RU2548899C2 - Способ отображения антенных портов и устройство для демодуляции опорных сигналов - Google Patents
Способ отображения антенных портов и устройство для демодуляции опорных сигналов Download PDFInfo
- Publication number
- RU2548899C2 RU2548899C2 RU2012135556/07A RU2012135556A RU2548899C2 RU 2548899 C2 RU2548899 C2 RU 2548899C2 RU 2012135556/07 A RU2012135556/07 A RU 2012135556/07A RU 2012135556 A RU2012135556 A RU 2012135556A RU 2548899 C2 RU2548899 C2 RU 2548899C2
- Authority
- RU
- Russia
- Prior art keywords
- antenna ports
- code
- group
- transmission
- length
- Prior art date
Links
- 238000013507 mapping Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000005540 biological transmission Effects 0.000 claims abstract description 91
- 238000004891 communication Methods 0.000 abstract description 12
- 230000006854 communication Effects 0.000 abstract description 12
- 238000010295 mobile communication Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 230000001419 dependent effect Effects 0.000 description 10
- 238000013468 resource allocation Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 101001062535 Homo sapiens Follistatin-related protein 1 Proteins 0.000 description 1
- 101001122162 Homo sapiens Overexpressed in colon carcinoma 1 protein Proteins 0.000 description 1
- 102100027063 Overexpressed in colon carcinoma 1 protein Human genes 0.000 description 1
- 102100040160 Rabankyrin-5 Human genes 0.000 description 1
- 101710086049 Rabankyrin-5 Proteins 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0252—Traffic management, e.g. flow control or congestion control per individual bearer or channel
- H04W28/0263—Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0026—Division using four or more dimensions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
- H04W72/563—Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J2011/0003—Combination with other multiplexing techniques
- H04J2011/0006—Combination with other multiplexing techniques with CDM/CDMA
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
- Transceivers (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Circuits Of Receivers In General (AREA)
Abstract
Изобретение относится к технике связи и может использоваться в мобильных системах связи. Технический результат состоит в повышении надежности передачи информации за счет использования отображения антенных портов для опорных сигналов демодуляции. Для этого определяют ранг передачи для нисходящей передачи на пользовательский терминал; определяют один или более антенных портов опорных сигналов для этой нисходящей передачи на основе ранга передачи, при этом каждый порт определяется парой группа/код, содержащей группу мультиплексирования с кодовым разделением каналов и ортогональный защитный код; отображают антенные порты опорных сигналов на пары группа/код для каждого ранга передачи, так чтобы группа мультиплексирования с кодовым разделением каналов и ортогональный защитный код были одними и теми же для заданного антенного порта для любого ранга передачи; и передают контрольные символы нисходящей линии связи через антенные порты опорных сигналов в соответствии с рангом передачи. 4 н. и 12 з.п. ф-лы, 1 табл., 7 ил.
Description
Предпосылки изобретения
Настоящее изобретение относится, в общем, к опорным сигналам демодуляции (DM-RS) для систем связи LTE и LTE-advanced и, более конкретно, к конфигурации антенных портов для зависящих от пользователя DM-RS.
Проект партнерства в области систем связи 3 поколения (3GPP) отвечает за стандартизацию систем UMTS (Универсальной службы мобильных телекоммуникаций) и LTE (Долгосрочного развития). LTE представляет собой коммуникационную технологию для реализации высокоскоростной пакетной связи, которой могут достигаться высокие скорости передачи данных как на нисходящей линии связи, так и на восходящей линии связи, и об этой технологии думают как о системе мобильной связи следующего поколения в контексте системы UMTS. Работа 3GPP по LTE также упоминается как E-UTRAN (Усовершенствованная универсальная наземная сеть доступа). Первая версия LTE, упоминаемая как версия-8 (Rel-8), может обеспечивать пиковые скорости в 100 Мбит/с, задержку радиосети, равную, например, 5 мс или менее, значительное повышение спектральной эффективности и сетевую архитектуру, спроектированную для упрощения работы сети, снижения затрат и т.д. Для поддержания высоких скоростей передачи данных в LTE предусмотрена полоса пропускания системы шириной вплоть до 20 МГц. LTE также приспособлена для работы в различных полосах частот и может работать как в режиме FDD (дуплексной связи с частотным разделением каналов), так и в режиме TDD (дуплексной связи с временным разделением каналов). Методика модуляции или схема передачи, используемая в LTE, известна как OFDM (мультиплексирование с ортогональным разделением частот).
Для систем мобильной связи следующего поколения, таких как IMT-advanced (Усовершенствованная международная мобильная связь) и/или LTE-advanced (Усовершенствованная LTE), которая является развитием LTE, обсуждается поддержка полос пропускания шириной вплоть до 100 МГц. LTE-advanced можно рассматривать как будущую версию стандарта LTE, и поскольку она является развитием LTE, важна обратная совместимость, чтобы можно было разворачивать LTE-advanced в спектре, который уже занят LTE. И в базовых радиостанциях LTE, и в базовых радиостанциях LTE-advanced, которые известны как усовершенствованные Узлы В (eNB или eNodeB), могут использоваться антенные конфигурации с множеством входов и множеством выходов (MIMO) и пространственное мультиплексирование для обеспечения пользовательским терминалом высоких скоростей передачи данных. Другим примером основывающейся на MIMO системы является система WiMAX (стандарта общемировой совместимости широкополосного беспроводного доступа).
Для осуществления согласованной демодуляции различных физических каналов нисходящей линии связи пользовательскому терминалу требуются оценки нисходящего канала. Более конкретно, в случае OFDM передач пользовательскому терминалу требуется оценка комплексного канала каждой поднесущей. Один путь обеспечения оценки канала в случае OFDM передач состоит во введении известных контрольных символов в частотно-временную сетку OFDM. В LTE эти контрольные символы обобщенно упоминаются как опорные сигналы нисходящей линии связи.
В системах LTE используются два типа опорных сигналов нисходящей линии связи: зависящие от соты опорные сигналы нисходящей линии связи и зависящие от пользователя опорные сигналы нисходящей линии связи. Зависящие от соты опорные сигналы нисходящей линии связи передаются в каждом подкадре нисходящей линии связи и охватывают всю полосу пропускания нисходящей линии связи соты. Зависящие от соты опорные сигналы нисходящей линии связи могут использоваться для оценки канала и согласованной демодуляции, за исключением случая использования пространственного мультиплексирования. Зависящий от пользовательского терминала опорный сигнал используется для оценки канала и демодуляции совместно используемого канала нисходящей линии связи в случае использования пространственного мультиплексирования. Зависящие от пользователя опорные сигналы передаются в ресурсных блоках, назначенных конкретному пользовательскому терминалу для передачи данных по совместно используемому каналу нисходящей линии связи. Зависящие от пользовательского терминала опорные сигналы подвергаются тому же самому предварительному кодированию, что и сигналы данных, передаваемые на пользовательский терминал. Настоящее изобретение применимо к зависящим от пользовательского терминала опорным сигналам нисходящей линии связи.
Фиг.1 показывает часть иллюстративной частотно-временной сетки 50 OFDM для LTE. Обобщенно говоря, частотно-временная сетка 50 OFDM разделена на миллисекундные подкадры. Один подкадр показан на фиг.1. Каждый подкадр включает в себя некоторое количество OFDM символов. Для линии связи с нормальным циклическим префиксом (CP), подходящей для использования в ситуациях, где не ожидается, что рассеивание при многолучевом распространении будет очень большим, подкадр содержит четырнадцать OFDM символов. Подкадр содержит двенадцать OFDM символов, если используется расширенный циклический префикс. В частотной области физические ресурсы разделены на смежные поднесущие с промежутком в 15 кГц. Количество поднесущих варьируется согласно выделенной полосе пропускания системы. Наименьшим элементом частотно-временной сетки 50 OFDM является ресурсный элемент. Ресурсный элемент содержит один OFDM символ на одной поднесущей.
В целях планирования передачи по совместно используемому каналу нисходящей линии связи (DL-SCH) частотно-временные ресурсы выделяются в единицах, называемых ресурсными блоками (RB). Каждый ресурсный блок охватывает двенадцать поднесущих (которые могут быть смежными или распределенными по частотному спектру) и половину одного подкадра. Термин "пара ресурсных блоков" относится к двум последовательным ресурсным блокам, занимающим один миллисекундный подкадр целиком.
Некоторые ресурсные элементы в пределах каждого подкадра резервируются для передачи опорных сигналов нисходящей линии связи. Фиг.1 показывает один иллюстративный шаблон выделения ресурсов для опорных сигналов нисходящей линии связи в целях поддержки нисходящих передач вплоть до ранга 4. Двадцать четыре ресурсных элемента в пределах подкадра зарезервированы для передачи опорных сигналов нисходящей линии связи. Более конкретно, опорные сигналы демодуляции переносятся в OFDM символах 5, 6, 12 и 13 (т.е. в шестом, седьмом, тринадцатом и четырнадцатом символах) подкадра OFDM. Ресурсные элементы для опорных сигналов демодуляции распределены в частотной области.
Ресурсные элементы для опорных сигналов демодуляции разделены на две группы мультиплексирования с кодовым разделением каналов (CDM), упоминаемые здесь как CDM Группа 1 и CDM Группа 2. В системах LTE, поддерживающих ранги передачи от 1 до 4, две CDM группы используются в сочетании с ортогональными защитными кодами (OCC) длины 2. Ортогональные защитные коды применяются к кластерам из двух контрольных символов. Используемый здесь термин "кластер" относится к группированию смежных (во временной области) контрольных символов в одной и той же поднесущей. В варианте осуществления, показанном на фиг.1, каждая из поднесущих, содержащих контрольные символы демодуляции, включает в себя два кластера.
На фиг.2 показано иллюстративное выделение ресурсных элементов для системы пространственного мультиплексирования, поддерживающей ранги передачи вплоть до восьми. Можно отметить при этом, что шаблон выделения ресурсов тот же самый, что и шаблон выделения ресурсов, показанный на фиг.1. Для поддержки более высоких рангов передачи используется ОСС длины 4 вместо ОСС длины 2. ОСС длины 4 применяется по двум кластерам ресурсных элементов.
Может быть определено вплоть до восьми антенных портов для поддержки вплоть до 8 пространственных уровней. Эти 8 антенных портов могут быть отображены на две CDM группы, каждая из которых использует четыре OCC. Таким образом, антенные порты могут быть уникальным образом идентифицированы посредством двух параметров, т.е. индекса CDM группы и индекса OCC, упоминаемых здесь как "индексная пара". На текущий момент отображение между антенными портами и индексными парами не определено в стандарте LTE. Некоторые отображения могут быть зависящими от ранга, что требует того, чтобы разные отображения портов использовались для каждого ранга передачи. Использование разных отображений портов для разных рангов передачи налагает нагрузку на пользовательский терминал, который должен выполнять оценку канала по-другому при изменении ранга передачи.
Раскрытие изобретения
Настоящим изобретением обеспечивается унифицированное, не зависящее от ранга отображение между антенными портами и парами группа/код. Каждый антенный порт уникальным образом ассоциирован с одной группой мультиплексирования с кодовым разделением каналов (CDM) и одним ортогональным защитным кодом (OCC). Отображение между антенными портами и парами группа/код выбирается так, чтобы, для заданного антенного порта, CDM группа и OCC были одними и теми же для любого ранга передачи.
Один иллюстративный вариант осуществления содержит реализуемый базовой станцией способ передачи опорных сигналов демодуляции на пользовательский терминал. Способ содержит определение ранга передачи для нисходящей передачи на упомянутый пользовательский терминал; определение одного или более антенных портов опорных сигналов для упомянутой нисходящей передачи на основе упомянутого ранга передачи, при этом каждый порт определяется парой группа/код, содержащей группу мультиплексирования с кодовым разделением каналов и ортогональный защитный код; отображение антенных портов опорных сигналов на пары группа/код для каждого ранга передачи, так чтобы группа мультиплексирования с кодовым разделением каналов и ортогональный защитный код были одними и теми же для любого ранга передачи; и передачу упомянутых контрольных символов нисходящей линии связи через упомянутые антенные порты опорных сигналов.
Другой иллюстративный вариант осуществления изобретения содержит базовую станцию, сконфигурированную реализовывать способ, описанный выше.
Еще один иллюстративный вариант осуществления изобретения содержит реализуемый пользовательским терминалом способ приема опорных сигналов демодуляции, переданных базовой станцией. Реализуемый пользовательским терминалом способ содержит определение ранга передачи для нисходящей передачи на упомянутый пользовательский терминал; определение одного или более антенных портов опорных сигналов для упомянутой нисходящей передачи на основе упомянутого ранга передачи, при этом каждый порт определяется парой группа/код, содержащей группу мультиплексирования с кодовым разделением каналов и ортогональный защитный код; отображение антенных портов опорных сигналов на пары группа/код для каждого ранга передачи, так чтобы группа мультиплексирования с кодовым разделением каналов и ортогональный защитный код были одними и теми же для любого ранга передачи; и прием упомянутых контрольных символов нисходящей линии связи через упомянутые антенные порты опорных сигналов в соответствии с рангом передачи.
Еще один иллюстративный вариант осуществления изобретения содержит пользовательский терминал, сконфигурированный реализовывать способ, описанный выше.
Перечень фигур чертежей
Фиг.1 - иллюстрация выделения ресурсных элементов в системе OFDM для опорных сигналов демодуляции для поддержки рангов передачи вплоть до 4.
Фиг.2 - иллюстрация выделения ресурсных элементов в системе OFDM для опорных сигналов демодуляции для поддержки рангов передачи вплоть до 8.
Фиг.3 - изображение иллюстративной системы связи MIMO.
Фиг.4 - изображение иллюстративного процессора передаваемых сигналов для системы OFDM.
Фиг.5 - иллюстрация отображения кодовых слов на уровни согласно одному иллюстративному варианту осуществления для рангов передачи от 1 до 4.
Фиг.6 - иллюстрация примерного способа передачи опорных сигналов демодуляции.
Фиг.7 - иллюстрация способа приема опорных сигналов демодуляции.
Подробное описание изобретения
Фиг.3 иллюстрирует систему 10 беспроводной связи с множеством входов и множеством выходов (MIMO), включающую в себя базовую станцию 12 (называемую как усовершенствованный Узел В в LTE) и пользовательский терминал 14. Настоящее изобретение будет описываться в контексте системы LTE, хотя настоящее изобретение применимо к другим типам систем связи. Базовая станция 12 включает в себя передатчик 100 для передачи сигналов на вторую станцию 14 по каналу 16 связи, тогда как пользовательский терминал включает в себя приемник 200 для приема сигналов, переданных базовой станцией 12. Специалистам в данной области техники должно быть понятно, что каждый из базовой станции 12 и пользовательского терминала 14 может включать в себя как передатчик 100, так и приемник 200 для двунаправленной связи.
Информационный сигнал вводится в передатчик 100 на базовой станции 12. Передатчик 100 включает в себя контроллер 110 для управления всей работой передатчика 100 и процессор 120 передаваемых сигналов. Процессор 120 передаваемых сигналов выполняет кодирование с исправлением ошибок, отображает входные биты на комплексные символы модуляции и генерирует передаваемые сигналы для каждой передающей антенны 130. После преобразования с повышением частоты, фильтрации и усиления передатчик 100 передает передаваемые сигналы с соответствующих передающих антенн 130 через канал 16 связи на пользовательский терминал 14.
Приемник 200 в пользовательском терминале 14 демодулирует и декодирует сигналы, принятые на каждой антенне 230. Приемник 200 включает в себя контроллер 210 для управления работой приемника 200 и процессор 220 принимаемых сигналов. Процессор 220 принимаемых сигналов демодулирует и декодирует сигналы, переданные от первой станции 12. Выходной сигнал из приемника 200 содержит оценку исходного информационного сигнала. При отсутствии ошибок данная оценка будет тем же самым, что информационный сигнал, введенный в передатчик 12.
В системах LTE может использоваться пространственное мультиплексирование, когда имеется множество антенн как на базовой станции 12, так и на пользовательском терминале 14. Фиг.4 иллюстрирует основные функциональные компоненты процессора 120 передаваемых сигналов для пространственного мультиплексирования. Процессор 120 передаваемых сигналов содержит модуль 122 отображения на уровни, модуль 124 предварительного кодирования (прекодер) и модули 128 отображения на ресурсы. Последовательность информационных символов (символов данных или контрольных символов) вводится в модуль 122 отображения на уровни. Последовательность символов разделяется на одно или два кодовых слова. Модуль 122 отображения на уровни отображает кодовые слова на N L уровней в зависимости от ранга передачи. Следует отметить, что количество уровней необязательно равно количеству антенн 130. Разные кодовые слова в типичном случае отображаются на разные уровни; однако одно кодовое слово может отображаться на один или более уровней. Количество уровней соответствует выбранному рангу передачи. После отображения на уровни набор из N L символов (один символ с каждого уровня) линейно комбинируется и отображается на N A антенных портов 126 модулем 124 предварительного кодирования. Комбинирование/отображение описывается матрицей прекодера размером N A×N L. Модуль 128 отображения на ресурсы отображает символы, подлежащие передаче на каждом антенном порте 126, на ресурсные элементы, назначенные планировщиком МАС (управления доступом к коммуникационной среде).
Когда пользовательский терминал 14 запланирован на прием нисходящей передачи по совместно используемому каналу нисходящей линии связи (DL-SCH), планировщик МАС в передающей станции 12 выделяет пользовательскому терминалу 14 одну или более пар ресурсных блоков. Как отмечалось ранее, некоторые ресурсные элементы в каждом ресурсном блоке резервируются для опорных сигналов нисходящей линии связи. Для поддержки нисходящей передачи, содержащей вплоть до восьми уровней, зависящие от пользовательского терминала опорные сигналы нисходящей линии связи требуются для восьми уровней. Согласно настоящему изобретению, восемь отличающихся антенных портов опорных сигналов определены для поддержки передач с (вплоть до) восемью уровнями. Каждый антенный порт уникальным образом ассоциирован с одной группой мультиплексирования с кодовым разделением каналов (CDM) и одним ортогональным защитным кодом (OCC). OCC может содержать, например, код Уолша (Walsh) длины 2 или длины 4, хотя и другие ортогональные коды могут также использоваться. Для удобства CDM группы могут быть идентифицированы посредством индекса группы, имеющего значение от 1 до 2, а ОСС может быть идентифицирован посредством индекса кода, имеющего значение от 1 до 4. Комбинация группы CDM и OCC упоминается здесь как пара группа/код.
В иллюстративном варианте осуществления имеются две CDM группы и 4 OCC. Таким образом, есть восемь возможных комбинаций CDM групп и OCC кодов (2 группы × 4 OCC), так что могут поддерживаться восемь уровней. Отображение между антенными портами и парами группа/код спроектировано так, чтобы оно было не зависящим от ранга. Более конкретно, отображение между антенными портами и парами группа/код выбирается так, чтобы для заданного антенного порта CDM группа и OCC были одними и теми же для любого ранга передачи.
Таблица 1, приведенная ниже, и фиг.5 иллюстрируют одно возможное отображение между антенными портами и парами группа/код согласно одному варианту осуществления настоящего изобретения.
Таблица 1 | ||
Отображение антенных портов | ||
Антенный порт | Группа CDM | OCC |
1 | 1 | 1 |
2 | 1 | 2 |
3 | 2 | 1 |
4 | 2 | 2 |
5 | 1 | 3 |
6 | 1 | 4 |
7 | 2 | 3 |
8 | 2 | 4 |
OCC представляют собой коды Уолша, задаваемые матрицей кодов Уолша:
Отображением антенных портов, показанным в Таблице 1, выделяется CMD группа1 портам 1, 2, 5 и 6 и CMD группа 2 портам 3, 4, 7 и 8. OCC1 выделяется портам 1 и 3, OCC2 выделяется портам 2 и 4, OCC3 выделяется портам 5 и 7, и OCC4 выделяется портам 6 и 8.
Вышеописанное отображение антенных портов является не зависящим от ранга, так что для заданного антенного порта всегда будут использоваться одни и те же CMD группа и ОСС, независимо от ранга передачи. Более того, антенные порты, ассоциированные с конкретной CMD группой, обладают свойством вложенности. То есть для набора антенных портов, ассоциированных с заданной CMD группой, антенные порты, используемые для низкого ранга передачи, будут поднабором антенных портов, используемых для более высокого ранга передачи. Таким образом, антенные порты, ассоциированные с CDM группой 1, порты, используемые для ранга передачи 1, являются поднабором портов, используемых для ранга передачи 2, которые являются поднабором портов, используемых для ранга передачи 5, которые являются поднабором портов, используемых для ранга передачи 6. То же самое свойство вложенности относится к антенным портам, ассоциированным с CDM группой 2.
Другое полезное свойство отображения антенных портов, показанного выше, состоит в том, что OCC длины 4 на определенных антенных портах являются идентичными OCC длины 2. Например, для ранга передачи 2 коды Уолша длины 4 на антенных портах 1 и 2 оказываются теми же самыми, что и коды Уолша длины 2. В случае однопользовательских (SU) систем MIMO данное свойство обеспечивает пользовательскому терминалу 14 возможность использовать ОСС коды длины 2 для выполнения оценки канала (CE). Использование ОСС кодов длины 2 для оценки канала позволяет приемнику 200 выполнять интерполяцию и, таким образом, обеспечивать более точные оценки каналов. Улучшенное оценивание каналов является выгодным для высокомобильных пользовательских терминалов 14. Таким образом, для рангов передачи 2, 4 и 5 приемник может использовать коды Уолша длины 2 для выполнения оценки канала на антенных портах 1 и 2, как показано на фиг.5. Аналогично, для рангов передачи 3 и 4 приемник может использовать коды Уолша длины 2 для выполнения оценки канала на антенных портах 3 и 4. Когда более двух уровней мультиплексируются в одну CDM группу, для оценки канала следует использовать ОСС длины 4.
Для многопользовательских (MU) систем MIMO пользовательский терминал 14 может не знать, запланированы ли совместно с ним другие пользовательские терминалы 14 на то же самое время, как, например, в случае использования прозрачного MU-MIMO. Это отсутствие знания вынуждает каждый пользовательский терминал 14 использовать ОСС длины 4 для оценки канала даже для низкого ранга, что может еще немного снизить эффективность, особенно в случае высоких скоростей. Чтобы получить преимущество, связанное с ОСС длины 2, авторами предлагается ввести однобитовый флаг длины ОСС в сигналы управления для обеспечения пользовательского терминала 14 большей информацией о подробностях ОСС, что может соответственно повысить эффективность в MU-MIMO. Следовательно, этот однобитовый флаг может также обеспечить надлежащее динамическое переключение SU/MU.
Фиг.6 иллюстрирует примерный реализуемый базовой станцией 12 способ 150 передачи опорных сигналов демодуляции на пользовательский терминал 14. Когда пользовательский терминал 14 запланирован для приема нисходящей передачи по совместно используемому каналу нисходящей линии связи (DL-SCH), базовая станция 12 определяет ранг передачи для нисходящей передачи на пользовательский терминал 14 (этап 152) и определяет один или более антенных портов опорных сигналов для нисходящей передачи на основе ранга передачи (этап 154). Процессор 130 передаваемых сигналов в базовой станции 12 сконфигурирован отображать антенные порты на конкретные CDM группу и ортогональный защитный код, так чтобы эти CDM группа и ортогональный защитный код были одними и теми же для заданного антенного порта для любого ранга передачи. Процессор 130 передаваемых сигналов отображает опорный сигнал демодуляции на антенные порты опорных сигналов (этап 156) в соответствии с рангом передачи и передает опорные сигналы демодуляции через выбранные антенные порты (этап 158).
Фиг.7 иллюстрирует примерную реализуемую пользовательским терминалом 14 процедуру 160 приема опорных сигналов от базовой станции 12. Пользовательский терминал 14 определяет ранг передачи для нисходящей передачи на пользовательский терминал (этап 162) и выбирает один или более антенных портов опорных сигналов на основе ранга передачи (этап 164). Процессор 230 принимаемых сигналов сконфигурирован отображать антенные порты на CDM группу и ОСС, так чтобы эти CDM группа и ОСС были одними и теми же для заданного антенного порта для любого ранга передачи (этап 166). Процессор 230 принимаемых сигналов принимает опорные сигналы через выбранные антенные порты (этап 168) и обрабатывает эти сигналы.
Отображение антенных портов применимо как к однопользовательским системам MIMO, так и к многопользовательским системам MIMO. Оно также применимо к DwPTS и расширенным CP, а также к множеству компонентных несущих. Схема отображения антенных портов может использоваться для уменьшения эффекта рандомизации пиковой мощности.
Естественно, настоящее изобретение может быть реализовано конкретными путями, отличающимися от тех, что изложены здесь, не отступая при этом от объема и существенных характеристик изобретения. Следовательно, настоящие варианты осуществления следует рассматривать во всех отношениях как иллюстративные и неограничивающие, и все изменения, охватываемые по смысловому содержанию и эквивалентности прилагаемой формулой изобретения, подразумеваются подпадающими под определяемый ею объем изобретения.
Claims (16)
1. Реализуемый базовой станцией способ передачи опорных сигналов демодуляции на пользовательский терминал, содержащий этапы, на которых:
определяют ранг передачи для нисходящей передачи на пользовательский терминал;
определяют один или более антенных портов опорных сигналов для этой нисходящей передачи на основе ранга передачи, при этом каждый порт определяется парой группа/код, содержащей группу мультиплексирования с кодовым разделением каналов и ортогональный защитный код;
отображают антенные порты опорных сигналов на пары группа/код, так чтобы группа мультиплексирования с кодовым разделением каналов и ортогональный защитный код были одними и теми же для заданного антенного порта для любого ранга передачи; и
передают контрольные символы нисходящей линии связи через антенные порты опорных сигналов в соответствии с рангом передачи.
определяют ранг передачи для нисходящей передачи на пользовательский терминал;
определяют один или более антенных портов опорных сигналов для этой нисходящей передачи на основе ранга передачи, при этом каждый порт определяется парой группа/код, содержащей группу мультиплексирования с кодовым разделением каналов и ортогональный защитный код;
отображают антенные порты опорных сигналов на пары группа/код, так чтобы группа мультиплексирования с кодовым разделением каналов и ортогональный защитный код были одними и теми же для заданного антенного порта для любого ранга передачи; и
передают контрольные символы нисходящей линии связи через антенные порты опорных сигналов в соответствии с рангом передачи.
2. Способ по п.1, в котором отображение антенных портов на пары группа/код дополнительно приспособлено так, что в пределах заданной группы мультиплексирования с кодовым разделением каналов антенные порты, ассоциированные с низким рангом передачи, будут поднабором антенных портов, ассоциированных с более высоким рангом передачи.
3. Способ по п.1, в котором ортогональные защитные коды содержат ортогональные защитные коды длины 4, при этом отображение антенных портов на пары группа/код дополнительно приспособлено так, что для выбранных антенных портов ортогональные защитные коды длины 4 могут быть разложены на два ортогональных защитных кода длины 2 для оценки канала.
4. Способ по п.3, дополнительно содержащий этап, на котором посылают на пользовательский терминал сигнал управления для указания того, следует ли выполнять оценку канала с использованием ортогональных защитных кодов длины 2 или длины 4 для выбранных антенных портов.
5. Реализуемый пользовательским терминалом способ приема опорных сигналов демодуляции, переданных базовой станцией, содержащий этапы, на которых:
определяют ранг передачи для нисходящей передачи на пользовательский терминал;
определяют один или более антенных портов опорных сигналов для этой нисходящей передачи на основе ранга передачи, при этом каждый порт определяется парой группа/код, содержащей группу мультиплексирования с кодовым разделением каналов и ортогональный защитный код;
отображают антенные порты опорных сигналов на пары группа/код, так чтобы группа мультиплексирования с кодовым разделением каналов и ортогональный защитный код были одними и теми же для заданного антенного порта для любого ранга передачи; и
принимают контрольные символы нисходящей линии связи через антенные порты опорных сигналов в соответствии с рангом передачи.
определяют ранг передачи для нисходящей передачи на пользовательский терминал;
определяют один или более антенных портов опорных сигналов для этой нисходящей передачи на основе ранга передачи, при этом каждый порт определяется парой группа/код, содержащей группу мультиплексирования с кодовым разделением каналов и ортогональный защитный код;
отображают антенные порты опорных сигналов на пары группа/код, так чтобы группа мультиплексирования с кодовым разделением каналов и ортогональный защитный код были одними и теми же для заданного антенного порта для любого ранга передачи; и
принимают контрольные символы нисходящей линии связи через антенные порты опорных сигналов в соответствии с рангом передачи.
6. Способ по п.5, в котором отображение антенных портов на пары группа/код дополнительно приспособлено так, что в пределах заданной группы мультиплексирования с кодовым разделением каналов антенные порты, ассоциированные с низким рангом передачи, будут поднабором антенных портов, ассоциированных с более высоким рангом передачи.
7. Способ по п.5, в котором ортогональные защитные коды содержат ортогональные защитные коды длины 4, при этом отображение антенных портов на пары группа/код дополнительно приспособлено так, что для выбранных антенных портов ортогональные защитные коды длины 4 могут быть разложены на два ортогональных защитных кода длины 2 для оценки канала.
8. Способ по п.7, дополнительно содержащий этапы, на которых принимают от базовой станции сигнал управления и выполняют оценку канала, используя ортогональные защитные коды либо длины 2, либо длины 4 для выбранных антенных портов, в зависимости от сигнала управления.
9. Базовая станция, содержащая процессор передаваемых сигналов и контроллер передачи, сконфигурированные:
определять ранг передачи для нисходящей передачи на пользовательский терминал;
определять один или более антенных портов опорных сигналов для этой нисходящей передачи на основе ранга передачи, при этом каждый порт определяется парой группа/код, содержащей группу мультиплексирования с кодовым разделением каналов и ортогональный защитный код;
отображать антенные порты опорных сигналов на пары группа/код, так чтобы группа мультиплексирования с кодовым разделением каналов и ортогональный защитный код были одними и теми же для заданного антенного порта для любого ранга передачи; и
передавать контрольные символы нисходящей линии связи через антенные порты опорных сигналов в соответствии с рангом передачи.
определять ранг передачи для нисходящей передачи на пользовательский терминал;
определять один или более антенных портов опорных сигналов для этой нисходящей передачи на основе ранга передачи, при этом каждый порт определяется парой группа/код, содержащей группу мультиплексирования с кодовым разделением каналов и ортогональный защитный код;
отображать антенные порты опорных сигналов на пары группа/код, так чтобы группа мультиплексирования с кодовым разделением каналов и ортогональный защитный код были одними и теми же для заданного антенного порта для любого ранга передачи; и
передавать контрольные символы нисходящей линии связи через антенные порты опорных сигналов в соответствии с рангом передачи.
10. Базовая станция по п.9, дополнительно сконфигурированная отображать антенные порты на пары группа/код так, что в пределах заданной группы мультиплексирования с кодовым разделением каналов антенные порты, ассоциированные с низким рангом передачи, будут поднабором антенных портов, ассоциированных с более высоким рангом передачи.
11. Базовая станция по п.9, в которой ортогональные защитные коды содержат ортогональные защитные коды длины 4, при этом отображение антенных портов на пары группа/код дополнительно приспособлено так, что для выбранных антенных портов ортогональные защитные коды длины 4 могут быть разложены на два ортогональных защитных кода длины 2 для оценки канала.
12. Базовая станция по п.11, дополнительно сконфигурированная посылать на пользовательский терминал сигнал управления для указания того, следует ли выполнять оценку канала с использованием ортогональных защитных кодов длины 2 или длины 4 для выбранных антенных портов.
13. Пользовательский терминал, содержащий процессор принимаемых сигналов и контроллер приема, сконфигурированные:
определять ранг передачи для нисходящей передачи на пользовательский терминал;
определять один или более антенных портов опорных сигналов для этой нисходящей передачи на основе ранга передачи, при этом каждый порт определяется парой группа/код, содержащей группу мультиплексирования с кодовым разделением каналов и ортогональный защитный код;
отображать антенные порты опорных сигналов на пары группа/код, так чтобы группа мультиплексирования с кодовым разделением каналов и ортогональный защитный код были одними и теми же для заданного антенного порта для любого ранга передачи; и
принимать контрольные символы нисходящей линии связи через антенные порты опорных сигналов в соответствии с рангом передачи.
определять ранг передачи для нисходящей передачи на пользовательский терминал;
определять один или более антенных портов опорных сигналов для этой нисходящей передачи на основе ранга передачи, при этом каждый порт определяется парой группа/код, содержащей группу мультиплексирования с кодовым разделением каналов и ортогональный защитный код;
отображать антенные порты опорных сигналов на пары группа/код, так чтобы группа мультиплексирования с кодовым разделением каналов и ортогональный защитный код были одними и теми же для заданного антенного порта для любого ранга передачи; и
принимать контрольные символы нисходящей линии связи через антенные порты опорных сигналов в соответствии с рангом передачи.
14. Пользовательский терминал по п.13, дополнительно сконфигурированный отображать антенные порты на пары группа/код так, что в пределах заданной группы мультиплексирования с кодовым разделением каналов антенные порты, ассоциированные с низким рангом передачи, будут поднабором антенных портов, ассоциированных с более высоким рангом передачи.
15. Пользовательский терминал по п.13, в котором ортогональные защитные коды содержат ортогональные защитные коды длины 4, при этом отображение антенных портов на пары группа/код дополнительно приспособлено так, что для выбранных антенных портов ортогональные защитные коды длины 4 могут быть разложены на два ортогональных защитных кода длины 2 для оценки канала.
16. Пользовательский терминал по п.15, дополнительно сконфигурированный принимать от базовой станции сигнал управления и выполнять оценку канала, используя ортогональные защитные коды либо длины 2, либо длины 4 для выбранных антенных портов, в зависимости от сигнала управления.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2010/000084 WO2011088589A1 (en) | 2010-01-20 | 2010-01-20 | Antenna port mapping method and device for demodulation reference signals |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012135556A RU2012135556A (ru) | 2014-02-27 |
RU2548899C2 true RU2548899C2 (ru) | 2015-04-20 |
Family
ID=44277543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012135556/07A RU2548899C2 (ru) | 2010-01-20 | 2010-01-20 | Способ отображения антенных портов и устройство для демодуляции опорных сигналов |
Country Status (21)
Country | Link |
---|---|
US (6) | US8446886B2 (ru) |
EP (4) | EP3748892B1 (ru) |
JP (1) | JP5731544B2 (ru) |
KR (1) | KR101700003B1 (ru) |
CN (2) | CN106452710B (ru) |
AU (1) | AU2010342988B2 (ru) |
BR (1) | BR112012016405B1 (ru) |
CA (1) | CA2790291C (ru) |
DK (2) | DK2526632T3 (ru) |
ES (2) | ES2612902T3 (ru) |
HU (1) | HUE033050T2 (ru) |
IL (1) | IL220063A (ru) |
MA (1) | MA33907B1 (ru) |
MX (1) | MX2012007390A (ru) |
NZ (1) | NZ600535A (ru) |
PL (2) | PL2526632T3 (ru) |
PT (2) | PT2526632T (ru) |
RU (1) | RU2548899C2 (ru) |
SG (1) | SG181145A1 (ru) |
WO (1) | WO2011088589A1 (ru) |
ZA (1) | ZA201203986B (ru) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK2526632T3 (en) | 2010-01-20 | 2017-02-06 | ERICSSON TELEFON AB L M (publ) | Method of antenna port mapping and device for demodulating reference signals |
KR101377801B1 (ko) * | 2010-01-22 | 2014-03-25 | 샤프 가부시키가이샤 | 송신 장치, 수신 장치, 통신 시스템 및 통신 방법 |
US10278157B2 (en) * | 2010-12-22 | 2019-04-30 | Nokia Solutions And Networks Oy | Allocation of resources |
US9264915B2 (en) * | 2011-01-14 | 2016-02-16 | Lg Electronics Inc. | Method and device for setting channel status information measuring resource in a wireless communication system |
EP2706679B1 (en) * | 2011-05-03 | 2019-09-11 | LG Electronics Inc. | Method for terminal to transmit/receive signal to/from base station in wireless communication system and device therefor |
WO2013009702A1 (en) * | 2011-07-08 | 2013-01-17 | Huawei Technologies Co., Ltd. | System and method for communicating reference signals |
JP5809482B2 (ja) * | 2011-08-15 | 2015-11-11 | 株式会社Nttドコモ | 無線通信システム、無線基地局及び無線通信方法 |
CN102957471B (zh) * | 2011-08-19 | 2018-04-03 | 中兴通讯股份有限公司 | 一种解调参考信号的增强方法和系统 |
US9241287B2 (en) * | 2011-09-13 | 2016-01-19 | Qualcomm Incorporated | Narrow bandwidth operation in LTE |
US20130114495A1 (en) * | 2011-11-04 | 2013-05-09 | Qualcomm Incorporated | Physical Channel Characteristics for e-PDCCH in LTE |
US10038534B2 (en) * | 2012-01-19 | 2018-07-31 | Sun Patent Trust | Method of scrambling reference signals, device and user equipment using the method |
US8964632B2 (en) | 2012-02-03 | 2015-02-24 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and arrangements for channel estimation |
EP3389194B1 (en) * | 2012-03-19 | 2023-07-19 | Panasonic Intellectual Property Corporation of America | Receiving device and receiving method |
JP2013255047A (ja) * | 2012-06-06 | 2013-12-19 | Sharp Corp | 送信装置、受信装置、送信方法及び受信方法 |
WO2013181831A1 (en) * | 2012-06-07 | 2013-12-12 | Nokia Siemens Networks Oy | Transmissions to high-speed devices |
EP2929639B1 (en) * | 2012-12-04 | 2017-12-27 | LG Electronics Inc. | Method for changing pattern of reference signals according to rank variation in wireless communication system, and an apparatus therefor |
WO2014098523A1 (en) * | 2012-12-21 | 2014-06-26 | Samsung Electronics Co., Ltd. | Methods and apparatus for identification of small cells |
CN104009953B (zh) * | 2013-02-22 | 2019-02-15 | 中兴通讯股份有限公司 | 一种解调参考信号的传输方法及基站、用户设备 |
JP2016149583A (ja) * | 2013-06-06 | 2016-08-18 | シャープ株式会社 | 端末装置、基地局装置、無線通信システムおよび通信方法 |
CN104284355B (zh) | 2013-07-11 | 2019-08-13 | 中兴通讯股份有限公司 | 一种干扰测量方法、系统及相关设备 |
KR102363565B1 (ko) | 2014-02-25 | 2022-02-17 | 삼성전자 주식회사 | 다중입력 다중출력 방식을 사용하는 무선 통신 시스템에서 기준 신호 송수신 장치 및 방법과 그 시스템 |
CN107078770B (zh) * | 2014-10-09 | 2020-10-16 | Lg 电子株式会社 | 支持大规模mimo的无线通信系统中的参考信号产生方法 |
JP6027637B2 (ja) * | 2015-01-22 | 2016-11-16 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 復調参照信号のためのアンテナポートマッピング方法および装置 |
WO2016127309A1 (en) | 2015-02-10 | 2016-08-18 | Qualcomm Incorporated | Dmrs enhancement for higher order mu-mimo |
KR102287875B1 (ko) * | 2015-04-17 | 2021-08-09 | 삼성전자주식회사 | 무선 통신 시스템에서 기준 신호들을 송신하기 위한 장치 및 방법 |
US10230508B2 (en) * | 2015-09-04 | 2019-03-12 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting information related to a reference signal |
EP3352404B1 (en) * | 2015-09-14 | 2020-12-23 | LG Electronics Inc. | Method for correcting frequency offset in v2v communication and device for same |
EP3443699B1 (en) | 2016-04-12 | 2021-07-14 | Telefonaktiebolaget LM Ericsson (PUBL) | Common phase error compensation |
WO2017196483A1 (en) * | 2016-05-13 | 2017-11-16 | Intel IP Corporation | Multi-user multiple input multiple ouput systems |
CN109804687B (zh) * | 2016-08-10 | 2023-05-02 | 株式会社Ntt都科摩 | 用户终端以及无线通信方法 |
CN108023704B (zh) * | 2016-11-04 | 2021-10-26 | 华为技术有限公司 | 一种传输参考信号的方法、网络侧设备和用户设备 |
CN108242987B (zh) * | 2016-12-23 | 2022-09-13 | 中兴通讯股份有限公司 | 参考信号发送方法及基站,配置确定方法及终端 |
WO2018126474A1 (en) | 2017-01-09 | 2018-07-12 | Qualcomm Incorporated | Transmitting multiplexed sounding reference signal ports in new radio |
US10404433B2 (en) * | 2017-01-31 | 2019-09-03 | Qualcomm Incorporated | Matrix-based techniques for mapping resource elements to ports for reference signals |
WO2018174665A1 (en) | 2017-03-23 | 2018-09-27 | Innovative Technology Lab Co., Ltd. | Method and apparatus for transmitting and receiving demodulation reference signal |
CN110679111B (zh) | 2017-03-31 | 2022-07-01 | Lg电子株式会社 | 在无线通信系统中发送和接收参考信号的方法及其设备 |
CN109995499B (zh) | 2017-08-11 | 2020-04-03 | 华为技术有限公司 | 接收解调参考信号的方法、接收端、芯片、存储介质和通信系统 |
ES2952020T3 (es) * | 2017-09-14 | 2023-10-26 | Ntt Docomo Inc | Terminal de usuario |
CN109600156B (zh) * | 2017-09-30 | 2020-10-02 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的用户设备、基站中的方法和装置 |
EP3468061A1 (en) * | 2017-10-03 | 2019-04-10 | Panasonic Intellectual Property Corporation of America | Signaling aspects for indication of co-scheduled dmrs ports in mu-mimo |
CN109842468B (zh) * | 2017-11-24 | 2020-09-01 | 电信科学技术研究院 | 数据传输方法及装置、计算机存储介质 |
CN110034890B (zh) | 2018-01-12 | 2020-07-10 | 电信科学技术研究院有限公司 | 数据传输方法及装置、计算机存储介质 |
CN110139366A (zh) * | 2018-02-08 | 2019-08-16 | 华为技术有限公司 | 一种确定天线端口的方法和终端侧设备 |
CN110535600B (zh) * | 2019-01-07 | 2022-12-02 | 中兴通讯股份有限公司 | 传输解调参考信号的方法、终端设备和网络设备 |
CN112187320B (zh) * | 2019-07-05 | 2022-09-16 | 大唐移动通信设备有限公司 | 一种天线端口确定方法和通信设备 |
US11496201B2 (en) * | 2021-03-01 | 2022-11-08 | At&T Intellectual Property I, L.P. | Method and system for determining uplink and downlink weights for antenna elements of modular antenna arrays |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2234189C2 (ru) * | 2000-08-22 | 2004-08-10 | Самсунг Электроникс Ко., Лтд. | Устройство и способ передачи с разнесением посредством двух или более антенн |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7260369B2 (en) * | 2005-08-03 | 2007-08-21 | Kamilo Feher | Location finder, tracker, communication and remote control system |
US8320301B2 (en) | 2002-10-25 | 2012-11-27 | Qualcomm Incorporated | MIMO WLAN system |
ATE556493T1 (de) * | 2004-04-07 | 2012-05-15 | Lg Electronics Inc | Übertragungsverfahren eines kontrollsignals für die abwärtsrichtung für ein mimo-system |
KR100617835B1 (ko) | 2005-01-05 | 2006-08-28 | 삼성전자주식회사 | 통신 시스템에서 채널 품질 정보 송수신 장치 및 방법 |
US7961810B2 (en) * | 2006-09-07 | 2011-06-14 | Texas Instruments Incorporated | Antenna grouping and group-based enhancements for MIMO systems |
MX2009003608A (es) * | 2006-10-02 | 2009-04-22 | Lg Electronics Inc | Metodo para transmitir una señal de control de enlace descendente. |
US20080232307A1 (en) | 2007-03-23 | 2008-09-25 | Zhouyue Pi | Method and apparatus to allocate resources for acknowledgments in communication systems |
JP5024533B2 (ja) * | 2007-06-19 | 2012-09-12 | 日本電気株式会社 | 移動通信システムにおけるリファレンス信号系列の割当方法および装置 |
CN101365233A (zh) | 2007-08-10 | 2009-02-11 | 中兴通讯股份有限公司 | 一种长期演进系统中解调参考信号模式的通知方法 |
CN103532606B (zh) * | 2007-12-03 | 2017-04-12 | 艾利森电话股份有限公司 | 空间复用多天线发射机的预编码器 |
CN101610607B (zh) * | 2008-06-20 | 2012-08-08 | 电信科学技术研究院 | 上行探测参考信号发送、接收方法以及基站和移动终端 |
JPWO2009157184A1 (ja) | 2008-06-24 | 2011-12-08 | パナソニック株式会社 | Mimo送信装置、mimo受信装置、mimo伝送信号形成方法、及びmimo伝送信号分離方法 |
CN101615937B (zh) * | 2008-06-27 | 2013-08-07 | 中兴通讯股份有限公司 | 一种多天线发射方法及多天线发射装置 |
WO2010002734A2 (en) * | 2008-06-30 | 2010-01-07 | Interdigital Patent Holdings, Inc. | Method and apparatus to support single user (su) and multiuser (mu) beamforming with antenna array groups |
CN101340227B (zh) * | 2008-08-15 | 2012-10-10 | 中兴通讯股份有限公司 | 下行参考信号的发送方法和装置 |
US20100097937A1 (en) * | 2008-10-16 | 2010-04-22 | Interdigital Patent Holdings, Inc. | Method and apparatus for wireless transmit/receive unit specific pilot signal transmission and wireless transmit/receive unit specific pilot signal power boosting |
US8228862B2 (en) * | 2008-12-03 | 2012-07-24 | Samsung Electronics Co., Ltd. | Method and system for reference signal pattern design |
CN101771444B (zh) | 2009-01-06 | 2014-01-29 | 电信科学技术研究院 | 多天线系统中参考信号的设置方法和基站 |
KR101276859B1 (ko) | 2009-04-15 | 2013-06-18 | 엘지전자 주식회사 | 참조 신호를 전송하는 방법 및 장치 |
CN101567717B (zh) * | 2009-04-23 | 2012-11-07 | 北京交通大学 | 一种上行链路mimo-ldpc调制与解调系统 |
CN101540631B (zh) | 2009-04-27 | 2014-03-12 | 中兴通讯股份有限公司 | 测量参考信号的多天线发送方法及装置 |
US20110142107A1 (en) * | 2009-06-16 | 2011-06-16 | Kyle Jung-Lin Pan | Rank Adaptive Cyclic Shift for Demodulation Reference Signal |
CN101594335B (zh) | 2009-06-19 | 2017-02-08 | 中兴通讯股份有限公司 | 参考信号和物理资源块的映射方法 |
WO2011008013A2 (ko) | 2009-07-13 | 2011-01-20 | 엘지전자 주식회사 | 백홀 링크 전송을 위한 전송 모드 구성 방법 및 장치 |
CN101626620B (zh) | 2009-08-07 | 2014-03-12 | 中兴通讯股份有限公司 | 一种参考信号的发送方法 |
WO2011046349A2 (ko) * | 2009-10-12 | 2011-04-21 | 엘지전자 주식회사 | 다중 안테나를 지원하는 무선 통신 시스템에서 하향링크 참조 신호 전송 전력 정보 제공 방법 및 장치 |
WO2011085509A1 (en) | 2010-01-12 | 2011-07-21 | Telefonaktiebolaget L M Ericsson (Publ) | Layer-to dm rs port mapping for lte-advanced |
KR101789621B1 (ko) * | 2010-01-19 | 2017-10-25 | 엘지전자 주식회사 | 하향링크 데이터 전송방법 및 기지국과, 하향링크 데이터 수신방법 및 사용자기기 |
DK2526632T3 (en) | 2010-01-20 | 2017-02-06 | ERICSSON TELEFON AB L M (publ) | Method of antenna port mapping and device for demodulating reference signals |
US9887754B2 (en) * | 2010-05-04 | 2018-02-06 | Qualcomm Incorporated | Method and apparatus for optimizing power distribution between symbols |
-
2010
- 2010-01-20 DK DK10843632.0T patent/DK2526632T3/en active
- 2010-01-20 CN CN201610909568.4A patent/CN106452710B/zh active Active
- 2010-01-20 EP EP20172702.1A patent/EP3748892B1/en active Active
- 2010-01-20 JP JP2012549224A patent/JP5731544B2/ja active Active
- 2010-01-20 CA CA2790291A patent/CA2790291C/en active Active
- 2010-01-20 DK DK16196212.1T patent/DK3142284T3/da active
- 2010-01-20 HU HUE10843632A patent/HUE033050T2/hu unknown
- 2010-01-20 EP EP10843632.0A patent/EP2526632B1/en active Active
- 2010-01-20 WO PCT/CN2010/000084 patent/WO2011088589A1/en active Application Filing
- 2010-01-20 AU AU2010342988A patent/AU2010342988B2/en active Active
- 2010-01-20 ES ES10843632.0T patent/ES2612902T3/es active Active
- 2010-01-20 PT PT108436320T patent/PT2526632T/pt unknown
- 2010-01-20 SG SG2012039871A patent/SG181145A1/en unknown
- 2010-01-20 MA MA35042A patent/MA33907B1/fr unknown
- 2010-01-20 EP EP22200898.9A patent/EP4170953A1/en not_active Withdrawn
- 2010-01-20 NZ NZ600535A patent/NZ600535A/en unknown
- 2010-01-20 ES ES16196212T patent/ES2802458T3/es active Active
- 2010-01-20 PT PT161962121T patent/PT3142284T/pt unknown
- 2010-01-20 KR KR1020127016691A patent/KR101700003B1/ko active IP Right Grant
- 2010-01-20 BR BR112012016405-8A patent/BR112012016405B1/pt active IP Right Grant
- 2010-01-20 EP EP16196212.1A patent/EP3142284B1/en active Active
- 2010-01-20 RU RU2012135556/07A patent/RU2548899C2/ru active
- 2010-01-20 PL PL10843632T patent/PL2526632T3/pl unknown
- 2010-01-20 MX MX2012007390A patent/MX2012007390A/es active IP Right Grant
- 2010-01-20 CN CN201080062024.XA patent/CN102742176B/zh active Active
- 2010-01-20 PL PL16196212T patent/PL3142284T3/pl unknown
- 2010-10-08 US US12/900,628 patent/US8446886B2/en active Active
-
2012
- 2012-05-30 IL IL220063A patent/IL220063A/en active IP Right Grant
- 2012-05-31 ZA ZA2012/03986A patent/ZA201203986B/en unknown
-
2013
- 2013-05-01 US US13/874,768 patent/US9307542B2/en active Active
-
2016
- 2016-04-01 US US15/088,603 patent/US10244424B2/en active Active
-
2019
- 2019-02-20 US US16/280,216 patent/US10694419B2/en active Active
-
2020
- 2020-06-18 US US16/905,033 patent/US11019526B2/en active Active
-
2021
- 2021-05-21 US US17/326,671 patent/US20210282046A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2234189C2 (ru) * | 2000-08-22 | 2004-08-10 | Самсунг Электроникс Ко., Лтд. | Устройство и способ передачи с разнесением посредством двух или более антенн |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2548899C2 (ru) | Способ отображения антенных портов и устройство для демодуляции опорных сигналов | |
AU2011241291B2 (en) | Systems and methods for bundling resource blocks in a wireless communication system | |
US9130719B2 (en) | Method for indicating a DM-RS antenna port in a wireless communication system | |
AU2011215025B2 (en) | Method for indicating a DM-RS antenna port in a wireless communication system | |
US9148261B2 (en) | Method and apparatus for performing a HARQ in a wireless communication system | |
KR20120102717A (ko) | 다중입출력 전송을 위한 업링크 복조 참조 신호 설계 | |
KR20110069735A (ko) | 무선 통신 시스템에서 harq 수행 방법 및 장치 | |
EP2378698A2 (en) | Systems and methods for bundling resource blocks in a wireless communication system | |
JP6027637B2 (ja) | 復調参照信号のためのアンテナポートマッピング方法および装置 |