RU2541916C1 - Способ уменьшения погрешности оценки полезной составляющей в условиях априорной неопределенности и устройство, его реализующее - Google Patents

Способ уменьшения погрешности оценки полезной составляющей в условиях априорной неопределенности и устройство, его реализующее Download PDF

Info

Publication number
RU2541916C1
RU2541916C1 RU2013136679/08A RU2013136679A RU2541916C1 RU 2541916 C1 RU2541916 C1 RU 2541916C1 RU 2013136679/08 A RU2013136679/08 A RU 2013136679/08A RU 2013136679 A RU2013136679 A RU 2013136679A RU 2541916 C1 RU2541916 C1 RU 2541916C1
Authority
RU
Russia
Prior art keywords
signal
initial
estimates
implementation
evaluation
Prior art date
Application number
RU2013136679/08A
Other languages
English (en)
Other versions
RU2013136679A (ru
Inventor
Владимир Иванович Марчук
Александр Иванович Шерстобитов
Вячеслав Владимирович Воронин
Сергей Андреевич Гридин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС")
Priority to RU2013136679/08A priority Critical patent/RU2541916C1/ru
Publication of RU2013136679A publication Critical patent/RU2013136679A/ru
Application granted granted Critical
Publication of RU2541916C1 publication Critical patent/RU2541916C1/ru

Links

Images

Landscapes

  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Изобретение относится к информационно-измерительным устройствам и может быть использовано в вычислительной технике, в системах управления и обработки сигналов. Техническим результатом является уменьшение погрешности оценки составляющей в условиях априорной неопределенности. Способ заключается в том, что исходная реализация нестационарного случайного сигнала разбивается на интервалы случайной длины и аппроксимируется на каждом из них полиномом произвольной степени, тем самым формируется оценка сигнала при заданном разбиении, многократное формирование разбиений исходной реализации нестационарного сигнала на интервалы случайной длины позволяет получить множество оценок в каждом его сечении, усредняя которые, формируется результирующая оценка, и для формирования результирующей оценки полезного сигнала в каждом сечении исходного нестационарного случайного сигнала находится модальное значение относительно множества полученных оценок, что позволяет уменьшить погрешность выделения функции измеряемого сигнала. 2 н.п. ф-лы, 5 ил.

Description

Предлагаемое изобретение относится к информационно-измерительным устройствам и может быть использовано в вычислительной технике, в системах управления и обработки сигналов.
Предлагаемое устройство исходит из наличия единственной дискретной реализации исследуемого процесса Y1, Y2, …, YN, где Yk=Y(tk), k = 1 , N ¯
Figure 00000001
.
Упрощенная математическая модель результатов измерений представляется в виде:
Y k = S k + u k , k = 1 , N ¯ ( 1 )
Figure 00000002
где Sk - полезная составляющая; uk - аддитивная шумовая составляющая.
Относительно случайной составляющей будем предполагать также, что Muk=0, Duk2 и, кроме того, ее значения в разные моменты времени некоррелированы (т.е. cov (uk, us)=0, k≠s), хотя эти условия не являются существенными.
Основная решаемая задача - выделение полезной составляющей в условиях недостаточной априорной информации о статистических характеристиках аддитивного шума и функции полезной составляющей.
Подобная задача может возникнуть: 1) в работе приемо-передающих устройств дальней или космической связи; 2) в радиотехнике при обработке сигналов; 3) в системах цифровой обработки изображений; 4) в метеорологии и экономике при обработке результатов измерений. В тех случаях, когда полезная составляющая Sk, k = 1 , N ¯
Figure 00000003
принадлежит к известному классу функций и определяется конечным числом параметров, используются параметрические методы оценивания (сюда входят методы регрессионного анализа, основу которых составляет классическая теория наименьших квадратов). В тех же случаях, когда отсутствует информация о функции полезной составляющей, для оценивания полезной составляющей используются непараметрические методы, такие как сглаживание.
Для практической реализации существующих параметрических и непараметрических методов обработки необходимо использовать высокопроизводительные цифровые устройства (цифровые сигнальные процессоры, программируемые логические матрицы) или гибридные процессорные схемы. В простейшем случае с помощью цифровых устройств реализуют цифровые фильтры с априорно заданными характеристиками, так как их построение является менее ресурсоемким и более простым, чем реализация алгоритма адаптивной цифровой фильтрацией, аппроксимации или интерполяции.
Известен способ скользящего среднего [Андерсон Т. Статистический анализ временных рядов. - М.: Мир, 1976. - 765 с.]. Это один из самых простых методов сглаживания результатов измерений. Для его использования достаточно одной реализации Y1, Y2, …, YN исходного процесса.
Для исходной дискретной реализации результатов измерений определяется интервал сглаживания m, т.е. натуральное число m<N. Способ скользящего среднего предполагает запоминание исходной дискретной реализации результатов измерений Yk, k = 1 , N ¯
Figure 00000003
, определение длины m отрезка ряда Yk, k = 1 , N ¯
Figure 00000003
(или ширины «скользящего окна»), для которого производится вычисление среднего арифметического, Y ¯ i = i = 1 m Y i 1 m
Figure 00000004
значений Y1, Y2, …, Ym, замену центрального из значений Y1, Y2, …, Ym найденным средним Y ¯ k
Figure 00000005
, сдвиг «скользящего окна» на одно значение вправо (т.е. выбор вместо отрезка Yk, Yk+1, …, Yk+m-1, другого отрезка Yk+1, Yk+2, …, Yk+m), вычисление среднего арифметического выбранных значений реализации, и так до тех пор, пока не будет достигнут правый конец исходной дискретной реализации результатов измерений.
Ширину "окна" выбирают нечетной, т.к. сглаженное значение рассчитывается для центрального значения. Выражение для вычисления сглаженных значений исходной дискретной реализации результатов измерений записывается в виде:
S ¯ j = 1 m k = j p j + p Y k , j p
Figure 00000006
,
где р=(m-1)/2 (m - нечетное число).
Нередко сглаживание на основе скользящего среднего преобразует реализацию результатов измерений, так что мелкие, но важные для анализа детали полезной составляющей (волны, изгибы и т.д.) не выделяются.
Известен способ взвешенного скользящего среднего [Экономико-математические методы и прикладные модели: Учебное пособие для вузов. / Под ред. В.В. Федосова. - М.: ЮНИТИ, 1999. - 399 с.], который отличается от способа простого скользящего сглаживания тем, что значения исходной дискретной реализации результатов измерения, входящие в интервал сглаживания, суммируются с различными весами. Для вычисления оценки S ¯ j
Figure 00000007
используется выражение:
S ¯ j = k = j p j + p p k Y k k = j p j + p p k
Figure 00000008
,
где вес pk определяется с помощью метода наименьших квадратов.
Для взвешенного скользящего среднего недостатком является отсутствие возможности сглаживать значения исходной дискретной реализации результатов измерения на концах реализации. Кроме того, применение этого способа без отрицательных весов вызывает автокорреляцию остатков, т.е. имеет место эффект Слуцкого-Юла.
Способ экспоненциального сглаживания предполагает запоминание входной реализации y1, y2, …, yn случайного процесса, выбор параметра сглаживания α, характеризующего «вес» текущего (самого нового) наблюдения (0<α<1), выбор величины Q0, характеризующей начальные условия, вычисление сглаженных значений временного ряда по рекуррентным формулам
Q k = α y k + ( 1 α ) Q k 1 = α j = 0 k j ( 1 α ) j y k j + ( 1 α ) k Q 0
Figure 00000009
,
(где k=1, 2, …, n) замену исходных значений y1, y2, …, yn временного ряда сглаженными значениями Q1, Q2, …, Qn.
Сначала при применении экспоненциального сглаживания для временного ряда определяется начальное значение Q0 сглаженного ряда и параметр сглаживания α. В зависимости от выбора параметра α (в частности, если α близко к нулю) начальное значение Q0 сглаженного ряда может оказать существенное воздействие на результат обработки временного ряда. В практических рекомендациях по применению экспоненциального сглаживания ([3], с.156) предлагается брать в качестве начального значения Q0 либо первое значение ряда, либо среднее арифметическое нескольких первых членов ряда, например, Q0=(y1+y2+y3)/3. С другой стороны, влияние выбора уменьшается с увеличением длины ряда и становится несущественным при большом числе измерений (наблюдений). После выбора Q0 и α вычисляются сглаженные значения временного ряда, которыми заменяются исходные значения:
Q 1 = α y 1 + ( 1 α ) Q 0 , Q 2 = α y 2 + ( 1 α ) Q 1 = α y 2 + α ( 1 α ) y 1 + ( 1 α ) 2 Q 0 , Q n = α j = 0 n j ( 1 α ) j y n j + ( 1 α ) n Q 0
Figure 00000010
.
Признаки способа-аналога, совпадающие с признаками заявляемого технического решения, следующие: дискретизация сигнала по времени, запоминание цифрового сигнала, представление значений сглаженного ряда в виде многочлена от значений исходного ряда, замена исходного временного ряда сглаженным.
Недостатками известного способа являются:
- неопределенность выбора параметра сглаживания α; в отдельных случаях предлагается (необоснованно) определять величину α, исходя из длины сглаживаемого ряда: α=2/(n+1) ([3], с.156); на практике параметр сглаживания часто отыскивают с помощью «сетки», т.е. возможные значения параметра разбиваются «сеткой» с определенным шагом; например, рассматривается сетка значений от α=0,1 до α=0,9 с шагом 0,1, а затем выбирается α, для которого сумма квадратов остатков является минимальной;
- неопределенность выбора начального значения Q0, что часто приводит к необходимости многократного повторного применения способа экспоненциального сглаживания при другом выборе α и Q0.
Причины, препятствующие достижению требуемого технического результата, заключаются в следующем: способ экспоненциального сглаживания является адаптивным способом фильтрации временных рядов (сигналов), но не является «самонастраивающимся» способом, поскольку выбор параметров α и Q0 осуществляется субъективно и зависит от опыта и практических навыков исследователя.
Наиболее близким к изобретению является способ выделения полезного сигнала путем размножения оценок его единственной исходной реализации (РАЗОЦ) и устройство для его осуществления (патент №2207622, МПК7 G06F 17/18).
Рассматриваемое устройство-прототип предполагает: 1) запоминание входной реализации Y1, Y2, …, Yn; 2) разбиение входной реализации на подинтервалы случайными числами, имеющими равномерный закон распределения; 3) проверка условия, что подинтервалы включают не менее L значений исходной реализации, если условие не выполняется, то заново генерируются случайные числа разбиения; 4) нахождение на каждом подинтервале входной реализации оценок коэффициентов аппроксимирующего полинома a+bk+ck2 с помощью метода наименьших квадратов; 5) повторение процедур, описанных в пунктах 2-4, К раз; 6) нахождение сглаживающей функции как среднего арифметического "кусочно-квадратичных" аппроксимирующих функций в каждый момент времени.
Недостатками известного устройства-прототипа являются:
- невозможность реализации известного способа РАЗОЦ в реальном масштабе времени;
- отсутствие практических рекомендаций по выбору количества интервалов разбиения и количества размножений оценок;
- большие вычислительные затраты.
Причины, препятствующие достижению требуемого технического результата, заключаются в следующем:
- для использования способа размножения необходимо запоминать всю входную реализацию.
Устройство для выделения тренда методом размножения оценок его единственной исходной реализации (РАЗОЦ) содержит блок хранения результатов измерений, коммутаторы, генератор случайных чисел, блок устранения связанных значений, блок ранжирования, регистр хранения выборки случайных чисел, блоки аппроксимации, регистры хранения оценок, арифметическое суммирующее устройство, блок хранения оценки полезной составляющей, генератор тактовых импульсов.
Предлагаемый способ состоит в следующем, согласно способу выделения полезной составляющей сигнала РАЗОЦ исходную реализацию необходимо разбить на n интервалов, в каждом из которых содержится m отсчетов различной длины, и они должны быть не меньше заданного минимального порога. Далее по методу наименьших квадратов (МНК) на каждом участке проводится аппроксимация полиномом низкой степени (первой или второй). После чего получаем сглаженную оценку полезной составляющей сигнала как среднее арифметическое аппроксимирующей функции. Усреднение проводится на основании работы авторов [Марчук В.И., Воронин В.В., Шерстобитов А.И. Оценка погрешности выделения полезного сигнала при обработке в условиях ограниченного объема априорной информации. Радиотехника. 2011. №9. С.75-82], в которой был проведен аналитический анализ погрешности аппроксимации в каждом из сечений и показано, что они имеют гауссовский закон распределения. Анализ показал, что с увеличением числа оценок размножения закон распределения погрешностей аппроксимации стремится к гауссовскому закону распределения. Однако это справедливо только для случая, когда погрешности аппроксимации в каждом сечении являются независимыми, так как на практике это условие не выполняется, были проведены исследования на основе имитационного моделирования. В качестве исходного сигнала была выбрана парабола (фиг 1). Далее проведена обработка РАЗОЦ, аппроксимировался сигнал полиномом первой степени. Получилось, что на концах оценка полезной составляющей имеет большую ошибку, чем в центре (фиг 2). Имея полученный результат, было проведено моделирование поверхности, которая отображает оценки плотности распределения погрешности аппроксимации в каждом из сечений исходной выборки результатов измерений (фиг 3). Анализ полученной модели показывает, что при малых и наоборот очень больших количествах оценок закон распределения погрешности аппроксимации значительно отличается от гауссового (фиг 4). Исходя из этого, суть предлагаемого метода заключается в следующем: после получения оценок полезной составляющей необходимо находить не среднее арифметическое, а в каждом сечении исходного нестационарного случайного сигнала находить модальное значение относительно множества полученных оценок, что позволяет уменьшить погрешность выделения функции измеряемого сигнала в среднем на 20%.
Сущность предлагаемого способа и устройства поясняется чертежом (фиг 5).
Устройство для уменьшения погрешности оценки полезной составляющей в условиях априорной неопределенности содержит буферный блок 1, вход которого является информационным входом устройства, а выход подключен к входам блоков хранения результатов измерений 2.n, к управляющим входам которых подключены выходы коммутаторов К, к входом которых подключен выход блока разбиения 3, выходы блоков 2.n подключены к входам блоков аппроксимации 4.n, выходы которых подключены ко входам блоков 5.n хранения оценок исходной реализации, выходы которых подключены к входу блока оценки модальных значений 6.n, выход которого подключены входу блока хранение результирующей оценки полезного сигнала 7, выход которого является выходом устройства. Синхронность работы устройства обеспечивает генератор тактовых импульсов 8.
Устройство для уменьшения погрешности оценки полезной составляющей в условиях априорной неопределенности работает следующим образом. Исходная реализация результатов измерений в каждом из n каналов обработки исходной информации разбивается на m независимых интервалов случайной длины, которые подчиняются равномерному закону. На каждом из m интервалов производится аппроксимация исходной реализации в пределах данного интервала полиномом произвольной степени, коэффициенты которого определяются методом наименьших квадратов. Таким образом, определяются n оценок исходной реализации в каждом из каналов. Результирующая оценка сигнала формируется на основе множеств оценок, полученных для каждого сечения исходного сигнала. Для каждого сечения сигнала, множество полученных оценок рассматривается как совокупность случайных независимых величин, в общем случае, имеющие различную плотность распределения вероятности (фиг.3). Результирующая оценка полезного сигнала формируется путем расчета модальных значений среди оценок в каждом сечении сигнала (фиг.4). и поступает на выход устройства.
Такой способ для уменьшения погрешности оценки полезной составляющей в условиях априорной неопределенности работает следующим образом. В буферный блок записывается исходная реализация (фиг 1), после чего реализация разбивается на интервалы случайной длины и аппроксимируется на каждом из них полиномом произвольной степени, тем самым формируется оценка сигнала при заданном разбиении. Многократным формированием разбиений получаем множество оценок исходной реализации, после чего находим модальное значение среди полученных оценок полезного сигнала, так как закон распределения погрешности аппроксимации значительно отличается от гауссового (фиг 4) Получаем результирующую оценку полезной составляющей входного сигнала, который попадает на вход блока 7, который обеспечивает хранение выделенного полезного сигнала, выход которого является выходом устройства. Синхронность работы устройства обеспечивает генератор тактовых импульсов 8.
Технический результат - уменьшение погрешности оценки функции полезного сигнала при ограниченном объеме априорной информации о статистических характеристиках аддитивного шума и функции полезного сигнала, которая достигается вычислением модальное значение среди полученных оценок полезного сигнала в каждый момент времени.
Технические особенности применения предлагаемого способа заключаются в том, что после размножения оценок на некоторых интервалах результаты не усредняются, а находится мода, такой подход способствует уменьшению погрешности оценки полезного сигнала в условиях априорной неопределенности.
Предлагаемый способ обладает следующими преимуществами:
- Применение предложенного способа уменьшает погрешности оценки полезного сигнала в условиях априорной неопределенности.
- Применение предложенного способа не требует внесения значительных изменений при выделении тренда методом размножения оценок полезной составляющей, но приведет к уменьшению погрешности оценки тренда.

Claims (2)

1. Способ уменьшения погрешности оценки полезной составляющей в условиях априорной неопределенности заключается в том, что исходная реализация нестационарного случайного сигнала разбивается на интервалы случайной длины и аппроксимируется на каждом из них полиномом произвольной степени, тем самым формируется оценка сигнала при заданном разбиении, многократное формирование разбиений исходной реализации нестационарного сигнала на интервалы случайной длины позволяет получить множество оценок в каждом его сечении, усредняя которые, формируется результирующая оценка, отличающийся тем, что для формирования результирующей оценки полезного сигнала в каждом сечении исходного нестационарного случайного сигнала находится модальное значение относительно множества полученных оценок, что позволяет уменьшить погрешность выделения функции измеряемого сигнала в среднем на 20%.
2. Устройство уменьшения погрешности оценки полезной составляющей в условиях априорной неопределенности содержит буферный блок, вход которого является информационным входом устройства, а выход подсоединен к входам блоков хранения результатов измерений, к управляющим входам которых подключены выходы блоков коммутации K, к входам которых подключен выход блока разбиения, выходы блоков хранения результатов измерений подключены к входам блоков аппроксимации, выходы которых подсоединены к входу блока хранения оценок исходной реализации, блок хранения результирующей оценки полезного сигнала, чей выход является информационным выходом устройства, отличающееся тем, что выход блока хранения оценок исходной реализации подключен к входу блока оценки модальных значений, выход которого подключен к входу блока результирующей оценки полезного сигнала.
RU2013136679/08A 2013-08-05 2013-08-05 Способ уменьшения погрешности оценки полезной составляющей в условиях априорной неопределенности и устройство, его реализующее RU2541916C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013136679/08A RU2541916C1 (ru) 2013-08-05 2013-08-05 Способ уменьшения погрешности оценки полезной составляющей в условиях априорной неопределенности и устройство, его реализующее

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013136679/08A RU2541916C1 (ru) 2013-08-05 2013-08-05 Способ уменьшения погрешности оценки полезной составляющей в условиях априорной неопределенности и устройство, его реализующее

Publications (2)

Publication Number Publication Date
RU2013136679A RU2013136679A (ru) 2015-02-10
RU2541916C1 true RU2541916C1 (ru) 2015-02-20

Family

ID=53281786

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013136679/08A RU2541916C1 (ru) 2013-08-05 2013-08-05 Способ уменьшения погрешности оценки полезной составляющей в условиях априорной неопределенности и устройство, его реализующее

Country Status (1)

Country Link
RU (1) RU2541916C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534041A (en) * 1982-02-12 1985-08-06 Northern Telecom Limited Digital circuit for determining the envelope frequency of PCM encoded call progress tones in a telephone system
RU2207622C2 (ru) * 2000-10-30 2003-06-27 Южно-Российский государственный университет экономики и сервиса Способ выделения тренда путем размножения оценок его единственной исходной реализации (разоц) и устройство для его осуществления
RU2374682C2 (ru) * 2008-02-06 2009-11-27 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") Способ прогнозирования результатов измерений и устройство его реализующее
RU2393535C1 (ru) * 2008-12-25 2010-06-27 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") Устройство для обработки сигналов на основе двухкритериального способа

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534041A (en) * 1982-02-12 1985-08-06 Northern Telecom Limited Digital circuit for determining the envelope frequency of PCM encoded call progress tones in a telephone system
RU2207622C2 (ru) * 2000-10-30 2003-06-27 Южно-Российский государственный университет экономики и сервиса Способ выделения тренда путем размножения оценок его единственной исходной реализации (разоц) и устройство для его осуществления
RU2374682C2 (ru) * 2008-02-06 2009-11-27 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") Способ прогнозирования результатов измерений и устройство его реализующее
RU2393535C1 (ru) * 2008-12-25 2010-06-27 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") Устройство для обработки сигналов на основе двухкритериального способа

Also Published As

Publication number Publication date
RU2013136679A (ru) 2015-02-10

Similar Documents

Publication Publication Date Title
Tahir et al. A new Weibull-G family of distributions
RU2374682C2 (ru) Способ прогнозирования результатов измерений и устройство его реализующее
Abusedra et al. Prediction diagrams for deterministic sea wave prediction and the introduction of the data extension prediction method
Janon et al. Uncertainties assessment in global sensitivity indices estimation from metamodels
Xiao et al. Wavelet shrinkage estimation for non-homogeneous Poisson process based software reliability models
KR20170056687A (ko) 시퀀스 재귀 필터링 3차원 변분(3d-var) 기반의 실측 해양 환경 데이터 동화방법
CN111222088B (zh) 一种改进的平顶自卷积窗加权电力谐波幅值估计方法
Broersen Autoregressive model orders for Durbin's MA and ARMA estimators
Degtyarev et al. Synoptic and short-term modeling of ocean waves
Yuan et al. A spectral method for accurate evaluation of fatigue damage induced by wide-band non-Gaussian random processes
RU2541916C1 (ru) Способ уменьшения погрешности оценки полезной составляющей в условиях априорной неопределенности и устройство, его реализующее
RU2517322C1 (ru) Адаптивное цифровое прогнозирующее и дифференцирующее устройство
RU2541919C1 (ru) Способ повышения точности аппроксимации при выделении полезного сигнала в условиях априорной неопределенности и устройство, его реализующее
CN114564487B (zh) 预报预测相结合的气象栅格数据更新方法
RU2207622C2 (ru) Способ выделения тренда путем размножения оценок его единственной исходной реализации (разоц) и устройство для его осуществления
RU2393535C1 (ru) Устройство для обработки сигналов на основе двухкритериального способа
Nieto et al. Testing linearity against a univariate TAR specification in time series with missing data
RU2321053C1 (ru) Последовательно-параллельное устройство обработки сигналов
Huang et al. Time-varying ARMA stable process estimation using sequential Monte Carlo
RU2362208C2 (ru) Параллельное устройство обработки сигналов
RU2467383C2 (ru) Способ и устройство прогнозирования нестационарного временного ряда
Dendievel et al. Approximations for time-dependent distributions in Markovian fluid models
RU2365980C1 (ru) Устройство выделения полезного сигнала на фоне шумов с минимизацией концевых эффектов способом кусочного размножения оценок
RU2257610C1 (ru) Способ выделения тренда методом скользящего размножения оценок тренда его единственной исходной реализации (&#34;крот&#34;) и устройство для его осуществления
RU2368002C2 (ru) Устройство для выделения полезного сигнала при одностороннем законе распределения аддитивной шумовой составляющей

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150806