 ' ' } i
Figure 00000004
с учетом измеренных в момент времени ti пространственных углов ЛПС: крена klpsi, тангажа llpsi, курсового угла αlpsi и склонения ζlpsi, а также координат его местоположения: широты Blpsi, долготы Llpsi, и высоты Hlpsi, а склонение ζlpsi определяют как разность между путевым µlpsi и курсовым αlpsi углами ЛПС. Преобразуют истинные геоцентрические координаты V Г Ц i
Figure 00000005
местоположения ИРИ в географические координаты V Г i = { B 0 , L 0 , H 0 } i
Figure 00000006
. При этом для определения курсового угла летно-подъемного средства принимают радиосигналы от космических аппаратов (КА) глобальных навигационных спутниковых систем (ГНСС), выделяют из обнаруженных сигналов навигационные сообщения КА ГНСС и осуществляют их демодуляцию, оценивают навигационные параметры и рассчитывают массив из I векторов состояния ЛПС W i ( B l p s i , L l p s i , H l p s i , V X i , V Y i , V Z i , t i )
Figure 00000007
, где VXi, VYi, VZi - величины, описывающие вектор V
Figure 00000008
и характеризующие значение путевого угла µi и путевой скорости Vi ЛПС, i=10, 11, , I, а емкость массива I определяют заданной точностью измерения курсового угла αlpsi. В зависимости от геометрии маршрута полета ЛПС оценивают значения воздушных скоростей ЛПС B ˙ 1 ( U , δ )
Figure 00000009
, B ˙ 2 ( U , δ )
Figure 00000010
, …, B ˙ 1 ( U , δ )
Figure 00000011
для соответствующих значений вектора состояния W i ( B l p s i , L l p s i , H l p s i , V X i , V Y i , V Z i , t i )
Figure 00000007
в соответствии с выражением B ˙ l ( U l , δ k ) = ( V i sin μ i U l sin δ k ) 2 + ( V i cos μ i U l cos δ k ) 2
Figure 00000012
,), курсового угла αlpsi и склонения ζlpsi в соответствии с выражениями: B ( U c , δ d ) = U c 2 + V 2 2 U c V cos δ d
Figure 00000013
, ζlpslpslps, а найденные параметры ветра Uc и δd используют в очередном цикле измерений курсового угла αlps и склонения ζlps в качестве средних значений U ¯
Figure 00000014
и δ ¯
Figure 00000015
ограниченных выборок {U} и {δ} оценочных параметров ветра. α l p s = μ arcsin ( U c 2 sin δ 4 / U c 2 + V 2 2 U c V cos δ d )
Figure 00000016
.
В прототипе достигается более полный учет пространственной ориентации ЛПС (а следовательно, и антенной системы пеленгатора), что и обуславливает положительный эффект в виде повышения точности местоопределения ИРИ. Перечисленная совокупность существенных признаков позволяет повысить точность местоопределения ИРИ за счет более полного и объективного измерения пространственных параметров ЛПС (угла ориентации антенной решетки измерителя) в условиях воздействия на него возмущающих факторов (ветровой нагрузки, выполнения маневров ЛПС и др.).
При этом для определения курсового угла летно-подъемного средства принимают радиосигналы от космических аппаратов (КА) глобальных навигационных спутниковых систем (ГНСС) и рассчитывают массив из I векторов состояния ЛПС W i ( B l p s i , L l p s i , H l p s i , V X i , V Y i , V Z i , t i )
Figure 00000007
, где VXi, VYi, VZi - величины, описывающие вектор V
Figure 00000017
и характеризующие значение путевого угла µi и путевой скорости Vi ЛПС, i=10, 11, , I, а емкость массива I определяют заданной точностью измерения курсового угла αlpsi. В зависимости от геометрии маршрута полета ЛПС оценивают значения воздушных скоростей ЛПС B ˙ 1 ( U , δ )
Figure 00000009
, B ˙ 2 ( U , δ )
Figure 00000010
, …, B ˙ 1 ( U , δ )
Figure 00000011
для соответствующих значений вектора состояния W i ( B l p s i , L l p s i , H l p s i , V X i , V Y i , V Z i , t i )
Figure 00000007
в соответствии с выражением
B ˙ l ( U l , δ k ) = ( V i sin μ i U l sin δ k ) 2 + ( V i cos μ i U l cos δ k ) 2
Figure 00000012
.
где Vi - i-e значение путевой скорости, µi - i-e значение путевого угла, Ul - 1-е оценочное, значение скорости ветра, l=1, 2, , L, δk - k-e оценочное направление ветра, k=1, 2, , K, оценивают качество принятого решения о параметрах ветра в соответствии с выражением f ( U l , δ k ) = max B ˙ s ( U l , δ k ) min B ˙ m ( U l , δ k )
Figure 00000018
, где max B ˙ s ( U l , δ k )
Figure 00000019
и min B ˙ m ( U l , δ k )
Figure 00000020
соответственно максимальное и минимальное оценочные значения воздушных скоростей из набора { B ˙ l ( U l , δ k )
Figure 00000021
, B ˙ 2 ( U l , δ k )
Figure 00000022
, …, B ˙ I ( U l , δ k ) }
Figure 00000023
для параметров ветра Ul и δk, результаты вычислений f(Ulk) сравнивают с пороговым значением fзад(U,δ), определяющим априорно заданную точность оценивания параметров ветра U и δ, при невыполнении пороговых условий параметрам ветра U и δ присваивают очередные значения и повторяют процедуру вычисления набора оценочных значений воздушных скоростей, при выполнении на очередной итерации пороговых условий fзад(U,δ) за параметры ветра принимают соответствующие значения Uc и δd, на основе навигационного треугольника скоростей рассчитывают значения воздушной скорости B(Ucd), курсового угла αlps и склонения ζlps в соответствии с выражениями:
Figure 00000024
а найденные параметры ветра Uc и δd используют в очередном цикле измерении курсового угла αlps и склонения ζlps в качестве средних значений U ¯
Figure 00000025
и δ ¯
Figure 00000026
ограниченных выборок {U} и {δ} оценочных параметров ветра. С помощью внешнего генератора проводится с шагом Δθ и Δβ измерение фаз на элементах АС, которые запоминаются и служат в дальнейшем для определения пространственно-информационных параметров обнаруженных сигналов: азимута θi и угла места βi.
Изобретение-прототип имеет недостатки.
Определение пеленгов с помощью заранее подготовленной таблицы, связывающей показания на элементах АС с азимутальными и угловыми пеленгами, полученными с помощью внешнего генератора, включая облет ЛПС, не обеспечит высокой точности результатов.
Основное назначение блоков 12, 13, 14, 15, 16 и 2, 3 в устройстве, реализующем прототип, состоит в том, чтобы оценить степень отличия измеренных параметров Δϕl,h,изм (fv) от эталонных значений Δϕl,h,эт (fv), рассчитанных для всех направлений прихода сигнала Δθk и Δβc и всех fv используют формулу
Figure 00000027
Но в этой формуле нет никакой информации о погрешностях участвующих величин.
Нет четкого алгоритма определения погрешностей координат источника излучения.
В изобретении проводится много математических операций с измеренными величинами (случайными величинами). Ошибки при каждой математической операции накапливаются, но авторы не уделяют этому внимания.
Раскрытие изобретения
Предлагаемый способ учитывает указанные недостатки.
Способ определения координат источника радиоизлучения (ИРИ) заключается в том, что принимают сигналы ИРИ в заданной полосе частот ΔF наземным или перемещающимся в пространстве бортовым пеленгатором, установленным на летно-подъемном средстве (ЛПС), измеряют пространственно-информационные параметры обнаруженных сигналов: азимут θ, угол места β и начальные фазы сигналов в прямоугольной декартовой системе координат с одновременным определением местоположения ЛПС, корректируют координаты ИРИ с учетом априорно известной ориентации антенной системы бортового пеленгатора относительно ЛПС, после чего вычисляют истинные геоцентрические координаты местоположения ИРИ с учетом измеренных пространственных углов ЛПС, для определения курсового угла летно-подъемного средства (ЛПС) принимают радиосигналы от космических аппаратов (КА) глобальных навигационных спутниковых систем (ГНСС). При этом с каждого пеленгующего устройства измеренные комплексные амплитуды с каждого элемента АС и функция, описывающая комплексную огибающую выходов элементов АС, поступают в блок логарифмирования, затем в блок сравнения действительных и мнимых частей аналитического выражения натурального логарифма комплексной огибающей выходов элементов АС и натурального логарифма измеренных комплексных амплитуд сигналов с каждого элемента АС, получают амплитуду сигнала и систему уравнений для определения по явным формулам, описывающим точечные оценки пространственно-информационных параметров обнаруженных сигналов: азимут θ, угол места β, начальную фазу сигнала и их погрешности, которые поступают в вычислитель 1 для определения корреляционной матрицы полученных оценок, как от функции случайных аргументов, затем в базу пеленгов ИРИ и их погрешностей наряду с подобной информацией от других пеленгующих устройств, на основе данных базы пеленгов формируются системы уравнений из первых частных производных от функционала ортогональной регрессии, позволяющего учесть погрешности всех исходных данных, по координатам ИРИ для прямых линий в пространстве и на плоскости, по которым в вычислителях 2 и 3 определяются точечные оценки координат ИРИ в пространстве и на плоскости, с помощью обратной матрицы, составленной из отрицательных значений всех вторых частных производных от функционала ортогональной регрессии по координатам ИРИ в вычислителях 4 и 5 определяются ковариационные матрицы оценок координат ИРИ.
Выбор вида прямых - на плоскости или в пространстве по признаку: если ИРИ в воздухе, то прямая линия в пространстве, а если на земле - прямая линия на плоскости.
Чтобы определить координаты ИРИ, надо знать координаты регистратора (пеленгатора). И тот и другой могут быть на земле и в воздухе (например, беспилотники). В предлагаемом способе они не разделяются. Координаты пеленгаторов могут определяться разными способами, в том числе и ГНСС. Эти координаты известны.
Пеленгаторов нужно два и более. Случайная компонента погрешности результата уменьшается пропорционально корню из числа пеленгаторов при приблизительно близких погрешностях в каждом случае. Иначе надо учесть погрешность каждого со своим весом.
В сравнении с прототипом предлагаемый способ лучше по быстродействию (в предлагаемом способе - по формуле, а в прототипе облетают объект) и точности не менее двух раз. По точности - здесь есть и принципиальный момент: никто не учитывает погрешности всех исходных данных (учитывают только одной величины!), т.е. попадают "сбоку". Отсюда же следует и резкое снижение стоимости затрат и оборудования на реализацию предлагаемого способа.
В реализации алгоритма, прежде всего, определяется заранее ф-я комплексной огибающей выходов элементов АС для каждой АС. Для стандартных видов (линейная, круговая) функции известны. Если другой вид, то его сводят к известному, часто к линейной АС. К линейной АС даже сводят и круговую АС. Посмотрев на АС и вспомнив, в каком случае Вы можете получить пеленг, к этому случаю и сводим конкретную АС. Это делается один раз и навсегда заранее.
Фиг.1. Блок-схема алгоритма определение координат ИРИ
Осуществление изобретения
На фиг.1 обозначены позициями:
1. Пеленгующие устройства
2. Комплексные амплитуды с выходов элементов АС
3. Комплексная огибающая выходов элементов АС
4. Блок логарифмирования
5. Блок сравнения действительных и мнимых частей
6. Амплитуда зарегистрированного сигнала
7. Формирование уравнений из равенства мнимых частей
8. Решатель систем алгебраических уравнений
9. Точечные оценки пеленгов и начальной фазы сигнала
10. Вычислитель 1. Вычисление ковариционной матрицы оценок пеленгов и начальной фазы сигнала
11. База пеленгов и их погрешностей
12. Выбор: прямая линия - в пространстве или на плоскости
13. Формирование системы уравнений для прямой на плоскости
14. Формирование системы уравнений для прямой в пространстве
15. Вычислитель 2. Точечные оценки координат ИРИ на плоскости
16. Вычислитель 3. Точечные оценки координат ИРИ в пространстве
17. Вычислитель 4. Вычисление ковариационной матрицы оценок координат ИРИ на плоскости
18. Вычислитель 5. Вычисление ковариационной матрицы оценок координат ИРИ в пространстве
19. Эллипс рассеяния для оценки координат ИРИ
20. Эллипсоид рассеяния для оценки координат ИРИ
21. Блок вывода результатов
22. Выход
Определение азимутальных и угломестных пеленгов
Процедура определения координат ИРИ базируется на определении азимутальных и угломестных пеленгов, на основании которых определяются уравнения прямых линий на плоскости и в пространстве. Точка пересечения последних определяет координаты источника излечений. Рассмотрим предлагаемый способ определения пеленгов источника излучения. Как показано в прототипе, результаты, полученные в одной системе координат, легко пересчитываются в другие системы координат. Выберем декартову прямоугольную систему координат.
Предлагаемый способ определения пеленгов на АС любой конфигурации заключается в том, что АС любой конфигурации можно свести к линейной, к системе круговых АС с общим фазовым центром и т.п. От полученной функции, описывающей комплексную огибающую сигнала ИРИ на выходе элементов АС, и от комплексных чисел на элементах АС берется натуральный логарифм. Приравниваются соответствующие действительные и мнимые части. Из равенства действительных частей определяется амплитуда сигнала, а из равенства мнимых - фазы. Записывая равенства мнимых частей для всех элементов АС, получаем систему алгебраических уравнений, из которой определяем азимутальный и угломестный пеленги, а также начальную фазу сигнала. Для предлагаемого способа необходимо иметь не менее двух элементов АС, отстоящих на разные углы от направления отсчета.
Предлагаемый способ определения пеленгов источника излучения продемонстрируем на примере круговой (кольцевой) АС.
1. В круговой АС каждый элемент смещен на некоторый угол от другого, т.е. круговая АС автоматически разделена на число областей, равное числу вибраторов. Восстанавливается вектор комплексных амплитуд сигналов y=[y1y2…yM]Т, полученных с выхода каждого элемента АС.
2. Запишем нелинейную систему уравнений, правая часть которой является аналитическим выражением комплексной амплитуды сигнала на m-ом элементе АС, комплексной огибающей выходов элементов круговой АС
Figure 00000028
где m=1, …, n;
j - мнимая единица, j = 1
Figure 00000029
,
θ - азимутальный пеленг,
β - угломестный пеленг,
γm - угол между m-ым вибратором и направлением отсчета,
f0 - частота сигналов, излучаемых пеленгуемыми ИРИ,
u - амплитуда сигнала,
φ0 - начальная фаза сигнала,
t - время, в данном случае его можно положить равным нулю,
λ - длина волны сигналов ИРИ,
R - радиус антенной системы.
3. Запишем натуральный логарифм выражения (1), получим
Figure 00000030
Обозначим argym=Pm и приравняем соответственно действительные и мнимые части. Действительные части u=|ym|; амплитуду u определили.
Приравниваем мнимые части:
Figure 00000031
или
Figure 00000032
где
Figure 00000033
; γ1=0 - начало отсчета.
4. Составим систему уравнений для пеленгов θ, β и начальной фазы сигнала ϕ 0
Figure 00000034
:
Figure 00000035
Решить эту систему (3) можно разными методами - матричным и нематричным, как кому привычнее.
Приведем следующий.
Переносим ϕ 0
Figure 00000036
вправо, делим все уравнения на первое. Получим новую систему
Figure 00000037
или в матричном виде: A θ = Y
Figure 00000038
,
где
Figure 00000039
Отсюда решение
Figure 00000040
Сразу получаем оценку начальной фазы сигнала φ0, затем определяем оценку азимутального пеленга θ из найденного значения tg θ(P 1 ϕ 0 )
Figure 00000041
и оценку угломестного пеленга β. Поскольку получены аналитические формулы для вычисления начальной фазы сигнала φ0, азимутального пеленга θ, а затем угломестного пеленга β, то для них достаточно просто вычислить дисперсии, как для функции случайного аргумента [3].
Решить систему (3) можно и другим способом. Вычтем первое уравнение из остальных (исключим начальную фазу φ0), получим новую систему
Figure 00000042
Figure 00000043
Разделим все полученные уравнения на одно из них и проведем преобразования. Найдем оценки азимутального пеленга θ и угломестного пеленга β. Продемонстрируем эту процедуру на первых двух уравнениях новой системы. Разделим первое уравнение на второе
Figure 00000044
Сократим на cos β
Figure 00000045
Figure 00000046
Figure 00000047
Обозначим
Figure 00000048
Figure 00000049
;
А и В известные константы, т.е. получаем
Figure 00000050
Из условия
Figure 00000051
при известном θ получим
Figure 00000052
Пеленги θ и β определяются по каждому элементу АС. Из полученного ряда значений определяется среднее значение пеленгов, их дисперсии и коэффициенты корреляции.
Следует отметить, что операции, имеющие место в формулах (2) и (3), (5) и (6), не представляют большой вычислительной сложности и, соответственно, требуют малых временных затрат и уменьшает ошибку в определении пеленгов, поскольку предлагаемый алгоритм учитывает или исключает начальную фазу сигнала φ0, влияющую на значение пеленгов.
Предлагаемый способ может применяться в совокупности с любым способом пеленгации (при любой конфигурации АС) при регистрации одного сигнала на выделенной частоте для определения значений азимутальных и угломестных пеленгов ИРИ, т.к. вычисление произведения косинусов азимутального и угломестного пеленгов гораздо менее сложная операция, чем вычисление упомянутых пеленгов по отдельности. Тем более, что в предлагаемом методе не применяются одномерные, двух- и трехмерные сетки значений θ, β, φ0.
Реализация алгоритма определения пеленгов:
1. Для функционирующей АС (до проведения измерений) аналитически вычисляется натуральный логарифм (2) от функции, описывающей комплексную огибающую выходов элементов АС (1).
2. Вычисляется натуральный логарифм измеренных комплексных амплитуд сигналов с каждого элемента АС.
3. Действительные и мнимые части полученного аналитического выражения натурального логарифма комплексной огибающей выходов элементов АС (2) приравниваются соответственно к действительным и мнимым частям натурального логарифма измеренных комплексных амплитуд сигналов с каждого элемента АС.
4. Получают систему алгебраических уравнений (3), из которой определяются аналитические выражения для вычисления азимутального пеленга θ, угломестного пеленга β, начальной фазы сигнала φ0.
5. Согласно формулам (4) или (5), (6) вычисляются азимутальный пеленг θ, начальная фаза сигнала φ0, а затем угломестный пеленг β.
6. Поскольку известны аналитические формулы для вычисления начальной фазы сигнала φ0, азимутального пеленга θ, а затем угломестного пеленга β, то их дисперсии вычисляют, как для функции случайного аргумента [3].
При независимых переменных дисперсия функции f(x) вычисляется по следующей формуле
Figure 00000053
В нашем случае в качестве f(x) выступают формулы для cosβ, tgθ, φ0. В качестве xi выступают все другие переменные, входящие в формулу. Например:
Figure 00000054
; тогда f(x)=cosβ, P1≡xz; φ0≡x2; cosθ≡х3.
Figure 00000055
Компьютеру задаются матрицы и формула (3), компьютер выдает два числа со своими среднеквадратическими отклонениями: значения t g θ ( P 1 ϕ 0 ) = α 1
Figure 00000056
и φ02. Тогда
Figure 00000057
и φ02;
Figure 00000054
.
Можно поступить по-другому, записать функционал метода наименьших квадратов для второй системы:
минимизировать
Figure 00000058
Тогда значение tgθ находится из условия F t g θ = 0
Figure 00000059
; φ0 - из условия
Figure 00000060
Figure 00000061
.
В компьютере пеленги и начальные фазы сигналов и их погрешности рассчитываются по явным формулам и не требуют много времени.
Приведем результаты получаемых значений азимутального пеленга θ и угломестного пеленга β предлагаемым способом, используя три элемента АС (первые три уравнения). По предлагаемому способу пеленг θ равен
Figure 00000062
Рассмотрим числовой пример.
На круговой АС радиусом 50 м на частоте 1 мегагерц при соотношении сигнал/шум, равном 10, зарегистрирован сигнал. На первых трех вибраторах зарегистрированы следующие фазы: P1=35 град., Р23=45,98 град. Угол между элементами АС γm равен 30 град. Подставим исходные данные в формулу
Figure 00000063
Для первого вибратора получим:
Figure 00000064
Аналогично, для второго - 45,98=60 cos(θ-30)cosβ+φ0;
для третьего - 45,98=60 cos(θ-60)cosβ+φ0.
По формулам (4) получено: θ=45 град., β=45 град., φ0=5 град.
Среднее квадратическое отклонение (СКО) θ равно 0, 006 град., СКО β равно 0,009 град.
С увеличением значения φ0 ошибка резко возрастает.
Модельный расчет пеленга проводился на компьютере с процессором с тактовой частотой 2 ГГц. Время счета порядка 0,001 сек. При ручном счете потребуется порядка 1 мин, т.к. в каждом измерении изменяются только Pm.
Определение координат источника излучения путем объединения всей информации по пеленгам
Нам известен набор пеленгов и их погрешностей от разных источников. Координаты регистраторов сигналов и погрешности этих координат также известны. Азимутальный и угломестный пеленги определяют координаты направляющего вектора прямой в пространстве, проходящей через точку с известными координатами (регистратор сигналов), и через точку с неизвестными координатами X и Y (источник излучения). Каноническое уравнение прямой в пространстве, проходящей через точку M1(x0, y0, z0) параллельно вектору S ¯ = l i ¯ + m j ¯ + n k ¯
Figure 00000065
, имеет вид:
Figure 00000066
.
Уравнение этой же прямой может быть записано как пересечение двух плоскостей
Figure 00000067
Уравнение прямой на плоскости (например, на плоскости XY)
Figure 00000068
Введем l=cosα; m=sinα. Тогда
xsinα-ycosα=x0sinα-γ0cosα или, после деления на cosα,
xtgα-y=x0tgα-y0; или xtgα-y=b, где b=x0tgα-y0.
В данном уравнении прямой две случайные величины: tgα и b. При известных дисперсиях σ2(x0); σ2(y0); σ2(α) получим дисперсию
Figure 00000069
Собрав данные о пеленгах с разных источников, получим систему уравнений
xtgαi-y=bi; i=1, …, N,
в которой надо определить координаты (x, y) источника излучений. Метод наименьших квадратов применить нельзя, т.к. он применим только в случае, если в левой части уравнения нет случайных величин. Если мы запишем уравнение с правыми частями bi и tgαi, то получим две пересекающиеся прямые. В данном случае надо применить методы конфлюэнтного анализа - построить линию ортогональной регрессии, которая учитывает погрешности всех исходных данных. Получим следующий функционал
Figure 00000070
точка минимума которого определяет точечные оценки координат источника излучения. Для этого надо решить систему двух уравнений с двумя неизвестными X и Y:
Figure 00000071
Ковариационная матрица точечных оценок X и Y - матрица M
Figure 00000072
Уравнение прямой в пространстве
Figure 00000073
эквивалентно системе уравнений плоскостей m(x-x0)-1(y-y0)+0z=0
0x+n(y-y0)-m(z-z0)=0
Система для определения координат (x, y, z) источника излучения в данном случае будет иметь 2N уравнений с тремя неизвестными (x, y, z) и содержит четыре случайные величины: σ2(b1i), σ2(b2i)
(mi/li), (ni/mi), где bli=(mi/li0-y0, b2i=(ni/mi)y0i-z0i
Очевидно, что эта система распадается на две системы уравнений: на плоскости XY и на плоскости YZ.
Функционал конфлюэнтного апализа в данном случае имеет следующий вид:
Figure 00000074
Оценки координат ИРИ иычисляются из системы уравнений
Figure 00000075
Figure 00000076
Ковариационная матрица точечных оценок x, y и z - матрица М
Figure 00000077
Оценки координат ИРИ и их погрешности рассчитываются по явным формулам и не требуют много времени.
Реализация алгоритма
1. Прежде всего определяется заранее функция комплексной огибающей выходов элементов АС для каждой АС.
2. Пеленгующие устройства передают комплексные амплитуды с выходов элементов АС в блок логарифмирования, куда вводится и функция комплексной огибающей выходов элементов АС для каждой АС.
3. После логарифмирования данные поступают в блок сравнения действительных и мнимых частей, где определяется амплитуда зарегистрированного сигнала, формируются уравнения из равенства мнимых частей.
4. Сформированные уравнения поступают в решатель систем алгебраических уравнений, где определяются точечные оценки пеленгов и начальной фазы сигнала.
5. В вычислителе 1 при полученных точечных оценках пеленгов и начальной фазы сигнала вычисляется ковариационная матрица оценок пеленгов и начальной фазы сигнала.
6. Данные о пеленгах и их погрешностях поступают в базу пеленгов и их погрешностей, куда поступают подобные данные с других пеленгующих устройств.
7. Выбирается вид прямой: на плоскости или в пространстве. Выбор вида прямых - на плоскости или в пространстве по признаку: если ИРИ в воздухе, то прямая линия в пространстве, а если на земле - прямая линия на плоскости. Соответственно формируются системы уравнений для прямой на плоскости или в пространстве.
8. Соответственно в вычислителе 2 или 3 определяются точечные оценки координат ИРИ на плоскости или в пространстве.
9. При известных точечных оценках координат ИРИ в вычислителях 4 или 5 определяются ковариационные матрицы оценок на плоскости или в пространстве.
10. По ковариационным матрицам строятся эллипс рассеяния для оценки координат ИРИ на плоскости или эллипсоид рассеяния для оценки координат ИРИ в пространстве.
Получается полная информация о координатах ИРИ, позволяющая принимать решения о дальнейших действиях.
Пример. При двух измерениях пеленгов от одного ИРИ получены уравнения двух прямых в пространстве: (10-x)/-5=(1-y)/4=(-3-z)/8 и (1-x)/4=(6-y)/-1=(15-z)/-10.
Соответствующие уравнения через пересекающиеся плоскости имеют вид:
40-4х=-5+5y; 2-2y=-3-z
-1+x=24-4y; 60-10y=15-z.
Нетрудно проверить, что прямые пересекаются в точке (5, 5, 5).
Таким образом, разработан эффективный способ определения координат источника радиоизлучения при приеме радиосигналов одного источника радиоизлучения (ИРИ) с использованием нелинейных (в т.ч. кольцевых), антенных систем (АС) произвольной формы, состоящих из слабонаправленных и направленных элементов (вибраторов), а также других методов определения пеленгов, например доплексных, радиовидение и др. Используются многопозиционные системы регистрации, размещенные как на земле, так на летательных аппаратах. Повышение точности и скорости определения координат источника радиоизлучения достигается за счет использования при определении пеленгов особенностей нелинейных АС, позволяющих устранить влияние на значения пеленгов неучтенной помехи, и путем сведения алгоритма определения параметров сигнала к прямому расчету по элементарным формулам. Определение точечных оценок координат одного источника радиоизлучения по имеющемуся набору измерений пеленгов различными методами с учетом погрешностей всех измерений и получение эллипсоида рассеяния координат источника радиоизлучения.

Claims (1)

  1. Способ определения координат источника радиоизлучения (ИРИ), заключающийся в том, что принимают сигналы ИРИ в заданной полосе частот ∆F наземным или перемещающимся в пространстве бортовым пеленгатором, установленным на летно-подъемном средстве (ЛПС), измеряют пространственно-информационные параметры обнаруженных сигналов: азимут, угол места и начальные фазы сигналов в прямоугольной декартовой системе координат с одновременным определением местоположения ЛПС, корректируют координаты ИРИ с учетом априорно известной ориентации антенной системы бортового пеленгатора относительно ЛПС, после чего вычисляют истинные геоцентрические координаты местоположения ИРИ с учетом измеренных пространственных углов ЛПС, для определения курсового угла летно-подъемного средства (ЛПС) принимают радиосигналы от космических аппаратов (КА) глобальных навигационных спутниковых систем (ГНСС), отличающийся тем, что с каждого пеленгующего устройства измеренные комплексные амплитуды с каждого элемента АС и функция, описывающая комплексную огибающую выходов элементов АС, поступают в блок логарифмирования, затем в блок сравнения действительных и мнимых частей аналитического выражения натурального логарифма комплексной огибающей выходов элементов АС и натурального логарифма измеренных комплексных амплитуд сигналов с каждого элемента АС, получают амплитуду сигнала и точечные оценки пространственно-информационных параметров обнаруженных сигналов: азимут, угол места, начальную фазу сигнала и их погрешности, которые поступают в вычислитель 1 для определения ковариационной матрицы полученных оценок, как от функции случайных аргументов, затем в базу пеленгов ИРИ и их погрешностей наряду с подобной информацией от других пеленгующих устройств, на основе данных базы пеленгов формируются системы уравнений из первых частных производных от функционала ортогональной регрессии, позволяющего учесть погрешности всех исходных данных, по координатам ИРИ для прямых линий в пространстве и на плоскости, по которым в вычислителях 2 и 3 определяются точечные оценки координат ИРИ соответственно на плоскости и в пространстве, с помощью обратной матрицы, составленной из отрицательных значений всех вторых частных производных от функционала ортогональной регрессии по координатам ИРИ в вычислителях 4 и 5 определяются ковариационные матрицы оценок координат ИРИ соответственно на плоскости и в пространстве.
RU2013158899/07A 2013-12-30 2013-12-30 Способ определения координат источника радиоизлучения RU2551355C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013158899/07A RU2551355C1 (ru) 2013-12-30 2013-12-30 Способ определения координат источника радиоизлучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013158899/07A RU2551355C1 (ru) 2013-12-30 2013-12-30 Способ определения координат источника радиоизлучения

Publications (1)

Publication Number Publication Date
RU2551355C1 true RU2551355C1 (ru) 2015-05-20

Family

ID=53294391

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013158899/07A RU2551355C1 (ru) 2013-12-30 2013-12-30 Способ определения координат источника радиоизлучения

Country Status (1)

Country Link
RU (1) RU2551355C1 (ru)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2610150C1 (ru) * 2016-03-29 2017-02-08 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата
RU2617210C1 (ru) * 2016-03-29 2017-04-24 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
RU2617447C1 (ru) * 2016-03-29 2017-04-25 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения дальности до неподвижного источника излучения движущимся пеленгатором
RU2638177C1 (ru) * 2016-06-29 2017-12-12 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ определения координат источника радиоизлучений с борта летательного аппарата по двум азимутальным пеленгам
RU2659808C1 (ru) * 2017-07-05 2018-07-04 федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство определения координат источника радиоизлучения
RU2659810C1 (ru) * 2017-04-07 2018-07-04 федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство определения координат источников радиоизлучения
RU2700767C1 (ru) * 2018-11-12 2019-09-20 федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство определения координат источников радиоизлучения
RU2773307C1 (ru) * 2021-06-24 2022-06-01 Акционерное общество "Концерн "Созвездие" Способ определения географических координат источников радиоизлучения в многоцелевой обстановке
CN116106824A (zh) * 2023-01-06 2023-05-12 南京航空航天大学 一种基于认知学习的无人机多阶段信号源定位方法和系统
CN117249829A (zh) * 2023-08-23 2023-12-19 湖南六九零六信息科技股份有限公司 一种测向交叉定位体制下的无人机平台的航迹规划方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011955A2 (en) * 2002-07-31 2004-02-05 Interdigital Technology Corporation Method and system for positioning mobile units based on angle measurements
EP1601989A1 (en) * 2003-02-17 2005-12-07 Global Business Software Development Technologies, Inc. System and method for locating a mobile phone
RU2269795C1 (ru) * 2004-05-05 2006-02-10 Государственное образовательное учреждение высшего профессионального образования Военный институт радиоэлектроники Способ однопозиционного измерения координат источника лазерного излучения и устройство для его реализации
US20080079634A1 (en) * 2006-09-29 2008-04-03 Fujitsu Limited Wireless communication device
US7579988B2 (en) * 2006-06-27 2009-08-25 Sony Corporation Method, device and system for determining direction of arrival of signal
RU2419106C1 (ru) * 2009-11-09 2011-05-20 Государственное образовательное учреждение высшего профессионального образования "Военная академия связи имени С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство определения координат источника радиоизлучения
RU2473101C1 (ru) * 2011-06-30 2013-01-20 Учреждение Российской академии наук Институт космофизических исследований и распространения радиоволн Дальневосточного отделения РАН Способ пассивной локации близко расположенных источников электромагнитного излучения на фоне мощных излучений удаленных источников

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011955A2 (en) * 2002-07-31 2004-02-05 Interdigital Technology Corporation Method and system for positioning mobile units based on angle measurements
EP1601989A1 (en) * 2003-02-17 2005-12-07 Global Business Software Development Technologies, Inc. System and method for locating a mobile phone
RU2269795C1 (ru) * 2004-05-05 2006-02-10 Государственное образовательное учреждение высшего профессионального образования Военный институт радиоэлектроники Способ однопозиционного измерения координат источника лазерного излучения и устройство для его реализации
US7579988B2 (en) * 2006-06-27 2009-08-25 Sony Corporation Method, device and system for determining direction of arrival of signal
US20080079634A1 (en) * 2006-09-29 2008-04-03 Fujitsu Limited Wireless communication device
RU2419106C1 (ru) * 2009-11-09 2011-05-20 Государственное образовательное учреждение высшего профессионального образования "Военная академия связи имени С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство определения координат источника радиоизлучения
RU2473101C1 (ru) * 2011-06-30 2013-01-20 Учреждение Российской академии наук Институт космофизических исследований и распространения радиоволн Дальневосточного отделения РАН Способ пассивной локации близко расположенных источников электромагнитного излучения на фоне мощных излучений удаленных источников

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2610150C1 (ru) * 2016-03-29 2017-02-08 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата
RU2617210C1 (ru) * 2016-03-29 2017-04-24 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
RU2617447C1 (ru) * 2016-03-29 2017-04-25 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения дальности до неподвижного источника излучения движущимся пеленгатором
RU2638177C1 (ru) * 2016-06-29 2017-12-12 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ определения координат источника радиоизлучений с борта летательного аппарата по двум азимутальным пеленгам
RU2659810C1 (ru) * 2017-04-07 2018-07-04 федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство определения координат источников радиоизлучения
RU2659808C1 (ru) * 2017-07-05 2018-07-04 федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство определения координат источника радиоизлучения
RU2700767C1 (ru) * 2018-11-12 2019-09-20 федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство определения координат источников радиоизлучения
RU2773307C1 (ru) * 2021-06-24 2022-06-01 Акционерное общество "Концерн "Созвездие" Способ определения географических координат источников радиоизлучения в многоцелевой обстановке
CN116106824A (zh) * 2023-01-06 2023-05-12 南京航空航天大学 一种基于认知学习的无人机多阶段信号源定位方法和系统
CN116106824B (zh) * 2023-01-06 2023-11-03 南京航空航天大学 一种基于认知学习的无人机多阶段信号源定位方法和系统
CN117249829A (zh) * 2023-08-23 2023-12-19 湖南六九零六信息科技股份有限公司 一种测向交叉定位体制下的无人机平台的航迹规划方法

Similar Documents

Publication Publication Date Title
RU2551355C1 (ru) Способ определения координат источника радиоизлучения
RU2432580C1 (ru) Способ определения координат источника радиоизлучений при амплитудно-фазовой пеленгации с борта летательного аппарата
US9007570B1 (en) Airborne wind profiling algorithm for Doppler Wind LIDAR
RU2619915C1 (ru) Способ определения координат источника радиоизлучений с борта летательного аппарата
CN104316903A (zh) 一种三站时差定位性能试验评估方法
CN104089630B (zh) 一种考虑导航台和调谐信息的无线电导航参数仿真方法
Mitch et al. Local ionosphere model estimation from dual-frequency global navigation satellite system observables
Ochin et al. The study of the spoofer’s some properties with help of GNSS signal repeater
US5999130A (en) Determination of radar threat location from an airborne vehicle
RU2610150C1 (ru) Способ определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата
Grabbe et al. Geo-location using direction finding angles
US20220244407A1 (en) Method for Generating a Three-Dimensional Environment Model Using GNSS Measurements
RU2510618C2 (ru) Способ определения координат источника радиоизлучения с борта летательного аппарата
Jalloul et al. DME/DME navigation using a single low-cost SDR and sequential operation
US7388538B1 (en) System and method for obtaining attitude from known sources of energy and angle measurements
RU2713193C1 (ru) Способ межпозиционного отождествления результатов измерений и определения координат воздушных целей в многопозиционной радиолокационной системе
US6822608B2 (en) Method for passive localization of a target and air-air localization in particular
Yang et al. Geometric dilution of precision for far-distance TDOA location of shortwave
Ostroumov Navaids facility for aircraft positioning
RU2606241C1 (ru) Способ определения относительного положения летательных аппаратов при межсамолетной навигации
Lu et al. Analysis and application of geometric dilution of precision based on altitude-assisted INS/SAR integrated navigation
Aleshechkin Algorithm of GNSS-based attitude determination
Michel Generic Radar Processing Methods for Monitoring Tasks on Bridge Infrastructure
RU2615634C2 (ru) Способ определения координат навигационных спутников
RU2490661C1 (ru) Способ определения координат источника радиоизлучений коротковолнового диапазона

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151231