RU2557948C1 - Способ получения нанокапсул албендазола - Google Patents

Способ получения нанокапсул албендазола Download PDF

Info

Publication number
RU2557948C1
RU2557948C1 RU2014112725/15A RU2014112725A RU2557948C1 RU 2557948 C1 RU2557948 C1 RU 2557948C1 RU 2014112725/15 A RU2014112725/15 A RU 2014112725/15A RU 2014112725 A RU2014112725 A RU 2014112725A RU 2557948 C1 RU2557948 C1 RU 2557948C1
Authority
RU
Russia
Prior art keywords
nanocapsules
albendazole
production
sodium alginate
microcapsules
Prior art date
Application number
RU2014112725/15A
Other languages
English (en)
Inventor
Александр Александрович Кролевец
Илья Александрович Богачев
Original Assignee
Александр Александрович Кролевец
Илья Александрович Богачев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец, Илья Александрович Богачев filed Critical Александр Александрович Кролевец
Priority to RU2014112725/15A priority Critical patent/RU2557948C1/ru
Application granted granted Critical
Publication of RU2557948C1 publication Critical patent/RU2557948C1/ru

Links

Images

Landscapes

  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к области инкапсуляции, в частности способу получения нанокапсул албендазола в оболочке из альгината натрия. Согласно способу по изобретению албендазол добавляют в суспензию альгината натрия в бутаноле в присутствии препарата Е472с при перемешивании 1000 об/сек. Массовое соотношение албендазола и альгината натрия 1:3 или 3:1. Затем добавляют ацетонитрил. Полученную суспензию нанокапсул отфильтровывают, промывают и сушат. Процесс получения нанокапсул осуществляется при 25°С в течение 20 мин. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при их получении (увеличение выхода по массе). 1 ил., 2 пр.

Description

Изобретение относится к области нанотехнологии и ветеринарии, в частности получения нанокапсул албендазола.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в Пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на использовании облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат. 2091071, МПК A61K 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.
Недостатком способа является применение шаровой мельницы и длительность процесса.
В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, которая содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.
В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999 г., Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения микрокапсул, уменьшение потерь при получении микрокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул албендазола, характеризующийся тем, что в качестве оболочки нанокапсул используется альгинат натрия при их получении физико-химическим методом осаждения нерастворителем с использованием осадителя-ацетонитрила, процесс получения осуществляется без специального оборудования.
Отличительной особенностью предлагаемого метода является использование альгината натрия в качестве оболочки нанокапсул, албендазола - в качестве их ядра, а также использование осадителя - ацетонитрила.
Результатом предлагаемого метода являются получение нанокапсул албендазола в альгинате натрия при 25°C в течение 20 минут. Выход нанокапсул составляет более 90%.
ПРИМЕР 1. Получение нанокапсул албендазола, соотношение ядро/полимер 1:3
1 г албендазола небольшими порциями добавляют в суспензию альгината натрия в бутаноле, содержащую 3 г альгината натрия, в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1000 об/сек. Далее приливают 6 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г белого порошка. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул албендазола, соотношение ядро/полимер 3:1
3 г албендазола небольшими порциями добавляют в суспензию альгината натрия в бутаноле, содержащую 1 г альгината натрия, в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 6 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г белого порошка. Выход составил 100%.
ПРИМЕР 3. Определение размеров нанокапсул методом NTA
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса (рис. 1).
Получены нанокапсулы албендазола физико-химическим методом осаждения нерастворителем с использованием осадителя - ацетонитрила, что способствует увеличению выхода и ускоряет процесс нанокапсулирования. Процесс прост в исполнении и длится в течение 20 минут, не требует специального оборудования.
Предложенная методика пригодна для ветеринарной промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения микрокапсул.

Claims (1)

  1. Способ получения нанокапсул албендазола, характеризующийся тем, что албендазол небольшими порциями добавляют в суспензию альгината натрия в бутаноле в присутствии препарата Е472с при перемешивании 1000 об/сек, при массовом соотношении албендазола и альгината натрия 1:3 или 3:1, затем добавляют ацетонитрил, при этом процесс получения нанокапсул осуществляют при 25°С в течение 20 мин.
RU2014112725/15A 2014-04-01 2014-04-01 Способ получения нанокапсул албендазола RU2557948C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014112725/15A RU2557948C1 (ru) 2014-04-01 2014-04-01 Способ получения нанокапсул албендазола

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014112725/15A RU2557948C1 (ru) 2014-04-01 2014-04-01 Способ получения нанокапсул албендазола

Publications (1)

Publication Number Publication Date
RU2557948C1 true RU2557948C1 (ru) 2015-07-27

Family

ID=53762597

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014112725/15A RU2557948C1 (ru) 2014-04-01 2014-04-01 Способ получения нанокапсул албендазола

Country Status (1)

Country Link
RU (1) RU2557948C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды
RU2165700C2 (ru) * 1999-01-26 2001-04-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных инсектицидных препаратов
RU2195280C1 (ru) * 2001-05-21 2002-12-27 Всероссийский научно-исследовательский институт гельминтологии им. К.И. Скрябина Антигельминтное средство

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды
RU2165700C2 (ru) * 1999-01-26 2001-04-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных инсектицидных препаратов
RU2195280C1 (ru) * 2001-05-21 2002-12-27 Всероссийский научно-исследовательский институт гельминтологии им. К.И. Скрябина Антигельминтное средство

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СОЛОДОВНИК В.Д., Микрокапсулирование.- М.:Химия, 1980.-216 стр. *

Similar Documents

Publication Publication Date Title
RU2557900C1 (ru) Способ получения нанокапсул витаминов
RU2562561C1 (ru) Способ получения нанокапсул витаминов в каррагинане
RU2586612C1 (ru) Способ получения нанокапсул адаптогенов в ксантановой камеди
RU2590666C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием
RU2639091C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2639092C2 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2606589C2 (ru) Способ получения нанокапсул танина
RU2625501C2 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2599009C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих седативным действием в конжаковой камеди
RU2578411C1 (ru) Способ получения нанокапсул рибофлавина
RU2565392C1 (ru) Способ получения нанокапсул витаминов в ксантановой камеди
RU2550923C1 (ru) Способ получения нанокапсул фенбендазола
RU2613881C1 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2624530C1 (ru) Способ получения нанокапсул унаби в геллановой камеди
RU2627585C1 (ru) Способ получения нанокапсул сухого экстракта шиповника в агар-агаре
RU2609739C1 (ru) Способ получения нанокапсул резвератрола в геллановой камеди
RU2595830C2 (ru) Способ получения нанокапсул пробиотиков
RU2642054C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2616502C1 (ru) Способ получения нанокапсул унаби в конжаковой камеди
RU2599843C1 (ru) Способ получения нанокапсул экстракта зеленого чая в пектине
RU2605594C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием
RU2603457C1 (ru) Способ получения нанокапсул адаптогенов в агар-агаре
RU2602168C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием в каррагинане
RU2573502C1 (ru) Способ получения нанокапсул резвератрола в альгинате натрия
RU2557948C1 (ru) Способ получения нанокапсул албендазола