RU2547383C2 - Способ нанесения эмиссионного слоя - Google Patents

Способ нанесения эмиссионного слоя Download PDF

Info

Publication number
RU2547383C2
RU2547383C2 RU2013139931/02A RU2013139931A RU2547383C2 RU 2547383 C2 RU2547383 C2 RU 2547383C2 RU 2013139931/02 A RU2013139931/02 A RU 2013139931/02A RU 2013139931 A RU2013139931 A RU 2013139931A RU 2547383 C2 RU2547383 C2 RU 2547383C2
Authority
RU
Russia
Prior art keywords
layer
emission layer
phosphor
conducting
ligand
Prior art date
Application number
RU2013139931/02A
Other languages
English (en)
Other versions
RU2013139931A (ru
Inventor
Валентина Владимировна Уточникова
Алена Сергеевна Калякина
Елена Юрьевна Соколова
Андрей Александрович Ващенко
Леонид Сергеевич Лепнев
Наталия Петровна Кузьмина
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Сиа Эволед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ), Сиа Эволед filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2013139931/02A priority Critical patent/RU2547383C2/ru
Priority to PCT/RU2014/000435 priority patent/WO2015030627A1/en
Priority to EP14762115.5A priority patent/EP3039730A1/en
Publication of RU2013139931A publication Critical patent/RU2013139931A/ru
Application granted granted Critical
Publication of RU2547383C2 publication Critical patent/RU2547383C2/ru

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Изобретение относится к способам получения эмиссионных слоев, в частности для органических светоизлучающих диодов. Способ нанесения эмиссионного слоя органического светоизлучающего диода на подложку из стекла или полимера, покрытую слоем анода, включает получение раствора, содержащего люминофорсодержащее соединение и проводящий материал, и нанесение тонкой пленки из полученного раствора на упомянутую подложку. Упомянутую пленку подвергают термической обработке при температуре выше 100°C и ниже температуры стабильности эмиссионного слоя, при этом в качестве люминофорсодержащего соединения используют растворимое разнолигандное координационное соединение, которое при термической обработке разлагается на люминофор и нейтральный лиганд, полностью удаляемый из тонкой пленки, при этом термическую обработку упомянутой пленки проводят при температуре выше температуры удаления лиганда. С помощью указанного способа получают эмиссионный слой органического светоизлучающего диода, который содержит слой анода, эмиссионный слой и слой катода. В частных случаях осуществления изобретения используют растворимое разнолигандное координационное соединение в виде комплекса феноксибензоата тербия с ацетилацетонимином, или комплекса феноксибензоата тербия с моноглимом, или комплекса нафтоноата европия с моноглимом. При изготовлении упомянутого диода на слой анода дополнительно наносят слой дыркопроводящего и/или электронблокирующего материалов, а поверх эмиссионного слоя наносят электронпроводящий и/или дыркоблокирующий слой. В качестве дыркоблокирующего слоя используют 2,9-диметил-4,7-дифенил-1,10-фенантро�

Description

Изобретение относится к способам получения эмиссионных слоев, в частности для органических светоизлучающих диодов.
Эмиссионные слои - люминесцирующие тонкие пленки - находят широкое применение в таких устройствах, как, например, органические тонкопленочные транзисторы, органические солнечные батареи и органические светоизлучающие диоды (ОСИД или OLED - Organic Light Emitting Diode).
ОСИД, где на сегодняшний день эмиссионные слои получили наибольшее распространение, представляет собой многослойную гетероструктуру, состоящую, по крайней мере, из эмиссионного слоя, заключенного между катодом и анодом. При протекании электрического тока происходит инжекция электронов и дырок в эмиссионный слой, в результате чего наблюдается электролюминесценция. Для облегчения инжекции электронов и дырок в эмиссионный слой в ОСИД вводятся дополнительные слои с электронной и/или дырочной проводимостью, а также электрон- и/или дыркоблокирующие слои. Как эмиссионный слой, так и все слои гетероструктуры ОСИД представляют собой тонкие пленки толщиной 10-500 нм.
Первый эмиссионный слой ОСИД, показавший достаточно высокую эффективность электролюминесценции при низком напряжении включения, состоял из 8-оксихинолината алюминия (AlQ3), а в качестве дыркопроводящего слоя был использован триариламин [1]. В 1990 году была продемонстрирована возможность использования в качестве эмиссионных слоев π-сопряженных полимеров, в частности поли(фениленвинилена) (PPV) [2]. В настоящее время в качестве эмиссионных слоев находят применение фосфоресцирующие соединения платины, иридия, редкоземельных элементов, а также флуоресцирующие соединения алюминия и цинка и полимерные соединения.
Для получения тонких пленок чаще всего используют следующие методы нанесения вещества на подложку. Для растворимых соединений: нанесение раствора вещества на вращающуюся подложку (spin-coating) и его вариант - dip-coating, когда подложка многократно опускается в раствор соединения и сушится. Для летучих соединений: физическое осаждение из газовой фазы (Physical Vapor Deposition, PVD) [3].
Описан [4] метод получения тонких пленок, который включает получение растворимого люминофорсодержащего разнолигандного координационного соединения, нанесение тонкой пленки получившегося соединения из раствора на подложку и термическую обработку получившейся тонкой пленки, при которой люминофорсодержащий разнолигандный комплекс разлагается на люминисцирующее координационное соединение и нейтральный лиганд, который полностью удаляется из тонкой пленки. Предложенный метод позволяет получить тонкие пленки нелетучих и нерастворимых химических соединений.
В 1989 году предложен способ получения эмиссионного слоя путем введения люминофора в слой проводящего материала, что позволило увеличить квантовый выход электролюминесценции [5]. При этом в качестве проводящего материала использовали AlQ3, а в качестве люминофора - кумарин 540. Нанесение эмиссионного слоя проводили из газовой фазы. Для этого гомогенную смесь люминофора и проводящего материала испаряли быстрым нагреванием в вакууме и осаждали на холодной подложке, при этом люминофор оказывался равномерно распределен внутри проводящего материала, то есть было осуществлено допирование люминофора в проводящий материал.
В дальнейшем способ получения эмиссионного слоя путем введения люминофора в проводящий материал получил широкое распространение, при этом нанесение эмиссионного слоя осуществлялось как из газовой фазы, так и из раствора.
Так, в работе [6] эмиссионный слой получают нанося на подложку (стекло с нанесенным на него слоем индий-оловянного оксида) методом spin-coating раствор смеси комплекса иридия (люминофор) и 4,4′-N,N′-дикарбозолбифенила (СВР, проводящий материал) в соотношении 1:5 в дихлорметане.
Известно [3], что материал, в который при получении эмиссионного слоя допируют люминофор, должен обладать следующими свойствами:
- прозрачность в видимом диапазоне;
- способность образовывать тонкие пленки высокого качества (высокая сплошность, низкая шероховатость);
- высокая электронная и дырочная проводимость;
- более высокая, чем у люминофора, энергия граничных орбиталей (для эффективной передачи возбужденного состояния на молекулы люминофора);
- растворимость в органических растворителях, общих с допируемым люминофором, или летучесть, если люминофор летуч;
- химическая инертность по отношению к соседним слоям;
- УФ-стабильность;
- термическая стабильность (в режиме работы устройства могут возникать локальные перегревы).
В настоящее время в качестве проводящих материалов для получения эмиссионного слоя наиболее широко используют поли-N-винилкарбазол (PVK), N,N′-бис(3-метилфенил)-N,N′-бис(фенил)-бензидин (TPD), 4,4′-N,N′-дикарбозолбифенил (СВР), поли(9,9-диоктилфлуорен-2,7-диил (PFO), поливинилбутирал (PVB) [7].
Технической задачей, на решение которой направлено заявляемое изобретение, является расширение арсенала способов получения эмиссионного слоя, в частности на основе нерастворимых и нелетучих люминофоров, и повышение его проводимости.
Поставленная задача достигается тем, что в способе нанесения эмиссионного слоя, включающем получение раствора, содержащего люминофорсодержащее соединение и проводящий материал, и нанесение тонкой пленки из полученного раствора на упомянутую подложку, согласно изобретению упомянутую пленку подвергают термической обработке при температуре выше 100°C и ниже температуры стабильности эмиссионного слоя, при этом в качестве люминофорсодержащего соединения используют растворимое разнолигандное координационное соединение, которое при термической обработке разлагается на люминофор и нейтральный лиганд, полностью удаляемый из тонкой пленки, при этом термическую обработку упомянутой пленки проводят при температуре выше температуры удаления лиганда.
Под люминофорсодержащим соединением понимается сам люминофор и любое соединение, способное разлагаться с образованием люминофора.
Под температурой стабильности эмиссионного слоя понимается температура, выше которой в эмиссионном слое начинаются химические и/или физические превращения (разложение, полимеризация, изомеризация, фазовые переходы и т.д.).
Нами установлено, что термическая обработка эмиссионного слоя при температуре выше 100°C приводит к значимому улучшению его оптоэлектронных свойств, в частности повышению проводимости и понижению напряжения включения. Можно предположить, что данный эффект связан, например, с образованием в ходе термической обработки связей между молекулами люминофорсодержащего соединения и проводящего материала (за счет отрыва от люминофорсодержащего соединения молекул воды или нейтрального лиганда).
Температура термической обработки определяется в каждом конкретном случае в зависимости от термических свойств выбранного люминофорсодержащего соединения и проводящего материала.
Верхняя граница температуры термообработки лимитируется температурой стабильности эмиссионного слоя.
Подложка для нанесения эмиссионного слоя зависит от устройства, для которого изготавливается эмиссионный слой. Для ОСИД, например, подложка представляет собой стеклянную пластину или полимерную пленку с последовательно нанесенными на нее в виде тонких пленок анода и, возможно, дополнительных проводящих слоев. Для органической солнечной батареи - стекло, покрытое тонкой пленкой анода и оксида титана. Нанесение тонкой пленки на подложку осуществляется любым подходящим способом.
В качестве люминофорсодержащего соединения в заявленном способе может быть использован как люминофор, растворимый сам по себе, так и любое растворимое соединение, которое при нагревании превращается в люминофор, в частности растворимое люминофорсодержащее разнолигандное координационное соединение (РЛК), которое при термической обработке разлагается на люминофор и нейтральный лиганд, полностью удаляющийся из тонкой пленки. При этом температура удаления нейтрального лиганда из РЛК должна быть ниже, чем температура термолиза люминофора.
Под «температурой удаления лиганда» понимается температура, при которой происходит полное удаление нейтрального лиганда из люминофорсодержащего РЛК. В зависимости от состава люминофорсодержащего РЛК температура удаления лиганда может совпадать либо с температурой его распада на люминофор и дополнительный лиганд, либо с температурой испарения дополнительного лиганда.
В случае, когда в качестве люминофорсодержащего соединения используется растворимое люминофорсодержащее РЛК, термическую обработку эмиссионного слоя ведут при температуре ниже температуры стабильности эмиссионного слоя, но выше температуры удаления лиганда, а нейтральный лиганд и проводящий материал выбираются таким образом, чтобы при удалении нейтрального лиганда из состава РЛК он не взаимодействовал с проводящим материалом и полностью удалялся.
При этом проводящий материал, кроме всех ранее перечисленных свойств (высокая электронная и дырочная проводимость, растворимость, пленкообразующие свойства, прозрачность и соответствующее положение граничных орбиталей), должен обладать термической стабильностью при температуре не ниже 100°C, а в случае, когда в качестве люминофорсодержащего соединения выбирается люминофорсодержащее РЛК, не ниже температуры удаления дополнительного лиганда, и иметь по меньшей мере один общий растворитель с люминофорсодержащим соединением.
Представленное техническое решение позволяет не только улучшить характеристики эмиссионного слоя, но и получать эмиссионные слои на основе нерастворимых и нелетучих соединений.
Другой технической задачей, решаемой данным изобретением, является расширение арсенала способов получения органических светоизлучающих диодов.
Поставленная задача достигается тем, что предложен способ получения органического светоизлучающего диода, эмиссионный слой которого выполнен заявленным способом.
Полученный ОСИД представляет собой многослойную гетероструктуру, состоящую из несущей основы, выполненной в виде подложки с размещенным на ней прозрачным слоем анода, на котором располагается эмиссионный слой, полученный заявленным способом, и катод. Для улучшения рабочих характеристик в ОСИД могут быть введены дополнительные слои с электронной и/или дырочной проводимостью, а также электрон- и/или дыркоблокирующие слои.
Настоящее изобретение проиллюстрировано ниже в примерах, которые не ограничивают каким-либо образом рамки настоящего изобретения.
Тестирование эмиссионного слоя во всех примерах осуществляют, вводя его в ОСИД. Эмиссионный слой наносят на стекло, покрытое последовательно тонкой пленкой анода (индий-оловянный оксид, ITO) и тонкой пленкой дыркопроводящего слоя (все вместе далее - подложка). Поверх эмиссионного слоя наносят тонкую пленку дыркоблокирующего слоя и катода (алюминий). В качестве дыркопроводящего слоя везде используют поли(3,4-этилендиокситиофен)-поли(стиролсульфоната(PEDOT:PSS), в качестве дыркоблокирующих слоев используют 2,9-диметил-4,7-дифенил-1,10-фенантролин (ВСР) (пример 4) и 3-(4-бифенил)-4-фенил-5-трет-бутил-фенил-1,2,4-триазол (TAZ) (примеры 1-3, 5-6). Их выбор определяется соотношением энергий высшей занятой молекулярной орбитали дыркоблокирующего слоя и люминофора.
Для полученного устройства измеряют начальное напряжение включения и вольт-амперную характеристику в интервале 0-30 B.
Пример 1. Эмиссионный слой - TPD, дотированный Tb(pobz)3 (без термической обработки, образец сравнения)
4 мг феноксибензоата тербия (Tb(pobz)3) и 4 мг TPD растворяют в 0,2 мл смеси спирта и бензола (1:1 по объему). Тонкую пленку наносят на подложку методом spin-coating (накапывают на подложку при скорости вращения 4500 об/мин в течение 30 с). По данным атомно-силовой микроскопии полученный эмиссионный слой однороден, его шероховатость составила 4,2 нм, а толщина, измеренная по данным профилометрии, составила 100 нм.
Результаты измерений, приведенные в табл.1, показывают, что напряжение включения полученного устройства (Uon) составило 7 B, а ток при напряжении 10 B (I10 B) составил 0.05 мА/см2.
Таблица 1
Характеристики ОСИД
Пример Uon, B I10B, мА/см2 Люминофорсодержащее соединение Структура ОСИД
1 7 0.05 Tb(pobz)3 ITO/PEDOT:PSS/Tb(pobz)3:TPD/TAZ/Al
2 4 0.2 Tb(pobz)3 ITO/PEDOT:PSS/Tb(pobz)3:TPD/TAZ/Al
3 3 1.2 Tb(pobz)3(Hacim)2 ITO/PEDOT:PSS/Tb(pobz)3:TPD/TAZ/Al
4 5 0.8 Tb(pobz)3(Hacim)2 ITO/PEDOT:PSS/Tb(pobz)3:PVK/BCP/Al
5 4 5 Tb(pobz)3(MG)(H2O)2 ITO/PEDOT:PSS/Tb(pobz)3:TPD/TAZ/Al
6 6 2.5 Eu(naph)3(MG)2 ITO/PEDOT:PSS/Eu(naph)3:TPD/TAZ/Al
Пример 2. Эмиссионный слой - TPD, дотированный Tb(pobz)3
Эмиссионный слой получают по примеру 1, но после нанесения его на подложку проводят термическую обработку при температуре 100°C в течение 1 часа в вакууме (0,01 мм рт.ст.).
Полученный эмиссионный слой однороден, его шероховатость составила 4,4 нм, а толщина - 100 нм.
Напряжение включения полученного устройства составило 4 B, а ток при напряжении 10 B составил 0.2 мА/см2 (табл.1).
Пример 3. Эмиссионный слой - TPD, дотированный Tb(pobz)3 (получение из разнолигандного комплекса Tb(pobz)3(Hacim)2)
В качестве люминофорсодержащего соединения используют разнолигандный комплекс Tb(pobz)3(Hacim)2 (Hacim = ацетилацетонимин), который получают следующим образом.
Суспензию 0.798 г (1 ммоль) Tb(pobz)3 кипятят в растворе 0.198 г (2 ммоль) Hacim в смеси спирта и бензола (1:1 по объему) в колбе с обратным холодильником до полного растворения. Полученный раствор упаривают на роторном испарителе, и образовавшийся стеклообразный продукт кристаллизуют в вакууме при 60°C, получая ~0,9 г разнолигандного комплекса Tb(pobz)3(Hacim)2, состав которого устанавливают по совокупности данных элементного анализа, ПК и КР спектроскопии.
Готовят раствор, содержащий 5 мг Tb(pobz)3(Hacim)2 и 4 мг TPD в 0.2 мл растворителя (этанол:бензол = 1:1).
Тонкую пленку из полученного раствора наносят на подложку и подвергают термической обработке по примеру 2.
Полученную пленку характеризуют методами ПК и КР спектроскопии, люминесцентной спектроскопии, атомно-силовой микроскопии, сканирующей электронной микроскопии.
Показано, что состав пленки соответствует TPD, допированному Tb(pobz)3, а нейтральный лиганд Hacim полностью удален из пленки.
Толщина пленки составляет ~100 нм; пленка обладает высокой однородностью и низкой шероховатостью (~4 нм).
Напряжение включения полученного устройства составило 3 B, а ток при напряжении 10 B составил 0.7 мА/см2 (табл.1).
Пример 4. Эмиссионный слой - PVK, допированный Tb(pobz)3 (получение из разнолигандного комплекса Tb(pobz)3(Hacim)2)
Получение эмиссионного слоя и его термическую обработку осуществляют по примеру 3, но в качестве проводящего материала используют PVK.
Состав пленки соответствует PVK, допированному Tb(pobz)3, нейтральный лиганд Hacim полностью удален из пленки.
Толщина пленки составляет ~100 нм; пленка обладает высокой однородностью и низкой шероховатостью (~4 нм).
Напряжение включения полученного устройства составило 5 B, а ток при напряжении 10 B составил 0.8 мА/см2 (табл.1).
Пример 5. Эмиссионный слой - TPD, допированный Tb(pobz)3 (получение из разнолигандного комплекса Tb(pobz)3(MG)(H2O)2)
Суспензию 0.798 г (1 ммоль) Tb(pobz)3 кипятят в 30 мл моноглима (MG, выступает как лиганд и как растворитель) в колбе с обратным холодильником до полного растворения. Полученный раствор упаривают на роторном испарителе. Образовавшийся стеклообразный продукт кристаллизуют в вакууме при 60°C, получая ~0.8 г разнолигандного комплекса Tb(pobz)3(MG)(H2O)2.
Готовят раствор, содержащий 5 мг Tb(pobz)3(MG)(H2O)2 и 4 мг TPD в 0,2 мл растворителя (этанол:бензол = 1:1).
Тонкую пленку наносят на подложку методом spin-coating (накапывают на подложку при скорости вращения 4500 об/мин в течение 30 с). Термическую обработку проводят при температуре 150°C в течение 3 часов в вакууме (0,01 мм рт.ст.).
Толщина пленки составляет ~100 нм; пленка обладает высокой однородностью и низкой шероховатостью (~4 нм).
Напряжение включения полученного устройства составило 4 B, а ток при напряжении 10 B составил 5 мА/см2 (табл.1).
Пример 6. Эмиссионный слой - TPD, допированный Eu(naph)3 (получение из разнолигандного комплекса Eu(naph)3(MG)2)
Суспензию 0.569 г (1 ммоль) нафтоноата европия (Eu(naph)3) кипятят в растворе 1.736 г (19.3 ммоль) моноглима в 20 мл смеси этанол-бензол (1:1 по обьему) в колбе с обратным холодильником в течение 3 часов. Раствор, полученный после отделения фильтрованием нерастворившегося осадка (~5 вес.% от исходной массы), медленно испаряют на воздухе. Образовавшийся мелкокристаллический белый продукт высушивают на воздухе, получая ~0.6 г разнолигандного комплекса Eu(naph)3(MG)2.
Готовят раствор, содержащий 5 мг Eu(naph)3(MG)2 и 4 мг TPD в 0,2 мл растворителя (этанол:бензол = 1:1).
Тонкую пленку наносят на подложку и подвергают термической обработке по примеру 5.
Напряжение включения полученного устройства составило 6 B, а ток при напряжении 10 B составил 2,5 мА/см2 (табл.1).
Таким образом, показано, что получение эмиссионного слоя заявленным способом возможно с использованием различных проводящих материалов и люминофорсодержащих соединений, при этом термическая обработка приводит к увеличению проводимости эмиссионного слоя, что влечет увеличение яркости электролюминесценции и повышение энергоэффективности готового устройства ОСИД.
Кроме того, предложенный способ позволяет получить эмиссионный слой, содержащий в качестве люминофора нерастворимые химические соединения.
Источники информации
1. C.W. Tang. S.A. Vanslyke, Appl. Phys. Lett. 51 (1987) 913.
2. J.H. Burroughes, D.D.C. Bradley, A.R. Brown et al., Nature 347 (1990) 539-541.
3. M.H. Бочкарев, А.Г. Витухновский, M.A. Каткова. Органические светоизлучающие диоды (OLED). Нижний Новгород: Деком, 2011.
4. Уточникова В.В., Калякина А.С., Кузьмина Н.П., патент РФ №2469124.
5. C.W. Tang, S.A. VanSlyke, С.Н. Chen, J. Appl. Phys. 65 (1989) 3610.
6. J.W. Levell, J.P. Gunning, P.L. Burn et al., Org. Electr., 11 (2010) 1561.
7. R. Bauer. Organic Electronics, v 9, I 5, (2008) 641-648.

Claims (6)

1. Способ нанесения эмиссионного слоя органического светоизлучающего диода на подложку из стекла или полимера, покрытую слоем анода, включающий получение раствора, содержащего люминофорсодержащее соединение и проводящий материал, и нанесение тонкой пленки из полученного раствора на упомянутую подложку, отличающийся тем, что упомянутую пленку подвергают термической обработке при температуре выше 100°C и ниже температуры стабильности эмиссионного слоя, при этом в качестве люминофорсодержащего соединения используют растворимое разнолигандное координационное соединение, которое при термической обработке разлагается на люминофор и нейтральный лиганд, полностью удаляемый из тонкой пленки, при этом термическую обработку упомянутой пленки проводят при температуре выше температуры удаления лиганда.
2. Способ по п. 1, отличающийся тем, что используют растворимое разнолигандное координационное соединение, в виде комплекса феноксибензоата тербия с ацетилацетонимином или комплекса феноксибензоата тербия с моноглимом, или комплекса нафтоноата европия с моноглимом.
3. Способ по п. 1, отличающийся тем, что на слой анода дополнительно наносят слой дыркопроводящего и/или электронблокирующего материала.
4. Способ получения органического светоизлучающего диода, включающий нанесение на подложку из стекла или полимера слоя анода, эмиссионного слоя и слоя катода, отличающийся тем, что эмиссионный слой наносят способом по п. 1.
5. Способ по п. 4, отличающийся тем, что на упомянутом слое анода размещают дыркопроводящий и/или электронблокирующий слой, а поверх эмиссионного слоя наносят электронпроводящий и/или дыркоблокирующий слой.
6. Способ по п. 4, отличающийся тем, что в качестве дыркоблокирующего слоя используют 2,9-диметил-4,7-дифенил-1,10-фенантролин или 3-(4-бифенил)-4-фенил-5-трет-бутил-фенил-1,2,4-триазол.
RU2013139931/02A 2013-08-28 2013-08-28 Способ нанесения эмиссионного слоя RU2547383C2 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2013139931/02A RU2547383C2 (ru) 2013-08-28 2013-08-28 Способ нанесения эмиссионного слоя
PCT/RU2014/000435 WO2015030627A1 (en) 2013-08-28 2014-06-17 Emission layers for organic light emitting diodes and methods for their preparation
EP14762115.5A EP3039730A1 (en) 2013-08-28 2014-06-17 Emission layers for organic light emitting diodes and methods for their preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013139931/02A RU2547383C2 (ru) 2013-08-28 2013-08-28 Способ нанесения эмиссионного слоя

Publications (2)

Publication Number Publication Date
RU2013139931A RU2013139931A (ru) 2015-03-10
RU2547383C2 true RU2547383C2 (ru) 2015-04-10

Family

ID=51535498

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013139931/02A RU2547383C2 (ru) 2013-08-28 2013-08-28 Способ нанесения эмиссионного слоя

Country Status (3)

Country Link
EP (1) EP3039730A1 (ru)
RU (1) RU2547383C2 (ru)
WO (1) WO2015030627A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2657497C1 (ru) * 2017-05-12 2018-06-14 Сиа Эволед Способ получения эмиссионного слоя на основе соединений редкоземельных элементов и органический светоизлучающий диод

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107022096B (zh) * 2017-06-01 2020-03-27 厦门大学 具有近紫外激发功能高光透过性复合醋酸纤维素膜的制备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2144236C1 (ru) * 1997-12-31 2000-01-10 ООО "Научно-производственное предприятие "Кристаллы и Технологии" Катодолюминесцентный экран
US20080111123A1 (en) * 2004-10-08 2008-05-15 The Regents Of The University Of California High Efficiency Light-Emitting Diodes
US20110163327A1 (en) * 2008-04-28 2011-07-07 Dai Nippon Printing Co., Ltd. Device comprising positive hole injection transport layer, method for producing the same and ink for forming positive hole injection transport layer
JP4754798B2 (ja) * 2004-09-30 2011-08-24 株式会社半導体エネルギー研究所 表示装置の作製方法
RU2475887C1 (ru) * 2011-08-01 2013-02-20 Закрытое Акционерное Общество "Научно-Производственная Коммерческая Фирма "Элтан Лтд" Светодиодный источник белого света с удаленным отражательным многослойным фотолюминесцентным конвертером

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053121A1 (de) * 2008-10-24 2010-04-29 Merck Patent Gmbh Doppelkomplex-Salze als Emitter in OLED-Vorrichtungen
RU2469124C1 (ru) 2011-05-23 2012-12-10 Государственное учебно-научное учреждение Факультет наук о материалах Московского государственного университета им. М.В. Ломоносова (ФНМ МГУ) Способ получения тонких пленок химических соединений
TWI527207B (zh) * 2011-10-21 2016-03-21 友達光電股份有限公司 可撓式有機發光裝置及其製作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2144236C1 (ru) * 1997-12-31 2000-01-10 ООО "Научно-производственное предприятие "Кристаллы и Технологии" Катодолюминесцентный экран
JP4754798B2 (ja) * 2004-09-30 2011-08-24 株式会社半導体エネルギー研究所 表示装置の作製方法
US20080111123A1 (en) * 2004-10-08 2008-05-15 The Regents Of The University Of California High Efficiency Light-Emitting Diodes
US20110163327A1 (en) * 2008-04-28 2011-07-07 Dai Nippon Printing Co., Ltd. Device comprising positive hole injection transport layer, method for producing the same and ink for forming positive hole injection transport layer
RU2475887C1 (ru) * 2011-08-01 2013-02-20 Закрытое Акционерное Общество "Научно-Производственная Коммерческая Фирма "Элтан Лтд" Светодиодный источник белого света с удаленным отражательным многослойным фотолюминесцентным конвертером

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2657497C1 (ru) * 2017-05-12 2018-06-14 Сиа Эволед Способ получения эмиссионного слоя на основе соединений редкоземельных элементов и органический светоизлучающий диод

Also Published As

Publication number Publication date
RU2013139931A (ru) 2015-03-10
WO2015030627A1 (en) 2015-03-05
EP3039730A1 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
Zhou et al. Multifunctional metallophosphors with anti-triplet–triplet annihilation properties for solution-processable electroluminescent devices
Wong et al. Functional metallophosphors for effective charge carrier injection/transport: new robust OLED materials with emerging applications
Gong et al. Electrophosphorescence from a polymer guest–host system with an Iridium complex as guest: Förster energy transfer and charge trapping
Ding et al. Highly efficient green‐emitting phosphorescent iridium dendrimers based on carbazole dendrons
TWI764881B (zh) 有機電子材料、有機電子元件及有機電致發光元件
US8206838B2 (en) Polymer matrix electroluminescent materials and devices
JP4220767B2 (ja) 有機化合物、有機el素子およびディスプレイ
KR102042468B1 (ko) 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
Tong et al. Nearly 100% internal phosphorescence efficiency in a polymer light-emitting diode using a new iridium complex phosphor
JP6268088B2 (ja) 発光ポリマーおよびデバイス
Wang et al. Solution‐Processible 2, 2′‐Dimethyl‐biphenyl Cored Carbazole Dendrimers as Universal Hosts for Efficient Blue, Green, and Red Phosphorescent OLEDs
WO2015122464A1 (ja) ポリマー又はオリゴマー、正孔輸送材料組成物、及び、これらを用いた有機エレクトロニクス素子
JP5610382B2 (ja) 発光素子
CN114375506A (zh) 有机薄膜和有机薄膜的制造方法、有机电致发光元件、显示装置、照明装置、有机薄膜太阳能电池、光电转换元件、薄膜晶体管、涂料组合物、有机电致发光元件用材料
JP6354157B2 (ja) 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、表示装置及び照明装置
KR20180005203A (ko) 발광 화합물
KR20160076461A (ko) 유기 전계 발광 소자
RU2547383C2 (ru) Способ нанесения эмиссионного слоя
Chen et al. An alcohol-soluble and ion-free electron transporting material functionalized with phosphonate groups for solution-processed multilayer PLEDs
EP1484380A1 (en) Polymeric phosphors, process for production thereof, phosphorescent compositions and articles made by using the same
JP5649029B2 (ja) 発光性組成物、有機電界発光素子、及びベンゾジフラン誘導体
Wu et al. Highly efficient solution-processed white organic light-emitting diodes based on a co-host system by controlling energy transfer among different emitters
Fan et al. Polymer light-emitting devices based on europium (III) complex with 11-bromo-dipyrido [3, 2-a: 2′, 3′-c] phenazine
US20220048937A1 (en) Composition and organic light-emitting device
RU2626824C2 (ru) 9-антраценаты лантанидов, проявляющие люминесцентные свойства, и органические светодиоды на их основе

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200829