RU2539463C2 - Способ получения защитных покрытий на изделиях из углеродсодержащих материалов - Google Patents

Способ получения защитных покрытий на изделиях из углеродсодержащих материалов Download PDF

Info

Publication number
RU2539463C2
RU2539463C2 RU2013119080/03A RU2013119080A RU2539463C2 RU 2539463 C2 RU2539463 C2 RU 2539463C2 RU 2013119080/03 A RU2013119080/03 A RU 2013119080/03A RU 2013119080 A RU2013119080 A RU 2013119080A RU 2539463 C2 RU2539463 C2 RU 2539463C2
Authority
RU
Russia
Prior art keywords
silicon
temperature
heating
carbon
product
Prior art date
Application number
RU2013119080/03A
Other languages
English (en)
Other versions
RU2013119080A (ru
Inventor
Павел Аркадьевич Киселёв
Original Assignee
Общество с ограниченной ответственностью "Керамет-Пермь"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Керамет-Пермь" filed Critical Общество с ограниченной ответственностью "Керамет-Пермь"
Priority to RU2013119080/03A priority Critical patent/RU2539463C2/ru
Publication of RU2013119080A publication Critical patent/RU2013119080A/ru
Application granted granted Critical
Publication of RU2539463C2 publication Critical patent/RU2539463C2/ru

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Ceramic Products (AREA)

Abstract

Изобретение относится к производству изделий из углеродсодержащих материалов и предназначено для защиты их от окисления в условиях окислительной среды при высоких температурах. Оно может быть использовано в металлургической промышленности и в других отраслях техники, в том числе в авиастроении. Технический результат изобретения - повышение работоспособности покрытий в условиях окислительной среды и теплового нагружения. Способ включает формирование на поверхности изделия шликерного покрытия на основе композиции, состоящей из смеси ультрадисперсных порошков инертного к кремнию при технологических параметрах процесса силицирования соединения (SiC, B4C, BN, TiB2) и активного к нему элемента и/или соединения (углерода, молибдена, карбида титана), образующих при взаимодействии с ним тугоплавкие карбиды и/или силициды, и/или тройные соединения, и временного связующего, нагрев изделия в вакууме в замкнутом объеме реактора, выдержку при температуре завершения реакций образования указанных соединений и охлаждение в парах кремния. Пропитку кремнием осуществляют путем капиллярной конденсации его паров на стадии нагрева и/или изотермической выдержки в интервале температур 1350-1600оС при перепаде температур между парами кремния и изделием не менее 5оС, предпочтительно, с нарастающей по времени степенью пересыщения парами кремния, с последующим нагревом до 1650оС. 2 з.п. ф-лы, 1 табл., 16 пр.

Description

Изобретение относится к производству изделий из углеродсодержащих материалов и предназначено для защиты их от окисления в условиях окислительной среды при высоких температурах. Оно может быть использовано как в металлургической промышленности, так и в других отраслях техники, где необходима такая защита конструкционных элементов и изделий, в том числе в авиастроении.
Известен способ получения покрытий на изделиях из углеродсодержащих материалов, включающий формирование на поверхности изделия шликерного покрытия на основе композиции, состоящей из мелкодисперсных порошков углерода и инертного к кремнию наполнителя и временного связующего, нагрев его в парах кремния в замкнутом объеме реактора с последующей выдержкой для карбидизации кремния и охлаждение. При этом в качестве инертного наполнителя в композиции для формирования шликерного покрытия используют диборид гафния, а нагрев в парах кремния производят при давлении не более 10 мм рт.ст. и температуре 1850-1900°C в течение 1-3 часов [пат. России №2082694, кл. С04В 35/52, С04В 41/87].
Недостатком способа является его сложность из-за необходимости нагрева в парах кремния до 1850-1900°C, а также ограниченные возможности применения покрытия из-за ограниченности его компонентного состава.
Еще одним недостатком способа является плохая воспроизводимость процесса.
Наиболее близким к предлагаемому по технической сущности и достигаемому эффекту является способ изготовления защитных покрытий на изделиях из углеродсодержащих материалов, включающий формирование на поверхности изделия шликерного покрытия на основе композиции, состоящей из смеси порошков инертного(ых) к кремнию при технологических параметрах процесса силицирования соединения(ий) и активного к нему элемента(ов) и/или соединения(ий), и временного связующего, нагрев изделия в вакууме в замкнутом объеме реактора, выдержку и охлаждение в парах кремния. При этом в качестве инертного к кремнию соединения(ий) используют SiC, и/или В4С, и/или AlN, и/или их смеси с диборидами гафния и/или титана, а нагрев изделия в парах кремния проводят до температур меньших, чем температура 1850°C [пат. России №2458888, кл. С04В 35/52, 2011 г.].
Способ позволяет расширить номенклатуру защитных покрытий, а также упростить технологию их получения.
Кроме того, способ позволяет повысить воспроизводимость процесса за счет реализации на стадии охлаждения изделия процесса пропитки покрытия конденсатом паров кремния.
Недостатком способа является недостаточно высокая работоспособность покрытий в условиях окислительной среды и теплового нагружения.
Задачей изобретения является повышение работоспособности покрытий в условиях окислительной среды и теплового нагружения.
Поставленная задача решается за счет того, что в способе получения защитных покрытий на изделиях с углеродсодержашей основой, включающем формирование на поверхности изделия шликерного покрытия на основе композиции, состоящей из смеси порошков инертного(ых) к кремнию при технологических параметрах процесса силицирования соединения(ий), например карбида кремния, карбида бора, нитрида бора, диборида титана, и активного к нему элемента(ов) и/или соединения(ий), например углерода, молибдена, карбида титана, образующих при взаимодействии с ним тугоплавкие карбиды, и/или силициды, и/или тройные соединения, и временного связующего, нагрев изделия в вакууме в замкнутом объеме реактора, выдержку при температуре завершения реакций образования указанных соединений и охлаждение в парах кремния, в соответствии с предлагаемым техническим решением в композиции для формирования шликерного покрытия используют ультрадисперсные порошки с размером частиц не более 5 мкм, нагрев и изотермические выдержки в интервале температур 1350-1600°C проводят при перепаде температур между парами кремния и изделием не менее 5 градусов, а нагрев и выдержку для завершения реакций образования тугоплавких карбидов, и/или силицидов, и/или тройных соединений - при температуре 1650°C.
В предпочтительном варианте выполнения способа нагрев в интервале температур 1350-1600°C проводят с нарастающей по времени степенью пересыщения паров кремния.
Еще в одном предпочтительном варианте выполнения способа нагрев и изотермические выдержки в интервале температур 1350-1500°C проводят при температуре паров кремния, превышающей температуру изделия на 10-50 градусов; при этом меньшей температуре и меньшей разнице температур соответствует меньший размер пор шликерного покрытия.
Использование в композиции для формирования шликерного покрытия ультрадисперсных порошков с размером частиц не более 5 мкм в совокупности с использованием в ней временного связующего позволяет придать ему ультратонкую открытопористую структуру.
Кроме того, создаются предпосылки: а) для дисперсного упрочнения керамической матрицы защитного покрытия ультрадисперсными частицами инертного к кремнию соединения(ий); б) для формирования керамической матрицы мелкозернистой структуры, что обусловлено малым размером активного к кремнию элемента и/или соединения и меньшей температурой, необходимой для преобразования его(их) в керамическую матрицу.
Проведение нагрева и изотермических выдержек в интервале температур 1350-1600°C при перепаде температур между парами кремния и изделием не менее 5 градусов приводит к созданию пересыщенного состояния паров кремния в окрестности изделия и, как следствие, к их капиллярной конденсации, что обеспечивает возможность заполнения кремнием сколь угодно мелких пор.
Проведение нагрева и выдержки при температуре изделия 1650°C для завершения реакций образования тугоплавких карбидов, и/или силицидов, и/или тройных соединений, в совокупности с малым количеством кремния, входящего в каждую пору материала шликерного покрытия, и малым размером частиц активного к кремнию элемента(ов) и/или соединения(ий) позволяет перевести большую часть кремния в соответствующие соединения и тем самым существенно ограничить содержание в материале защитного покрытия свободного кремния.
Кроме того, реализуются те предпосылки, что приведены при рассмотрении 1-го признака. Так, армирование керамической матрицы в материале защитного покрытия ультрадисперсными частицами наполнителя приводит к дисперсному упрочнению матрицы и повышению тем самым прочности материала покрытия.
Упрочнение керамической матрицы происходит также за счет ее мелкозернистой структуры.
Проведение нагрева в интервале температур 1350-1600°C с нарастающей по времени степенью пересыщения паров кремния позволяет процесс заполнения пор кремнием начать с самых мелких пор и завершить его более крупными порами.
Проведение в соответствии с еще одним предпочтительным вариантом выполнения способа нагрева и изотермических выдержек в интервале температур 1350-1500°C при температуре паров кремния, превышающей температуру изделия, когда меньшей температуре и меньшей разнице температур соответствует меньший размер пор шликерного покрытия, позволяет осуществить наиболее полное заполнение пор кремнием (и придать тем самым материалу защитного покрытия более высокую прочность), т.к. в таком случае исключается преждевременное перекрытие устьев транспортных пор.
При проведении нагрева и изотермических выдержек при температуре ниже 1350°C и перепаде температур между парами кремния и изделием менее 5 градусов процесс капиллярной конденсации становится невозможным вообще или необоснованно удлиняется.
При проведении конденсации паров кремния в предпочтительном интервале температур (1350-1500°C), но с выходом (превышением) за предпочтительный вариант перепада температур (более 50 градусов), происходит настолько интенсивная конденсация паров кремния, что заполняются лишь наиболее крупные поры, а мельчайшие поры оказываются незаполненными кремнием, следствием чего является снижение плотности материала защитного покрытия.
Проведение нагрева и изотермических выдержек при температуре выше предпочтительной (1500°C) чревато образованием на защитном покрытии вымывов материала.
В новой совокупности существенных признаков у объекта изобретения появляется новое свойство: способность существенно ограничить, а в ряде случаев вообще исключить, наличие свободного кремния в материале защитного покрытия, а также повысить его прочность за счет повышения его плотности.
Новое свойство позволяет повысить работоспособность покрытий в условиях окислительной среды и теплового нагружения за счет его более высокой жаростойкости и прочности.
Способ осуществляют следующим образом.
На поверхности изделия из углеродсодержащего материала формируют шликерное покрытие на основе композиции, состоящей из смеси порошков инертного(ых) к кремнию при технологических параметрах процесса силицирования соединения(ий), например карбида кремния, карбида бора, нитрида бора, диборида титана, и активного к нему элемента(ов) и/или соединения(ий), например углерода, молибдена, карбида титана, образующих при взаимодействии с ним тугоплавкие карбиды и/или силициды, и/или тройные соединения, и временного связующего. При этом в композиции для формирования шликерного покрытия используют ультрадисперсные порошки с размером частиц не более 5 мкм.
Затем производят нагрев изделия в вакууме в замкнутом объеме реактора в парах кремния. При этом нагрев и изотермические выдержки в интервале температур 1350-1600°C проводят при перепаде температур между парами кремния и изделием не менее 5 градусов, а нагрев и выдержку для завершения реакций образования тугоплавких карбидов, и/или силицидов, и/или тройных соединений - при температуре 1650°C.
В предпочтительном варианте выполнения способа нагрев в интервале температур 1350-1600°C проводят при температуре паров кремния, превышающей температуру изделия на 10-50 градусов; при этом меньшей температуре и меньшей разнице температур соответствует меньший размер пор шликерного покрытия.
Еще в одном предпочтительном варианте выполнения способа нагрев и изотермические выдержки в интервале температур 1350-1500°C проводят при температуре паров кремния, превышающей температуру изделия на 10-50 градусов; при этом меньшей температуре и меньшей разнице температур соответствует меньший размер пор шликерного покрытия.
Затем продолжают нагрев изделия до температуры 1650°C, температуры завершения реакций образования тугоплавких карбидов, и/или силицидов, и/или тройных соединений.
После этого изделие охлаждают и извлекают из реактора.
Ниже приведены примеры конкретного выполнения способа.
Примеры 1а-1г
В соответствии с примером 1а на поверхности диска Ø26 мм сформировали шликерное покрытие на основе композиции, состоящей из смеси порошков SiC (инертного к кремнию при технологических параметрах процесса силицирования соединения) и технического углерода (активного к кремнию элемента, образующего при взаимодействии с ним тугоплавкий карбид, а именно SiC).
Частицы SiC и технического углерода имели размер не более 5 мкм.
При этом с целью обеспечения возможности определения содержания свободного кремния в защитном покрытии, а также его плотности и открытой пористости, в качестве материала диска использовали углерод-углеродный композиционный материал, предварительно подвергнутый герметизации, в соответствии с пат. России 2006493, кл. С04В 38/39, 1993 г., так что кремний не мог в него проникнуть.
В качестве временного связующего в композиции для формирования шликерного покрытия использовали 8%-ный раствор поливинилового спирта в воде.
В примере 1б в качестве инертного к кремнию при технологических параметрах процесса силицирования соединения использовали диборид титана, а в качестве активных к нему элементов - смесь технического углерода и молибдена, в примере 1в - соответственно В4С и технический углерод, в примере 1г - соответственно BN и технический углерод + TiC. Во всех примерах размер частиц порошков не превышал 5 мкм.
Затем диски со сформированным шликерным покрытием и тигли с кремнием установили в замкнутом объеме реторты с расположением дисков над тиглями с кремнием.
После этого производили нагрев изделий и тиглей с кремнием, в результате чего нагрев изделий, начиная с температуры - 1300°C, происходил в атмосфере паров кремния.
На стадии нагрева с 1300 до 1450°C (промежуточной температуре) и изотермической выдержки при 1450°C, длительность которой составила 4 часа, осуществляли пропитку шликерного покрытия кремнием путем капиллярной конденсации его паров. Для этого тигли с кремнием (источники паров кремния) нагревали до более высокой температуры, чем температура изделий, а именно: на 20 градусов превышающей температуру изделий.
Благодаря малой степени пересыщения парами кремния их капиллярная конденсация протекала постепенно, а именно: начавшись в самых мелких порах, она постепенно распространялась на все более крупные поры. Тем самым обеспечивалось наиболее полное и равномерное заполнение пор шликерного покрытия кремнием.
Затем продолжили нагрев изделий до температуры завершения реакций образования тугоплавких карбидов, и/или силицидов, и/или тройных соединений. Так, при использовании в качестве активного к кремнию элемента технического углерода получили SiC (пример 1а), при использовании смеси технического углерода и молибдена - SiC и силициды молибдена (пример 16), при использовании смеси технического углерода и TiC - SiC, силициды титана и тройные соединения типа Ti3SiC5. В соответствии с примерами 1а-1г нагрев изделий производили до температуры 1650°C с выдержкой при этой температуре 2 часа. При этом нагрев изделия и выдержку при 1650°C произвели в отсутствие перепада температур между изделиями и парами кремния (точнее: тиглями с кремнием).
После этого изделия охладили и извлекли из реактора.
Определение кажущейся плотности и открытой пористости материалов защитного покрытия произвели после удаления углеродной подложки путем ее сжигания в муфельной печи в атмосфере воздуха при температуре 500-550°C. Определение в материале защитного покрытия свободного кремния произвели путем его удаления из материала химическим путем.
Результаты определения кажущейся плотности, открытой пористости материалов защитного покрытия, полученного по примерам 1а-1г, а также содержание в них свободного кремния приведены в табл.1.
Остальные примеры конкретного выполнения способа, а также примеры 1а-1г, но в более кратком изложении, приведены в табл.1, где примеры 1а-1г, а также примеры 2-8 соответствуют заявляемому способу; при этом все эти примеры за исключением 4-8 соответствуют предпочтительным вариантам выполнения способа.
Здесь же приведены примеры 9-11, в соответствии с которыми размеры частиц порошков в композиции для формирования шликерного покрытия превышают заявляемый, а именно: размеры их больше 5 мкм, в то время как пропитка шликерного покрытия кремнием проведена в соответствии с заявляемым способом. Кроме того, в этой же таблице приведен пример получения защитного покрытия в соответствии со способом-прототипом (пример 12).
На основе результатов, приведенных в табл.1, можно сделать следующие выводы.
1. Получение защитных покрытий заявляемым способом позволяет в сравнении со способом-прототипом существенно снизить содержание в материале свободного кремния (сравни примеры 1а, 2-8 с примером 12). При этом получение покрытий в соответствии с предпочтительными вариантами выполнения способа позволяет, кроме того, в сравнении со способом-прототипом снизить его открытую пористость (сравни примеры 1а, 2, 3 с примером 12).
Получение защитных покрытий заявляемым способом, но с отклонением от предпочтительных вариантов его выполнения, приводит либо к некоторому снижению плотности материала и повышению его открытой пористости (сравни примеры 1а, 2, 3 с примерами 5, 7, 8), либо (когда температура на изделии при проведении капиллярной конденсации паров кремния превышает 1500°C, т.е. температуру предпочтительного варианта выполнения способа) на защитном покрытии наблюдаются вымывы материала, вызванные, видимо, интенсивным характером конденсации паров кремния (см. примеры 4 и 6).
2. Применение в композиции для формирования шликерного покрытия порошков с большими размерами, чем в заявляемом способе, приводит к увеличению содержания свободного кремния в материале защитного покрытия (сравни примеры 1а, 2-8 с примерами 9-11).
К еще большему увеличению содержания кремния в материале защитного покрытия приводит получение его в соответствии со способом-прототипом (пример 14).
Табл. 1
№ п/п Наименование элемента или соединения и соотношение между ними, в вес.% Технологические параметры процесса силицирования Фазовый состав материала защитного покрытия Основные свойства материала защитного покрытия
инертного к кремнию активного к кремнию Промежуточная температура(ы), °C Давление, мм рт.ст. Конечная температура, °C Время выдержки, в часах γ, г/см3 ОП, % Содержание Siсв., в вес.% Примечание
на изделии на тиглях с Si При промеж уточной t При конечной t
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1a. SiC (70) Технический углерод (30) 1450 1470 27 1650 4 2 SiC/SiC-Si 2,96 0,2 0,8
1б. TiB2 (65) Смесь технического углерода и молибдена (25C+5Mo) -//- -//- -//- -//- -//- -//- TiB2/SiC-Si 3,97 0,7 0,6
1в. B4C (65) Технический углерод (35) -//- -//- -//- -//- -//- -//- B4C/SiC-Si 2,69 0,1 1,0
1г. BN (65) -//- (35) -//- -//- -//- -//- -//- -//- BN/SiC-Si 2,38 1,3 0,9
1д. SiC+B4C (30SiC+40 B4C) Смесь технического углерода и TiC (15C+15TiC) -//- -//- -//- -//- -//- -//- (SiC+B4C)/SiC-TiSi2-Ti3SiC2-Si 3,19 1,6 0,7
2. SiC (70) Технический углерод (30) 1350-1400 1380-1470 27 1650 3+4 2 SiC/SiC-Si 3,01 0,15 0,9
1 2 3 4 5 6 7 8 9 10 11 12 13 14
3. SiC (70) Технический углерод (30) 1350 1380 27 1650 2+2+3++1 2 SiC/SiC-Si 3,05 0,1 1,2
1400 1430
1450 1470
1500 1520
4. SiC (70) Технический углерод (30) 1450 1470 27 1650 4+1 2 SiC/SiC-Si 2,85 1,3 0,8 На поверхности покрытия имеются небольшие размывы материала покрытия
1550 1570
5. -//- -//- 1350 1410 27 -//- 3+2 2 -//- 2,72 3,5 0,4
1400 1460
6. -//- -//- 1450 1470 27 -//- 4+1 2 -//- 2,91 0,3 0,9 На поверхности покрытия имеются небольшие размывы материала покрытия
1600 1620
7. -//- -//- 1350 1355 27 -//- 10+8+8 2 -//- 2,80 1,9 0,7
1450 1455
1500 1505
8. -//- -//- 1500 1505 27 -//- 16 2 -//- 2,84 1,2 0,7
9. SiC c размером частиц до 30 мкм (70) Коллоидный графит с размером частиц до 20 мкм (30) 1450 1500 27 1750 8+4 2 -//- 2,95 0,3 6,8
1500 1550
1 2 3 4 5 6 7 8 9 10 11 12 13 14
10.* SiC c размером частиц до 40 мкм (70) Коллоидный графит с размером частиц до 20 мкм (30) 1450 1500 27 1750 8+6 2 SiC/SiC-Si 2,88 0,5 8,9
1500 1550
11.* SiC c размером частиц до 63 мкм (70) Графитовый порошок марки ГС с размером частиц до 63 мкм (30) -//- -//- -//- -//- 10+8 2 -//- 2,81 0,7 12,4
12. -//- -//- - - - -//- - 2 -//- 2,89 0,9 16,3
* - размеры частиц порошков в композиции для формирования шликерного покрытия превышают заявляемый размер (5 мкм), а пропитка шликерного покрытия кремнием проведена в соответствии с заявляемым способом

Claims (3)

1. Способ получения защитных покрытий на изделиях из углеродсодержащих материалов, включающий формирование на поверхности изделия шликерного покрытия на основе композиции, состоящей из смеси порошков инертного(ых) к кремнию при технологических параметрах процесса силицирования соединения(ий), например карбида кремния, карбида бора, нитрида бора, диборида титана, и активного к нему элемента(ов) и/или соединения(ий), например углерода, молибдена, карбида титана, образующих при взаимодействии с ним тугоплавкие карбиды и/или силициды, и/или тройные соединения, и временного связующего, нагрев изделия в вакууме в замкнутом объеме реактора, выдержку при температуре завершения реакций образования указанных соединений и охлаждение в парах кремния, отличающийся тем, что в композиции для формирования шликерного покрытия используют ультрадисперсные порошки с размером частиц не более 5 мкм, нагрев и изотермические выдержки в интервале температур 1350-1600°C проводят при перепаде температур между парами кремния и изделием не менее 5 градусов, а нагрев и выдержку для завершения реакций образования тугоплавких карбидов и/или силицидов, и/или тройных соединений - при температуре 1650°C.
2. Способ по п.1, отличающийся тем, что нагрев в интервале температур 1350-1600°C проводят с нарастающей по времени степенью пересыщения паров кремния.
3. Способ по пп.1 и 2, отличающийся тем, что нагрев и изотермические выдержки в интервале температур 1350-1500°C проводят при температуре паров кремния, превышающей температуру изделия на 10-50 градусов; при этом меньшей температуре и меньшей разнице температур соответствует меньший размер пор шликерного покрытия.
RU2013119080/03A 2013-04-24 2013-04-24 Способ получения защитных покрытий на изделиях из углеродсодержащих материалов RU2539463C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013119080/03A RU2539463C2 (ru) 2013-04-24 2013-04-24 Способ получения защитных покрытий на изделиях из углеродсодержащих материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013119080/03A RU2539463C2 (ru) 2013-04-24 2013-04-24 Способ получения защитных покрытий на изделиях из углеродсодержащих материалов

Publications (2)

Publication Number Publication Date
RU2013119080A RU2013119080A (ru) 2014-11-20
RU2539463C2 true RU2539463C2 (ru) 2015-01-20

Family

ID=53288641

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013119080/03A RU2539463C2 (ru) 2013-04-24 2013-04-24 Способ получения защитных покрытий на изделиях из углеродсодержащих материалов

Country Status (1)

Country Link
RU (1) RU2539463C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282983A (zh) * 2019-07-05 2019-09-27 河南理工大学 一种无中间相的高硬度TiB2-B4C陶瓷复合材料制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079195A (en) * 1988-01-15 1992-01-07 Massachusetts Institute Of Technology Method of preparing refractory silicon carbide composites and coatings
RU2194682C2 (ru) * 2001-01-09 2002-12-20 Федеральное государственное унитарное предприятие "Институт Термохимии" Способ изготовления тонкостенных изделий из силицированного углеродного композиционного материала
US7169465B1 (en) * 1999-08-20 2007-01-30 Karandikar Prashant G Low expansion metal-ceramic composite bodies, and methods for making same
RU2458888C1 (ru) * 2011-03-11 2012-08-20 Вячеслав Максимович Бушуев Способ получения защитных покрытий на изделиях с углеродсодержащей основой
RU2458893C1 (ru) * 2011-03-11 2012-08-20 Вячеслав Максимович Бушуев Способ получения защитных покрытий на изделиях с углеродсодержащей основой

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079195A (en) * 1988-01-15 1992-01-07 Massachusetts Institute Of Technology Method of preparing refractory silicon carbide composites and coatings
US7169465B1 (en) * 1999-08-20 2007-01-30 Karandikar Prashant G Low expansion metal-ceramic composite bodies, and methods for making same
RU2194682C2 (ru) * 2001-01-09 2002-12-20 Федеральное государственное унитарное предприятие "Институт Термохимии" Способ изготовления тонкостенных изделий из силицированного углеродного композиционного материала
RU2458888C1 (ru) * 2011-03-11 2012-08-20 Вячеслав Максимович Бушуев Способ получения защитных покрытий на изделиях с углеродсодержащей основой
RU2458893C1 (ru) * 2011-03-11 2012-08-20 Вячеслав Максимович Бушуев Способ получения защитных покрытий на изделиях с углеродсодержащей основой

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282983A (zh) * 2019-07-05 2019-09-27 河南理工大学 一种无中间相的高硬度TiB2-B4C陶瓷复合材料制备方法及其应用
CN110282983B (zh) * 2019-07-05 2022-07-29 河南理工大学 一种无中间相的高硬度TiB2-B4C陶瓷复合材料制备方法及其应用

Also Published As

Publication number Publication date
RU2013119080A (ru) 2014-11-20

Similar Documents

Publication Publication Date Title
RU2486163C2 (ru) Способ изготовления изделий из керамоматричного композиционного материала
CA1216005A (en) Silicon carbide sintered article and process for its production
RU2458888C1 (ru) Способ получения защитных покрытий на изделиях с углеродсодержащей основой
RU2011128405A (ru) Способ изготовления герметичных изделий из углерод-карбидокремниевого материала
RU2539463C2 (ru) Способ получения защитных покрытий на изделиях из углеродсодержащих материалов
Jana et al. Effective activation energy for the solid-state sintering of silicon carbide ceramics
JP2019507083A (ja) 化学反応からセラミックを製造する方法
TWI811529B (zh) 碳化矽基板、碳化矽基板的製造方法、碳化矽基板的製造裝置以及降低碳化矽基板的宏階褶的方法
RU2670819C1 (ru) Способ изготовления изделий из реакционно-спеченного композиционного материала
RU2539465C2 (ru) Способ изготовления изделий из реакционноспеченного композиционного материала
RU2458893C1 (ru) Способ получения защитных покрытий на изделиях с углеродсодержащей основой
RU2539467C2 (ru) Способ получения защитных покрытий на изделиях из углеродсодержащих материалов
RU2559245C1 (ru) Способ изготовления изделий из керамоматричного композиционного материала
RU2716323C9 (ru) Способ защиты углеродсодержащих композиционных материалов крупногабаритных изделий от окисления
RU2470857C1 (ru) Способ изготовления изделий из углерод-карбидокремниевого материала
RU2570075C1 (ru) Способ изготовления изделий из керамоматричного композиционного материала
RU2559248C1 (ru) Способ изготовления герметичных изделий из углерод-карбидокремниевого композиционного материала
JP2006232669A (ja) 低窒素濃度黒鉛材料、低窒素濃度炭素繊維強化炭素複合材料、低窒素濃度膨張黒鉛シート
US11148978B2 (en) Method for producing silicon-carbide-based composite
RU2568673C2 (ru) Способ изготовления изделий из керамоматричного композиционного материала
RU2554645C2 (ru) Способ изготовления изделий из реакционноспеченного композиционного материала
Bondioli et al. Oxidation behavior of LPS-SiC ceramics sintered with AlN/Y2O3 as additive
RU2464250C1 (ru) Способ изготовления изделий из углерод-карбидокремниевого материала
RU2560461C1 (ru) Способ получения защитных покрытий на изделиях с углеродсодержащей основой
RU2747499C1 (ru) Способ изготовления изделий из реакционно-спечённого композиционного материала

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150425