RU2550208C2 - Способ получения смеси ветома 1.1 и сел-плекса, обладающих супрамолекулярными свойствами - Google Patents

Способ получения смеси ветома 1.1 и сел-плекса, обладающих супрамолекулярными свойствами Download PDF

Info

Publication number
RU2550208C2
RU2550208C2 RU2013144176/15A RU2013144176A RU2550208C2 RU 2550208 C2 RU2550208 C2 RU 2550208C2 RU 2013144176/15 A RU2013144176/15 A RU 2013144176/15A RU 2013144176 A RU2013144176 A RU 2013144176A RU 2550208 C2 RU2550208 C2 RU 2550208C2
Authority
RU
Russia
Prior art keywords
increase
microcapsules
vetom
plex
sel
Prior art date
Application number
RU2013144176/15A
Other languages
English (en)
Other versions
RU2013144176A (ru
Inventor
Александр Александрович Кролевец
Илья Александрович Богачев
Original Assignee
Александр Александрович Кролевец
Илья Александрович Богачев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец, Илья Александрович Богачев filed Critical Александр Александрович Кролевец
Priority to RU2013144176/15A priority Critical patent/RU2550208C2/ru
Publication of RU2013144176A publication Critical patent/RU2013144176A/ru
Application granted granted Critical
Publication of RU2550208C2 publication Critical patent/RU2550208C2/ru

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к области инкапсуляции, в частности способу получения микрокапсул смеси препаратов Ветома 1.1 и Сел-Плекса в оболочке из каррагинана. Согласно способу по изобретению препараты Ветом 1.1 и Сел-Плекс, взятые в массовом соотношении 60:40, растворяют в диметилсульфоксиде, или диметилформамиде, диспергируют полученную смесь в раствор каррагинана в бензоле в присутствии препарата Е472с при перемешивании 1000 об/с. Смесь препаратов и каррагинан берут в массовом соотношении от 1:1 до 1:5. Затем добавляют бутанол и дистиллированную воду, взятые в соотношении 5:1 об./об. Полученную суспензию микрокапсул отфильтровывают и сушат. Процесс получения микрокапсул осуществляется при 25°C в течение 20 мин. Изобретение обеспечивает упрощение и ускорение процесса получения микрокапсул, уменьшение потерь при их получении (увеличение выхода по массе). 6 пр., 10 ил.

Description

Изобретение относится к области инкапсуляции, в частности получения микрокапсул смеси ветома 1.1 (60%) и Сел-Плекса (40%). Микрокапсулы, содержащие эту смесь препаратов мы назвали «Ветсел».
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на использовании облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат. 2091071, МПК A61K 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.
Недостатками способа являются применение шаровой мельницы и длительность процесса.
В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.
В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения микрокапсул, уменьшение потерь при получении микрокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом инкапсуляции смеси ветома 1.1 и Сел-Плекса, отличающимся тем, что в качестве оболочки микрокапсул используется каррагинан при их получении физико-химическим методом осаждения нерастворителем с использованием бутанола в качестве осадителя, процесс получения осуществляется без специального оборудования.
Отличительной особенностью предлагаемого метода является использование каррагинана в качестве оболочки микрокапсул и смеси ветома 1.1 и Сел-Плекса - в качестве их ядра, а также использование бутанола в качестве осадителя.
Результатом предлагаемого метода являются получение микрокапсул смеси ветома 1.1 и Сел-Плекса в каррагинане при 25°C в течение 20 минут. Выход микрокапсул составляет более 90%.
Патент иллюстрирован рисунками.
Фиг. 1. Конфокальное изображение самоорганизации «ветсела» в каррагинане в соотношении 1:1 концентрация 0,5%: а) при увеличении в 505 раз, б) при увеличении в 620 раз, в) при увеличении в 930 раз, г) при увеличении в 1200 раз, д) при увеличении в 1770 раз, е) при увеличении в 2830 раз.
Фиг. 2. Конфокальное изображение самоорганизации «ветсела» в каррагинане в соотношении 1:1 концентрация 0,25%: а) при увеличении в 930 раз, б) при увеличении в 1200 раз, в) при увеличении в 1770 раз, г) при увеличении в 2830 раз.
Фиг. 3. Конфокальное изображение самоорганизации «ветсела» в каррагинане в соотношении 1:2 концентрация 0,5%: а) при увеличении в 620 раз, б) при увеличении в 930 раз, в) при увеличении в 1200 раз, г) при увеличении в 1770 раз, д) при увеличении в 2830 раз.
Фиг. 4. Конфокальное изображение самоорганизации «ветсела» в каррагинане в соотношении 1:2 концентрация 0,25%: а) при увеличении в 620 раз, б) при увеличении в 930 раз, в) при увеличении в 1200 раз, г) при увеличении в 1770 раз, д) при увеличении в 2830 раз.
Фиг. 5. Конфокальное изображение самоорганизации «ветсела» в каррагинане в соотношении 1:3 концентрация 0,5%: а) при увеличении в 505 раз, б) при увеличении в 620 раз, в) при увеличении в 930 раз, г) при увеличении в 1200 раз, д) при увеличении в 1770 раз, е) при увеличении в 2830 раз.
Фиг. 6. Конфокальное изображение самоорганизации «ветсела» в каррагинане в соотношении 1:3 концентрация 0,25%: а) при увеличении в 505 раз, б) при увеличении в 620 раз, в) при увеличении в 930 раз, г) при увеличении в 1200 раз, д) при увеличении в 1770 раз, е) при увеличении в 2830 раз.
Фиг. 7. Конфокальное изображение самоорганизации «ветсела» в каррагинане в соотношении 1:4 концентрация 0,5%: а) при увеличении в 505 раз, б) при увеличении в 620 раз, в) при увеличении в 930 раз, г) при увеличении в 1200 раз, д) при увеличении в 1770 раз, е) при увеличении в 2830 раз.
Фиг. 8. Конфокальное изображение самоорганизации «ветсела» в каррагинане в соотношении 1:4 концентрация 0,25%: а) при увеличении в 1200 раз, б) при увеличении в 1770 раз, в) при увеличении в 2830 раз.
Фиг. 9. Конфокальное изображение самоорганизации «ветсела» в каррагинане в соотношении 1:5 концентрация 0,5%: а) при увеличении в 1770 раз, б) при увеличении в 2830 раз.
Фиг. 10. Конфокальное изображение самоорганизации «ветсела» в каррагинане в соотношении 1:5 концентрация 0,25%: а) при увеличении в 505 раз, б) при увеличении в 620 раз, в) при увеличении в 930 раз, г) при увеличении в 1200 раз, д) при увеличении в 1770 раз, е) при увеличении в 2830 раз.
ПРИМЕР 1. Получение микрокапсул смеси ветома 1.1 и Сел-Плекса с растворением препарата в диметилсульфоксиде (ДМСО), соотношение ядро/полимер 1:1
60 мг ветома 1.1 и 40 мг Сел-Плекса растворяют в 1 мл ДМСО и диспергируют полученную смесь в раствор каррагинана в 5 мл бензола, содержащий 100 мг указанного полимера в присутствии 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием при перемешивании 1000 об/сек. Далее приливают 5 мл бутанола и 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,178 г белого порошка. Выход составил 89%.
ПРИМЕР 2. Получение микрокапсул смеси ветома 1.1 и Сел-Плекса с растворением препарата в диметилсульфоксиде (ДМСО), соотношение ядро/полимер 1:2
60 мг ветома 1.1 и 40 мг Сел-Плекса растворяют в 1 мл ДМСО и диспергируют полученную смесь в раствор каррагинана в 5 мл бензола, содержащий 200 мг указанного полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1000 об/сек. Далее приливают 5 мл бутанола и 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,267 г белого порошка. Выход составил 89%.
ПРИМЕР 3. Получение микрокапсул смеси ветома 1.1 и Сел-Плекса с растворением препарата в диметилформамиде (ДМФА), соотношение ядро/полимер 1:3
60 мг ветома 1.1 и 40 мг Сел-Плекса растворяют в 1 мл ДМФА и диспергируют полученную смесь в раствор каррагинана в 5 мл бензола, содержащий 300 мг указанного полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1000 об/сек. Далее приливают 5 мл бутанола и 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,356 г белого порошка. Выход составил 89%.
ПРИМЕР 4. Получение микрокапсул смеси ветома 1.1 и Сел-Плекса с растворением препарата в диметилсульфоксиде (ДМСО), соотношение ядро/полимер 1:4
60 мг ветома 1.1 и 40 мг Сел-Плекса растворяют в 1 мл ДМСО и диспергируют полученную смесь в раствор каррагинана в 5 мл бензола, содержащий 400 мг указанного полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1000 об/сек. Далее приливают 5 мл бутанола и 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,475 г белого порошка. Выход составил 95%.
ПРИМЕР 5. Получение микрокапсул смеси ветома 1.1 и Сел-Плекса с растворением препарата в диметилсульфоксиде (ДМСО), соотношение ядро/полимер 1:5
60 мг ветома 1.1 и 40 мг Сел-Плекса растворяют в 1 мл ДМФА и диспергируют полученную смесь в раствор каррагинана в 5 мл бензола, содержащий 500 мг указанного полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1000 об/сек. Далее приливают 5 мл бутанола и 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,576 г белого порошка. Выход составил 96%.
ПРИМЕР 6. Исследование самоорганизации микрокапсул из растворов
Из порошка микрокапсул, полученных по методикам, описанным в примерах 1-5, были приготовлены водные растворы концентрациями 1%, 0,5%, 0,25%, 0,125% и т.д. путем разбавления раствора в два раза. Капля каждого из приготовленных растворов помещалась на предметное стекло до полного высушивания, и по высушенной поверхности проводилась конфокальная сканирующая микроскопия.
Получены микрокапсулы смеси ветома 1.1 и Сел-Плекса физико-химическим методом осаждения нерастворителем с использованием бутанола в качестве осадителя, что способствует увеличению выхода и ускоряет процесс микрокапсулирования. Процесс прост в исполнении и длится в течение 20 минут, не требует специального оборудования.
Предложенная методика пригодна для ветеринарной промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения микрокапсул.

Claims (1)

  1. Способ инкапсуляции смеси препаратов Ветома 1.1 и Сел-Плекса в оболочку из каррагинана, заключающийся в том, что препараты Ветом 1.1 и Сел-Плекс, взятые в массовом соотношении 60:40, растворяют в диметилсульфоксиде, или диметилформамиде, диспергируют полученную смесь в раствор каррагинана в бензоле в присутствии препарата Е472с при перемешивании 1000 об/с, при массовом соотношении ядро: указанный полимер от 1:1 до 1:5, затем добавляют бутанол и дистиллированную воду, взятые в соотношении 5:1 об./об. соответственно, полученную суспензию микрокапсул отфильтровывают и сушат, при этом процесс получения микрокапсул осуществляется при 25°C в течение 20 мин.
RU2013144176/15A 2013-10-01 2013-10-01 Способ получения смеси ветома 1.1 и сел-плекса, обладающих супрамолекулярными свойствами RU2550208C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013144176/15A RU2550208C2 (ru) 2013-10-01 2013-10-01 Способ получения смеси ветома 1.1 и сел-плекса, обладающих супрамолекулярными свойствами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013144176/15A RU2550208C2 (ru) 2013-10-01 2013-10-01 Способ получения смеси ветома 1.1 и сел-плекса, обладающих супрамолекулярными свойствами

Publications (2)

Publication Number Publication Date
RU2013144176A RU2013144176A (ru) 2015-04-10
RU2550208C2 true RU2550208C2 (ru) 2015-05-10

Family

ID=53282392

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013144176/15A RU2550208C2 (ru) 2013-10-01 2013-10-01 Способ получения смеси ветома 1.1 и сел-плекса, обладающих супрамолекулярными свойствами

Country Status (1)

Country Link
RU (1) RU2550208C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды
RU2317305C2 (ru) * 2006-03-29 2008-02-20 ООО "Гель-тех" Способ получения супрамолекулярного геля
RU2393715C2 (ru) * 2008-06-09 2010-07-10 Федеральное государственное образовательное учреждение высшего профессионального образования Новосибирский государственный аграрный университет Способ повышения продуктивности сельскохозяйственной птицы
US20110003035A1 (en) * 2008-03-18 2011-01-06 Xuefeng Yu Yeast composition and its use as cow feed additive
RU2413425C2 (ru) * 2009-05-13 2011-03-10 Федеральное государственное образовательное учреждение высшего профессионального образования Горно-Алтайский государственный университет Способ кормления гусей

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды
RU2317305C2 (ru) * 2006-03-29 2008-02-20 ООО "Гель-тех" Способ получения супрамолекулярного геля
US20110003035A1 (en) * 2008-03-18 2011-01-06 Xuefeng Yu Yeast composition and its use as cow feed additive
RU2393715C2 (ru) * 2008-06-09 2010-07-10 Федеральное государственное образовательное учреждение высшего профессионального образования Новосибирский государственный аграрный университет Способ повышения продуктивности сельскохозяйственной птицы
RU2413425C2 (ru) * 2009-05-13 2011-03-10 Федеральное государственное образовательное учреждение высшего профессионального образования Горно-Алтайский государственный университет Способ кормления гусей

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ж.-М. ЛЕН, Супрамолекулярная химия: Концепции и перспективы, - Новосибирск: Наука.Сиб. предприятие РАН,1998.-334 с. *
ЗОРКИЙ П.М. "Супрамолекулярная химия: возникновение, развитие, перспективы" ВЕСТН. МОСК. УН-ТА. СЕР.2. ХИМИЯ.1999.Т.40.N5. стр.300-307. *
СОЛОДОВНИК В. Д. "Микрокапсулирование",-М.:Химия, 1980.-216стр. *

Also Published As

Publication number Publication date
RU2013144176A (ru) 2015-04-10

Similar Documents

Publication Publication Date Title
RU2538695C1 (ru) Способ инкапсуляции креатина, обладающего супрамолекулярными свойствами
RU2544169C2 (ru) Способ инкапсуляции интестевита
RU2559571C1 (ru) Способ получения нанокапсул албендазола
RU2550923C1 (ru) Способ получения нанокапсул фенбендазола
RU2606589C2 (ru) Способ получения нанокапсул танина
RU2676677C1 (ru) Способ получения нанокапсул танина
RU2565408C1 (ru) Способ получения микрокапсул аминокислот в альгинате натрия
RU2535885C1 (ru) Способ инкапсуляции фенбендазола
RU2550208C2 (ru) Способ получения смеси ветома 1.1 и сел-плекса, обладающих супрамолекулярными свойствами
RU2564896C2 (ru) Способ инкапсуляции танина
RU2547556C2 (ru) Способ инкапсуляции фенбендазола
RU2556118C1 (ru) Способ получения нанокапсул сел-плекса, обладающих супрамолекулярными свойствами
RU2595830C2 (ru) Способ получения нанокапсул пробиотиков
RU2547557C2 (ru) Способ инкапсуляции фенбендазола
RU2538805C1 (ru) Способ получения микрокапсул фенбендазола, обладающих супрамолекулярными свойствами
RU2549956C2 (ru) Способ инкапсуляции ветома 1.1, обладающего супрамолекулярными свойствами
RU2545742C2 (ru) Способ инкапсуляции лактобифадола
RU2548715C1 (ru) Способ инкапсуляции фенбендазола
RU2514056C2 (ru) Способ инкапсуляции фенбендазола
RU2715743C1 (ru) Способ получения нанокапсул пробиотиков
RU2557948C1 (ru) Способ получения нанокапсул албендазола
RU2605850C2 (ru) Способ получения нанокапсул танина
RU2548771C2 (ru) Способ получения микрокапсул тривитамина, обладающих супрамолекулярными свойствами
RU2558082C1 (ru) Способ получения нанокапсул албендазола
RU2596485C1 (ru) Способ получения нанокапсул креатина в геллановой камеди