RU2539766C2 - ШТАММ Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 - ПРОДУЦЕНТ ЛИПИДОСОДЕРЖАЩЕЙ БИОМАССЫ - Google Patents

ШТАММ Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 - ПРОДУЦЕНТ ЛИПИДОСОДЕРЖАЩЕЙ БИОМАССЫ Download PDF

Info

Publication number
RU2539766C2
RU2539766C2 RU2012133213/10A RU2012133213A RU2539766C2 RU 2539766 C2 RU2539766 C2 RU 2539766C2 RU 2012133213/10 A RU2012133213/10 A RU 2012133213/10A RU 2012133213 A RU2012133213 A RU 2012133213A RU 2539766 C2 RU2539766 C2 RU 2539766C2
Authority
RU
Russia
Prior art keywords
strain
rsemsu
platensis
biomass
lipid
Prior art date
Application number
RU2012133213/10A
Other languages
English (en)
Other versions
RU2012133213A (ru
Inventor
Надежда Ивановна Чернова
Тамара Павловна Коробкова
Софья Валентиновна Киселева
Сергей Иванович Зайцев
Николай Владимирович Радомский
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2012133213/10A priority Critical patent/RU2539766C2/ru
Publication of RU2012133213A publication Critical patent/RU2012133213A/ru
Application granted granted Critical
Publication of RU2539766C2 publication Critical patent/RU2539766C2/ru

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к биотехнологии. Штамм Arthrospira platensis (Nordst.) Geitl. rsemsu Т/05-117 обладает повышенным содержанием нейтральных липидов. Штамм хранится в коллекции НИЛ ВИЭ географического факультета МГУ имени М.В. Ломоносова. Изобретение позволяет повысить выход нейтральных липидов. 6 пр.

Description

Изобретение относится к микроводорослевой биотехнологии и представляет собой новый ранее не описанный, стабильный по морфологическим признакам штамм сине-зеленой микроводоросли/цианобактерии Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 (коллекция научно-исследовательской лаборатории возобновляемых источников энергии (НИЛ ВИЭ) географического факультета МГУ имени М.В.Ломоносова), который может быть использован для получения биомассы с повышенным содержанием липидов, имеющей значение для производства жидких биотоплив. Интерес к липидам микроводорослей в последние годы обусловлен их высоким потенциалом в качестве сырья для производства моторного топлива, а также для фармацевтической, химической и пищевой промышленности. Определяющим моментом использования водорослей для получения биотоплива является высокое содержание в них неполярных липидов, в основном триацилглицеридов (ТАГ), являющихся лучшим источником для получения биотоплива и возможность управлять их накоплением путем изменения условий культивирования. Общее содержание липидов в микроводорослях обычно варьирует от 1-85% сухого веса, причем выше 40% обычно получается в условиях дефицита биогенных питательных элементов [1]. Такие факторы как освещение и температура также оказывают влияние на липидное содержание и липидную композицию во многих водорослях [2].
Микроводоросли/цианобактерии Arthrospira/Spirulina platensis (Cyanophyceae) выращиваются в мире открытым способом в больших масштабах и их биомасса применяется как пищевая и кормовая добавка. Ценность биомассы различных штаммов A.platensis в указанных целях определяется высоким содержанием легко усвояемого белка, включающего все незаменимые аминокислоты, углеводов, общих липидов, в том числе полиненасыщенных жирных кислот (особенно большим количеством линолевой и γ-линоленовой кислот), широким спектром витаминов группы В, наличием β-каротина, фикоцианина, хлорофилла d и т.д. Преимуществами A.platensis является ее способность расти в открытых культиваторах без контаминации другими микроорганизмами вследствие высокой щелочности питательной среды для ее выращивания (рН>8) и дешевый способ сбора биомассы. Продуктивность биомассы артроспиры сравнима с таковой признанных микроводорослей-продуцентов липидов, поэтому проигрывая в количественном содержании липидов артроспира в целом по выходу липидов с учетом всех затрат на технологический цикл становится инвестиционно привлекательной наряду с другими микроводорослями [3, 4].
Задачей изобретения является получение Штамма Arthrospira platensis (Nordst.) Geitl. rsemsu Т/05-117, отличающегося от исходного штамма A. platensis rsemsu 1/02-Т/03-5 повышенным содержанием в биомассе липидов - не менее 30%.
Происхождение штамма.
Новый штамм A.platensis rsemsu Т/05-117 был выделен в процессе изучения естественной изменчивости известного штамма A.platensis rsemsu 1/02-1703-5 [5] путем рассева на твердой агаризованной среде Заррука [6]. Штамм A.platensis rsemsu Т/05-117 отличался повышенным содержанием липидов.
По морфологическим признакам полученный штамм A.platensis rsemsu Т/05-117 не отличался от исходного штамма A.platensis rsemsu 1/02-Т/03-5 и был стабилен при длительном культивировании и хранении в коллекции по морфологии трихома (три года наблюдений).
Морфологические признаки штамма.
При выращивании штамма A.platensis rsemsu Т/05-117 в конических колбах на жидкой питательной среде Заррука при температуре 26-28°С, освещенности 30 µЕ/(м2×с) и периодическом встряхивании культура представлена слабо спирализованными трихомами темно-зеленого цвета, гранулированными, без перетяжек или со слабо выраженными перетяжками у поперечных перегородок. Ширина клетки (трихома) - 8.0-10.5 мкм; длина клетки - 2.5-4.0 мкм; внутренний диаметр спирали - 7.0-8.7 мкм; внешний - 15.0-19.2 мкм; расстояние между витками спирали (высота спирали) - 36.0 -57.0 мкм. Длина трихома до 600 мкм, число оборотов спирали - 2.0-20.0, преимущественно 5-8 витков. На агаризованной среде Заррука (1.2% агар-агара) культура представлена как отдельными трихомами, так и в виде пучков.
Характерным признаком штамма A.platensis rsemsu Т/05-117, как и родительского штамма, является то, что геометрия спирали трихома не меняется при многочисленных пересевах при длительном культивировании в жидкой питательной среде и длительном хранении на жидких и агаризованных питательных средах в течение 3-х лет (время наблюдения), т.е. культура была стабильна по морфологическому признаку. Культура хранится в жидкой и на агаризованной среде Заррука в холодильнике со стеклянной дверью (шкаф-витрина ШВУ-0.4-1.3-ХХ «Атлант») при внутреннем (люминесцентная лампа TL-D 18W/33) и внешнем освещении (лампа OSRAM L-36 W/ 640) интенсивностью 5-10 цЕ/(м2хс), в постоянном световом режиме и температуре 9-10°С и подлежит пересеву не реже, чем через 5 месяцев. Размножение.
Вегетативное, делением клеток и последующей фрагментацией трихомов путем разрыва, в т.ч. в области некридиальных клеток. В оптимальных условиях относительная скорость роста равна 0.20 ч"1, что соответствует минимальному времени удвоения 5.0 час.
Физиологические свойства штамма.
Штамм A.platensis rsemsu Т/05-117 является автотрофом, источником углерода служат карбонаты и гидрокарбонаты натрия и калия, усваивает азот в нитратной (натрий азотнокислый и калий азотнокислый) и аммиачной (мочевина, аммиачная селитра) формах. Мезофил: оптимальная температура выращивания 26-32°С. Оптимум рН составляет 8.5-10,5. Подщелачивание питательной среды рН>11.0 тормозит рост и накопление биомассы.
Для культивирования используется среда Заррука [6] и ее модификации. Состав среды, обеспечивающий продуктивность штамма Т/05-117 на уровне 0.9 - 1.5 г/л сухой биомассы включает (в г/л):
- Na НСО3 - 8.0-32.0,
- KNO3-1.0-6.0,
- K2НРО·3Н2O - 0.5-2.0,
- K2SO4 - 0.5-2.0,
- MgSO4·7H2O - 0.1-0.4,
- NaCl - 0.5-2.0,
- СаСl2- 0.02 -0.04
- FeSO4·7H20 - 0.01-0.04,
- трилон Б - 0.04-0.16,
- микроэлементы (растворы А и Б по 1 мл/л среды).
Раствор А (г/л):
- Н3ВО3 - 2.86,
- MnCl2·4Н2O - 1.81,
- ZnSO4·7Н2О - 0.22,
- CuSO4·5Н2О - 0 08,
- МоO3 - 0.015.
Раствор Б (г/л):
- K2Cr2(SO4)4·24 Н2O - 0.096,
- NH4VO3 - 0.023,
- NiSO4·7H2O - 0.048,
- Na2WO4·2H2O - 0.018,
- Ti2(SO4)3 - 0.04,
- Co(NO3)2·6H2O - 0.044.
Известно, что накопление нейтральных липидов, в частности триацилглицеридов (ТАГ), клетками микроводорослей является двухстадийным процессом. При наличии в среде необходимых для роста культуры питательных элементов клетки микроводорослей быстро делятся и в них преобладает биосинтез мембранных, в том числе хлоропластных липидов. При лимите одного из факторов роста, например азота, при продолжающейся фиксации СO2 в процессе фотосинтеза наступает так называемая липогенная фаза, которая характеризуется замедлением или остановкой клеточного деления, нередко редукцией фотосинтетического аппарата и накоплением ТАГ, которые откладываются в виде цитоплазматических включений сферической формы в олеосомах или липидных глобулах (oil bodies). В некоторых случаях наблюдается образование липидных глобул в межтилакоидном пространстве [7, 8, 9].
На фоне дефицита элементов минерального питания наиболее интенсивно ТАГ синтезируются на сильном свету, запасаясь в цитоплазматических олеосомах [8, 10, 11].
Следует подчеркнуть, что условия, благоприятствующие накоплению ТАГ, являются стрессовыми: они препятствуют делению клеток и замедляют рост культуры, снижая продуктивность, что входит в противоречие с задачей получения максимального накопления биомассы с максимальным содержанием целевого продукта (в данном случае ТАГ). Одним из возможных путей решения этой задачи явилось разобщение двух процессов: 1 стадия - накопление биомассы на полной питательной среде, обеспечивающей высокую продуктивность по биомассе и 2 стадия - перевод полученной биомассы для индукции синтеза нейтральных липидов (ТАГ) в стрессовые условия, создаваемые дефицитом элементов минерального питания и условиями культивирования, в частности, манипулируя освещением.
Все вышесказанное в полной мере относится и к микроводоросли/цианобактерии Arthrospira/Spirulina platensis [12].
Изобретение может быть проиллюстрировано следующими примерами:
Пример 1.
Исходный штамм A.platensis rsemsu 1/02-Т/03-5 выращивали по следующей схеме: наращивание инокулята производили в стерильных пробирках размером (20×2) см с объемом среды Заррук'а 15 мл на основе дистиллированной воды при освещении 30 µmol photons/m2/sec, температуре 26-28°C и периодическом встряхивании. Освещение колб обеспечивается лампами ДРЛФ-400. Полученным инокулятом засевали конические колбы объемом 250 мл, заполненные средой того же состава объемом 100 мл, до начальной оптической плотности OD=0,15-0,20 при λ=670 нм, определяемой на КФК-2-УХЛ 4,2. Колбы помещали на перемешивающее устройство с частотой орбитального вращения платформы 120-130 оборотов в минуту при температуре 26-28°С. Освещенность культур составляла 60 µmol photons/m2/sec; световой режим постоянный. Продолжительность культивирования составляла 14 суток. Биомасса микроводоросли отделялась от культуральной жидкости гравитационным методом на ситах из нержавеющей и низкоуглеродистой проволоки с размером ячеек 150-200 мкм. Влажность полученной биомассы составляла не более 90%. Определение массовой доли влаги проводилось по ГОСТ 15113.4.-77 для пересчета результатов анализов по сухому весу. Содержание нейтральных липидов в полученной биомассе определяли следующим методом:
Перед экстракцией липидов влажную биомассу микроводорослей подвергали термообработке на водяной бане при 100°С в течение 10 мин. Экстракцию липидов из предобработанной биомассы осуществляли по методу Фолына [13]. Определение липидов в биомассе проводили спектрофлуорометрическим методом по их взаимодействию с флуоресцентным красителем Нильским красным - специфическим для нейтральных липидов [14]. Содержание нейтральных липидов в полученной биомассе исходного штамма A.platensis rsemsu 1/02- Т/03- 5 составило 8.4%.
Пример 2.
Заявленный штамм A.platensis rsemsu Т/05-117 выращивали аналогично описанному в Примере 1. Определение липидов в биомассе заявленного штамма A.platensis rsemsu Т/05-117, проведенное методом описанным в примере 1, составило 13.5%.
Пример 3.
Исходный штамм A.platensis rsemsu 1/02- Т/03-5 выращивали по следующей схеме: Аналогично описанному в Примере 1 получали инокулюм исходного штамма A.platensis rsemsu 1/02-Т/03-5, в количестве необходимом для засева трех литровых колб с объемом питательной среды в колбе 0,5 л. Исходная OD должна быть не менее 0,15-0,20 при λ=670 нм. В качестве источника углерода дополнительно к NaHCO3 основной среды Зарукк'а использовался СO2 (содержание углекислого газа в газо-воздушной смеси - 2% (объемных)). Барботаж углекислым газом служил также и способом перемешивания в колбах. Контроль за составом газо-воздушной смеси осуществляется с помощью газоанализатора Drager X-am 7000 с диапазоном измерения 0,03-5%. Освещение колб обеспечивается лампами ДРЛФ-400 (освещенность 60 µmol photons/m2/sec); световой режим - день:ночь=16:8. Температура питательной среды 26-28°С; продолжительность культивирования - 10 суток.
Содержание нейтральных липидов в полученной биомассе, определенное методом, описанным в Примере 1, составило 12,5%.
Пример 4.
Заявленный штамм A.platensis rsemsu Т/05-117 выращивали по следующей схеме: аналогично описанному в Примере 1 получали инокулюм заявленного штамма A.platensis rsemsu Т/05-117, в количестве необходимом для засева трех литровых колб с объемом питательной среды в каждой колбе 0,5 л. Исходная OD должна быть не менее 0,15-0,20 при λ=670 нм. В качестве источника углерода дополнительно к NaHCO3 основной среды Зарукк'а использовался СO2 (содержание углекислого газа в газо-воздушной смеси - 2% (объемных)). Барботаж углекислым газом служил также и способом перемешивания в колбах. Контроль за составом газово-воздушной смеси осуществляется с помощью газоанализатора Drager X-am 7000 с диапазоном измерения 0,03-5%. Освещение колб обеспечивается лампами ДРЛФ-400 (освещенность 60 µmol photons/m2/sec); световой режим - день:ночь=16:8. Температура питательной среды 26-28°С; продолжительность культивирования - 10 суток.
Содержание нейтральных липидов в полученной биомассе, определенное методом, описанным в Примере 1, составило 17,1%.
Пример 5.
Часть полученной в Примере 3 биомассы исходного штамма A.platensis rsemsu 1/02-Т/03-5 отделялась от культуральной жидкости, промывалась физраствором и концентрировалась до пастообразного состояния на ситах из нержавеющей и низкоуглеродистой проволоки с размером ячеек 150-200 мкм. Отмытую биомассу помещали в три стеклянных кристаллизатора диаметром 17 см, наполненных 0,5 л среды Зарукк'а каждый без азота и фосфора. Кристаллизаторы устанавливали на магнитную мешалку типа ESP фирмы VELP (скорость вращения магнита 800 оборотов/мин). Освещение культиваторов обеспечивали белыми светодиодами фирмы Edison Opto EDEW-3LS6-FR с цветовой температурой 6000К и световой интенсивностью до 180 люмен. Светодиодные светильники располагались на высоте 70 см над поверхностью кристаллизатора. Для получения максимальной и равномерной освещенности всей площади кристаллизатора использовались рассеивающие линзы 9B30DF Turlens с углом 30°. С помощью прибора Flux Apogee (MQ-200) осуществлялись измерения освещенности поверхности кристаллизатора. Освещенность составляла 450 µmol photons/m2/sec; световой режим постоянный. Температура питательной среды 26-28°С. Продолжительность культивирования составляла 2 суток. Содержание нейтральных липидов в образцах полученной биомассы, определенное методом, описанным в Примере 1, составило для исходного штамма A.platensis шт.1/02-Т/03-5 - 21,3%.
Пример 6.
Часть полученной в примере 4 биомассы заявленного штамма A.platensis rsemsu Т/05-117 отделялась от культуральной жидкости, промывалась физраствором и концентрировалась до пастообразного состояния на ситах из нержавеющей и низкоуглеродистой проволоки с размером ячеек 150-200 мкм. Отмытую биомассу помещали в три стеклянных кристаллизатора диаметром 17 см, наполненных 0,5 л среды Зарукк'а каждый без азота и фосфора. Кристаллизаторы устанавливали на магнитную мешалку типа ESP фирмы VELP (скорость вращения магнита 800 оборотов/мин). Освещение культиваторов обеспечивали белыми светодиодами фирмы Edison Opto EDEW-3LS6-FR с цветовой температурой 6000К и световой интенсивностью до 180 люмен. Светодиодные светильники располагались на высоте 70 см над поверхностью кристаллизатора. Для получения максимальной и равномерной освещенности всей площади кристаллизатора использовались рассеивающие линзы 9B30DF Turlens с углом 30°. С помощью прибора Flux Apogee (MQ-200) осуществлялись измерения освещенности поверхности кристаллизатора. Освещенность составляла 450 µmol photons/m /sec; световой режим постоянный; температура питательной среды 26-28°С.
Продолжительность культивирования составляла 2 суток. Содержание нейтральных липидов в образцах полученной биомассы, определенное методом, описанным в Примере 1, составило для заявленного штамма A.platensis rsemsu Т/05-117 - 32,8%.
Источники информации
1. Borowitzka М.А. 1988. Fats, oils and hydrocarbons // In: Borowitzka M.A, Borowitzka L.J., editors. Micro-algal biotechnology. Cambridge: Cambridge University Press, 1988. P.257-287.
2. Guschina I.A., Harwood J.L. Algal lipids and Effect of the Environment on Their Biochemistry // Lipids in Aquatic Ecosystems / Eds. Kainz M., Brett M., Arts M. Dordrecht, Heidelberg, London, New York: Springer-Verlag, 2009. P.1-24.
3. Коробкова Т.П., Чернова Н.И., Киселева С.В. Артроспира (спирулина) как объект микробиологической промышленности для получения нетрадиционных продуктов природного происхождения // Нетрадиционные природные ресурсы, инновационные технологии и продукты: Сборник научных трудов. Вып.13. М., РАЕН, 2005. С.3-26).
4. Чернова Н.И., Киселева С.В., Коробкова Т.П., Зайцев С.И. Микроводоросли в качестве сырья для получения биотоплива//Альтернативная энергетика и экология. 2008. №9. С.68-74.
5. Патент RU 2322489 С1 Российская Федерация, МПК6 C12N 1/12, C12R 1/89. Штамм Arthrospira platensis (Nordst.) Geitl. 1/02-T/03-5 - продуцент белковой биомассы / Коробкова Т.П., Чернова Н.И., Киселева С.В., Зайцев С.И. заявл. 27.06.2006; опубл. 20.04.2008, Бюл. №11. - 7 с.: 3 ил., 3 табл.
6. Каталог культур микроводорослей в коллекциях СССР. М.: Институт физиологии растений им. К.А.Тимирязева РАН, 1991. С.
7. Leman J. Oleaginous Microorganisms: An Assessment of the Potential // Adv. Appl. Microbiol. 1997. V.43. P.195-244.
8. Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., et al. Micralgal triacylglycerols as feedstocks for biofuel production: perspectives and advances // Plant J. 2008. V.54. P.621-639.
9. Соловченко A.E. Физиологическая роль накопления нейтральных липидов эукариотическими микроводорослями при стрессах. // Ж. Физиология растений. 2012. Т.59. С.192-202
10. Roessler P.G. 1990. Environmental control of glycerolipd metabolism in microalgae: Commercial implications and future research direction. // J. Phycol. 1990. V.26. P.393-399.
11. Tompson G. Lipids and Membrane Function in Green Algae // Biochim. Biophys. Acta / Lipids Lipid Metabolism 1996. V.1302. P.17-45.
12. Uslu Leyla, Isik Oya, Кос Kemal, Goksan. The effect of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis // African Journal of Biotechnology. 17 January, 2011. Vol.10(3), pp.386-389.
13. Folch J, Lees M, Sloane-Stanley GH (1957) a simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1): 497-509.
14. Chen W, Sommerfeld M, Hu Q (2011) Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour. Technol. 102(1): 135-141.

Claims (1)

  1. Штамм Arthrospira platensis (Nordst.) Geitl. rsemsu Т/05-117 (коллекция НИЛ ВИЭ географического факультета МГУ) - продуцент липидосодержащей биомассы.
RU2012133213/10A 2012-08-03 2012-08-03 ШТАММ Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 - ПРОДУЦЕНТ ЛИПИДОСОДЕРЖАЩЕЙ БИОМАССЫ RU2539766C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012133213/10A RU2539766C2 (ru) 2012-08-03 2012-08-03 ШТАММ Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 - ПРОДУЦЕНТ ЛИПИДОСОДЕРЖАЩЕЙ БИОМАССЫ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012133213/10A RU2539766C2 (ru) 2012-08-03 2012-08-03 ШТАММ Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 - ПРОДУЦЕНТ ЛИПИДОСОДЕРЖАЩЕЙ БИОМАССЫ

Publications (2)

Publication Number Publication Date
RU2012133213A RU2012133213A (ru) 2014-02-10
RU2539766C2 true RU2539766C2 (ru) 2015-01-27

Family

ID=50031953

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012133213/10A RU2539766C2 (ru) 2012-08-03 2012-08-03 ШТАММ Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 - ПРОДУЦЕНТ ЛИПИДОСОДЕРЖАЩЕЙ БИОМАССЫ

Country Status (1)

Country Link
RU (1) RU2539766C2 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU839258A1 (ru) * 1979-03-22 1983-08-07 Всесоюзный научно-исследовательский институт биосинтеза белковых веществ Способ получени липидов
SU1128955A1 (ru) * 1982-01-05 1984-12-15 МГУ им.М.В.Ломоносова Штамм @ @ А-60-продуцент биологически активного комплекса липидов и способ получени биологически активного комплекса липидов
RU2322489C1 (ru) * 2006-06-27 2008-04-20 Тамара Павловна Коробкова Штамм arthrospira platensis (nordst.) geitl. 1/02-t/03-5 - продуцент белковой биомассы
RU2326171C2 (ru) * 2000-01-28 2008-06-10 Мартек Биосайенсис Корпорейшн Способ получения липидов, содержащих полиненасыщенные жирные кислоты (варианты) и способ культивирования микроорганизмов, продуцирующих эти липиды

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU839258A1 (ru) * 1979-03-22 1983-08-07 Всесоюзный научно-исследовательский институт биосинтеза белковых веществ Способ получени липидов
SU1128955A1 (ru) * 1982-01-05 1984-12-15 МГУ им.М.В.Ломоносова Штамм @ @ А-60-продуцент биологически активного комплекса липидов и способ получени биологически активного комплекса липидов
RU2326171C2 (ru) * 2000-01-28 2008-06-10 Мартек Биосайенсис Корпорейшн Способ получения липидов, содержащих полиненасыщенные жирные кислоты (варианты) и способ культивирования микроорганизмов, продуцирующих эти липиды
RU2322489C1 (ru) * 2006-06-27 2008-04-20 Тамара Павловна Коробкова Штамм arthrospira platensis (nordst.) geitl. 1/02-t/03-5 - продуцент белковой биомассы

Also Published As

Publication number Publication date
RU2012133213A (ru) 2014-02-10

Similar Documents

Publication Publication Date Title
Enamala et al. Production of biofuels from microalgae-A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae
Gómez-Loredo et al. Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions
Liu et al. Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production
Benavides et al. Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds
White et al. The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures
Li et al. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans
Giovanardi et al. Morphophysiological analyses of Neochloris oleoabundans (Chlorophyta) grown mixotrophically in a carbon-rich waste product
KR20100120660A (ko) 조류 배양물 생산, 수확 및 가공
Sirisuk et al. Enhancement of biomass, lipids, and polyunsaturated fatty acid (PUFA) production in Nannochloropsis oceanica with a combination of single wavelength light emitting diodes (LEDs) and low temperature in a three-phase culture system
Khadim et al. Mass cultivation of Dunaliella salina in a flat plate photobioreactor and its effective harvesting
ES2650440T3 (es) Producción de ácido docosahexaenoico y de astaxantina en modo mixótrofo por Schizochytrium
Gao et al. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos cf. polyphem
Heidari et al. Effect of culture age and initial inoculum size on lipid accumulation and productivity in a hybrid cultivation system of Chlorella vulgaris
Nogueira et al. Nannochloropsis gaditana grown outdoors in annular photobioreactors: Operation strategies
Kendirlioglu et al. The effects of photoperiod on the growth, protein amount and pigment content of Chlorella vulgaris
US20110207820A1 (en) Novel chrysochromulina species, methods and media therefor, and products derived therefrom
CN108587920A (zh) 一种利用乙酸/乙酸钠兼养培养微藻的方法
JP5746796B1 (ja) 油脂成分を産生する方法、及び高級不飽和脂肪酸の製造方法
JP2015510763A (ja) セネデスムス(Scenedesmus)による混合栄養モードでのドコサヘキサエン酸および/またはエイコサペンタエン酸の産生
RU2539766C2 (ru) ШТАММ Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 - ПРОДУЦЕНТ ЛИПИДОСОДЕРЖАЩЕЙ БИОМАССЫ
Saranya et al. Scope for biodiesel and bioactive compounds production in the diatom Nitzschia punctata
WO2017141318A1 (ja) 油脂の製造方法
Hahne et al. Disposable algae cultivation for high-value products using all around LED-illumination directly on the bags
RU2322489C1 (ru) Штамм arthrospira platensis (nordst.) geitl. 1/02-t/03-5 - продуцент белковой биомассы
Pérez-Morales et al. The N: Chl-a ratio defines the optimal physiological state in marine microalgae