RU2536513C2 - Способ осушки природного газа путем совместного охлаждения растворителя и природного газа - Google Patents
Способ осушки природного газа путем совместного охлаждения растворителя и природного газа Download PDFInfo
- Publication number
- RU2536513C2 RU2536513C2 RU2012113140/05A RU2012113140A RU2536513C2 RU 2536513 C2 RU2536513 C2 RU 2536513C2 RU 2012113140/05 A RU2012113140/05 A RU 2012113140/05A RU 2012113140 A RU2012113140 A RU 2012113140A RU 2536513 C2 RU2536513 C2 RU 2536513C2
- Authority
- RU
- Russia
- Prior art keywords
- solvent
- gas
- cooling
- water
- stream
- Prior art date
Links
- 239000002904 solvent Substances 0.000 title claims abstract description 143
- 238000001816 cooling Methods 0.000 title claims abstract description 108
- 238000001035 drying Methods 0.000 title claims abstract description 27
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 69
- 239000003345 natural gas Substances 0.000 title claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 87
- 238000000034 method Methods 0.000 claims abstract description 28
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 25
- 238000011084 recovery Methods 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 9
- 238000000926 separation method Methods 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 98
- 239000007788 liquid Substances 0.000 claims description 52
- 230000008929 regeneration Effects 0.000 claims description 16
- 238000011069 regeneration method Methods 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 claims description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 6
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- KYWXRBNOYGGPIZ-UHFFFAOYSA-N 1-morpholin-4-ylethanone Chemical compound CC(=O)N1CCOCC1 KYWXRBNOYGGPIZ-UHFFFAOYSA-N 0.000 claims description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 claims description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000012530 fluid Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 9
- 230000018044 dehydration Effects 0.000 description 6
- 238000006297 dehydration reaction Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000002274 desiccant Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/263—Drying gases or vapours by absorption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0236—Heat exchange integration providing refrigeration for different processes treating not the same feed stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/202—Alcohols or their derivatives
- B01D2252/2023—Glycols, diols or their derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/202—Alcohols or their derivatives
- B01D2252/2023—Glycols, diols or their derivatives
- B01D2252/2026—Polyethylene glycol, ethers or esters thereof, e.g. Selexol
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/204—Amines
- B01D2252/20405—Monoamines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/204—Amines
- B01D2252/20436—Cyclic amines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1406—Multiple stage absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/265—Drying gases or vapours by refrigeration (condensation)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/68—Separating water or hydrates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Gas Separation By Absorption (AREA)
- Drying Of Gases (AREA)
Abstract
Изобретение относится к способу осушки газов. Способ включает пропускание газа через две или более камеры охлаждения, соединенные последовательно, причем в каждую из камер подают поток растворителя, который удаляет воду из газа, далее подают смешанный поток, состоящий из газа и растворителя, в каждую из этих камер охлаждения и после совместного охлаждения, его разделяют с помощью газожидкостного сепаратора на поток газа с пониженным содержанием воды и поток обогащенного водой растворителя, постепенно снижают содержание воды в газе от первой в направлении потока камеры охлаждения к последней, причем каждый поток растворителя, отделенный и обогащенный водой, либо используют в качестве питающего потока для камеры охлаждения выше по потоку, или возвращают непосредственно в блок регенерации для освобождения от воды. При этом растворитель ниже по потоку от камеры охлаждения направляют из газожидкостных сепараторов в блок регенерации, рециркулируют и подают выше по потоку от последней камеры охлаждения в смесь газа и растворителя. Регенерированный поток растворителя после блока регенерации подают в поток газа последней в направлении потока камеры охлаждения, поток растворителя, отделенный с помощью сепаратора ниже по потоку, подают во все другие камеры охлаждения выше по потоку. 6 з.п. ф-лы, 2 ил.
Description
Изобретение относится к способу осушки промышленных газов, в частности природного газа. В большинстве случаев осушку газов осуществляют путем обеспечения контакта поглощающего воду растворителя и содержащего воду газа, обычно при температуре окружающей среды, при этом растворитель поглощает воду, содержащуюся в газе. Воду удаляют из растворителя выпариванием и таким образом регенерируют растворитель.
В US 3105748 описан способ удаления воды из газов, в частности из природного газа, причем содержащуюся в газе воду удаляют с помощью поглощающего растворителя, циркулирующего по замкнутому контуру и перемещаемого для регенерации в регенерационную колонну или устройство подобного типа, в которой растворитель нагревают так, что вода, содержащаяся в растворителе, полностью испаряется и в пленочных испарителях тонкие пленки регенерированного растворителя приводят в контакт с сухим газом так, что растворитель дополнительно сушат.
В DE 60002710 Т2 описан способ и устройство для извлечения природного газа, в котором осуществляют контакт природного газа с жидкостью, содержащей поглотитель воды, причем природный газ и жидкость контактируют в условиях турбулентного перемешивания, что приводит к поглощению воды поглотителем и отделению фазы природного газа с пониженным содержанием воды и жидкой фазы, содержащей поглотитель и поглощенную воду, причем перемешивание осуществляют в вихревом реакторе, состоящем из сосуда с впускным отверстием для газа, впускным отверстием для жидкости, выпускным отверстием, ведущим к трубке Вентури, и трубки, проходящей назад выше по потоку от выхода, причем трубка снабжена отверстиями и/или расположена на определенном расстоянии от периметра выпускного отверстия. Воплощение изобретения позволяет добавлять стадию перемешивания выше по потоку или ниже по потоку от стадии турбулентного перемешивания, которая также может быть стадией турбулентного перемешивания. В другом воплощении изобретения природный газ и жидкость в контактом реакторе смешивают с образованием гомогенной смеси, причем гомогенную смесь охлаждают, чтобы разделить на газообразную фазу и жидкую фазу. В описании не раскрыто воплощений, где температура газа на выходе из камеры охлаждения, расположенной ниже по потоку, ниже, чем температура газа из камеры охлаждения, расположенной выше по потоку.
В WO 2004/085037 A1 описана система осушки газа, позволяющая, например, осуществлять осушку природного газа в сочетании с добычей нефти и газа, включающая блок сушки для осушки газа с помощью жидкости, направляемой рециклом посредством одного или нескольких насосов для смешивания с газом и в блок регенерации, в котором регенерируют поглощающую жидкость, причем блок сушки включает одну или несколько стадий сушки и каждая отдельная стадия включает массообменный блок в виде статического смесителя или петлевого трубопровода, в котором газ смешивают с жидкостью и перемещают в направлении потока осушающей жидкости в газожидкостной сепаратор, в котором газ пропускают на следующую стадию или к выходу, тогда как осушающую жидкость пропускают на стадию регенерации и/или в массообменный блок для соответствующих стадий процесса. В воплощении этой системы обеспечивают камеру охлаждения, расположенную в рециркуляционном контуре так, что газ можно охладить косвенно с помощью охлажденной осушающей жидкости. В данном документе также не представлено воплощений, в которых температура газа на выходе из камеры охлаждения, расположенной ниже по потоку, ниже, чем температура камеры охлаждения, расположенной выше по потоку.
В DE 19830458 C1 описан способ осушки природных газов, полученных при добыче сырой нефти, в котором природные газы, содержащие воду и низкокипящие конденсируемые углеводороды как сопутствующие вещества сушат посредством внутренней циркуляции осушителя, причем конденсат отделяют в холодном сепараторе от осушителя, наряду со всеми сопутствующими веществами, сжиженными при рабочей температуре и рабочем давлении холодного сепаратора, и конденсат впоследствии подают в трехфазный сепаратор, в котором конденсат, выходящий из холодного сепаратора с температурой, равной температуре на выходе из этого сепаратора, подают в трехфазный сепаратор без промежуточного охлаждения и в нем осуществляют разделение осушителя с водой, газообразных углеводородов и конденсированных углеводородов и удаляют по меньшей мере большую часть воды, причем осушитель сначала подают в обезвоживающий регенератор для удаления воды отгонкой, а затем в нагретом состоянии в трехфазный сепаратор для нагревания сепаратора. В примере описано последовательное охлаждение смеси газ/жидкость так, что температура газа на выходе из камеры охлаждения, расположенной ниже по потоку, ниже, чем температура камеры охлаждения, расположенной выше по потоку. В описании не раскрыто воплощений с использованием аналогичных камер охлаждения, соединенных последовательно, где в каждую камеру охлаждения подают поток растворителя и ниже по потоку от каждой камерой охлаждения присоединен газожидкостной сепаратор.
В DE 1794353 описан способ удаления воды из природных газов под давлением, которые частично сжижены в низкотемпературной системе, в частности, когда должны быть предусмотрены пиковые нагрузки, и из которых кислые компоненты, здесь в частности диоксид кремния, удаляют промывкой при значительно пониженной температуре с помощью низкокипящих, органических, растворимых в воде растворителей, причем небольшое количество растворителя вводят в поток природного газа под давлением перед тем, как указанный газ охлаждают до температуры ниже температуры замерзания паров воды, содержащихся в природном газе, и после дальнейшего охлаждения потока природного газа, снова извлекают с полученной конденсированной водой. В описании не описаны камеры охлаждения, которые соединены последовательно для осушки газа.
В известных способах контакт между газом и растворителем обычно обеспечивают в абсорбционной колонне посредством соответствующих массообменных внутренних компонентов, таких как тарелки, неупорядоченные насадки и структурированные насадки. Так как очевидно, что в традиционных устройствах осушки абсорбционная колонна является наиболее дорогостоящей единицей оборудования, желательно снизить стоимость осушки в данной секции. Таким образом, целью изобретения является обеспечение способа и устройства, в которых можно осуществить поглощение воды по возможности более экономично.
Цели изобретения достигают проведением осушки путем совместного охлаждения газа и растворителя. Газ сушат посредством поглощения воды, содержащейся в газе, с использованием растворителя, подходящего для осушки газа в температурном диапазоне от 50°С до -20°С, причем совместное охлаждение растворителя и очищаемого газа осуществляют в соответствии с изобретением в нескольких камерах охлаждения, соединенных последовательно. Смесь газа и растворителя, выходящую из соответствующих камер охлаждения, разделяют в газожидкостном сепараторе ниже по потоку. С использованием камер охлаждения, снабжаемых растворителем и соединенных последовательно, возможно полностью исключить колонну, обычно используемую для осушки, что приводит к максимальной экономии затрат при поглощении воды из исходного газа. Поскольку очевидно, что в традиционных устройствах осушки абсорбционная колонна является наиболее дорогостоящей единицей оборудования, также достигают значительной экономии затрат для всего устройства осушки.
Осуществление способа осушки по меньшей мере в двух теплообменниках или камерах охлаждения обеспечивает возможность осушки соответствующего исходного газа до очень низкого содержания воды на выходе.
Низкий уровень температуры обеих сред вызывает улучшенное поглощение воды поглощающим растворителем тогда, как с другой стороны, точку росы газа снижают охлаждением до такой степени, при которой происходит очень интенсивное поглощение воды растворителем. Изобретение также относится к устройству для осуществления этого способа. Изобретение имеет особое преимущество, если газ находится при низкой температуре, или его необходимо охладить до более низких температур в любом случае, независимо от требования осушки.
Однако изобретение также может быть преимущественно использовано, если газ охлаждают только до температуры окружающей среды, как в случае традиционной осушки газа. С этой целью охлаждение, которое обычно осуществляют в одном устройстве, может быть осуществлено в двух, трех или нескольких устройствах, соединенных последовательно, при этом общий объем, требующийся для охлаждения, становится только незначительно больше, чем в случае единственного устройства.
Ниже по потоку от соответствующих камер охлаждения растворитель транспортируют от газожидкостных сепараторов в блок регенерации, в котором воду удаляют посредством нагревания и выпаривания. Регенерированный растворитель рециркулируют и подают в смесь газа и жидкости выше по потоку от камер охлаждения. Способ можно модифицировать таким образом, что предварительно обогащенный водой растворитель из по меньшей мере одного газожидкостного сепаратора подают в газ выше по потоку от камеры охлаждения, которая в направлении потока расположена выше по потоку от камеры охлаждения, из которой извлекают обогащенный водой растворитель. Очищенный и осушенный газ можно извлечь из газожидкостного сепаратора в направлении потока газа. Эффективность осушки может быть дополнительно увеличена путем изменения количества камер охлаждения или системы рециркуляции растворителя.
Более подробно, цели изобретения достигают с помощью способа удаления воды из природных и промышленных газов, в котором
- растворитель, освобожденный от воды в блоке регенерации растворителя, подают на осушку газа, и
- подаваемый газ направляют через две или более камеры охлаждения, соединенные последовательно, причем в каждую из камер охлаждения подают поток растворителя, который удаляет воду из газа, поступающего в соответствующую камеру охлаждения, и
- смешанный поток, состоящий из газа и растворителя, поступает в каждую из этих камер охлаждения, проходит через соответствующую камеру охлаждения и, после совместного охлаждения в соответствующей камере охлаждения, его разделяют с помощью соответствующего газожидкостного сепаратора на выходе из соответствующей камеры охлаждения на поток газа с пониженным содержанием воды и обогащенный водой поток растворителя, и
- содержание воды в газе постепенно снижают от первой в направлении потока камеры охлаждения к последней в направлении потока камере охлаждения, причем каждый поток растворителя, отделенный и обогащенный водой, либо используют в качестве питающего потока для камеры охлаждения выше по потоку, или возвращают непосредственно в блок регенерации растворителя, в котором обогащенный водой растворитель снова освобождают почти полностью от воды,
отличающийся тем, что
- растворитель ниже по потоку от по меньшей мере одной камеры охлаждения направляют из газожидкостных сепараторов в блок регенерации, рециркулируют и подают по меньшей мере выше по потоку от последней камеры охлаждения в смесь газа и растворителя так, что температура газа на выходе по меньшей мере одной камеры охлаждения, расположенной ниже по потоку, ниже, чем температура газа из камеры охлаждения, расположенной выше по потоку, и
- регенерированный поток растворителя после блока регенерации растворителя подают в поток газа последней в направлении потока камеры охлаждения из камер охлаждения, соединенных последовательно, выше по потоку от входа этой камеры охлаждения, и соответствующий поток растворителя, отделенный с помощью газожидкостного сепаратора соответствующей камеры охлаждения ниже по потоку, подают во все другие камеры охлаждения, установленные выше по потоку, и обогащенный водой растворитель, полученный из первого в направлении потока газожидкостного сепаратора возвращают в блок регенерации растворителя для удаления воды.
Таким образом возможно усилить эффект осушки от камеры охлаждения к камере охлаждения, поскольку температура последовательно снижается от одной стадии охлаждения к следующей. В данной конфигурации способа воду можно поглощать с помощью растворителя очень тщательно, что позволяет проводить поглощение воды более экономично.
Способ по изобретению можно, например, дополнительно модифицировать таким образом, что часть потока регенерированного растворителя из блока регенерации растворителя подают в соответствующие потоки газа первой и последней в направлении потока камер охлаждения из камер охлаждения, соединенных последовательно, выше по потоку от входа в эти камеры охлаждения, и соответствующий поток растворителя, отделенный с помощью газожидкостного сепаратора соответствующей камеры ниже по потоку, подают во все другие промежуточные камеры охлаждения, и обогащенный водой поток растворителя, отделенный с помощью первого и второго в направлении потока газожидкостных сепараторов возвращают в блок регенерации растворителя для удаления воды.
В воплощении способа сепаратор, требующийся для соответствующего разделения газа и жидкости, выполнен как единое целое с соответствующей камерой охлаждения. Используемый сепаратор может быть любого типа. В предпочтительном воплощении используемый сепаратор представляет собой пластинчатый сепаратор.
В принципе, распределение и возврат отдельных потоков растворителя из газожидкостных сепараторов в блок регенерации растворителя могут быть обеспечены в любой конфигурации. В принципе, подача нового растворителя из блока регенерации растворителя или последнего газожидкостного сепаратора также может быть обеспечена в любой конфигурации. Блок регенерации растворителя представляет собой, например, регенерационную колонну.
В преимущественном воплощении поток растворителя из последнего газожидкостного сепаратора разделяют, причем отдельные части потока направляют по меньшей мере в два содержащих газ потока растворителя ко входу каждой камеры охлаждения. В еще одном воплощении поток регенерированного растворителя из блока регенерации растворителя также может быть разделен и направлен по меньшей мере в один содержащий газ поток растворителя ко входу каждой камеры охлаждения.
В качестве растворителя можно использовать физические растворители этиленгликоль, диэтиленгликоль, триэтиленгликоль или тетраэтиленгликоль, или смесь этих веществ. Также в качестве физического растворителя можно использовать N-метилморфолин или N-ацетилморфолин, или смесь этих веществ. Кроме того, в качестве физического растворителя можно использовать метанол или алкилированные полиэтиленгликоли или смесь данных веществ.
Способ изобретения обладает преимуществом в том, что поглощение воды из осушаемого природного газа, можно осуществлять без дорогостоящей абсорбционной колонны. Температуру конденсации воды в обрабатываемом газе в значительной степени можно снизить с помощью подходящего соединения отдельных блоков установки. В изобретении также обеспечено устройство для осуществления данного способа.
Далее воплощения способа по изобретению для очистки потока углеводородов, содержащих кислый газ, описаны более подробно на основании двух чертежей, причем способ изобретения не ограничен этими воплощениями.
На Фиг.1 поток (1) газа для обработки смешивают с потоком (12) содержащего воду растворителя из насоса, который извлекают из газожидкостного сепаратора (23) и направляют через первую камеру (20) охлаждения, получая поток (2) газа, содержащего растворитель. Данный поток подают в первый газожидкостной сепаратор (21), получая содержащий воду поток (14) растворителя и предварительно осушенный поток (3) газа. Предварительно осушенный поток (3) газа смешивают с потоком (8) растворителя, не содержащего воду, и направляют во вторую камеру (22) охлаждения, получая содержащий растворитель поток (4) газа. Растворитель поглощает большую часть остаточной воды из газа. Отделение осушенного газа (7) от содержащего воду потока (11) растворителя осуществляют во втором газожидкостном сепараторе (23). С помощью насоса (27) содержащий воду поток (11) растворителя из второго газожидкостного сепаратора (23) подают рециклом выше по потоку от первой камеры (20) охлаждения. Содержащий воду поток (14) растворителя из первого газожидкостного сепаратора (21) возвращают в блок (26) регенерации растворителя. Воду, поглощенную растворителем, отделяют от растворителя в блоке (26) регенерации растворителя и выпускают из блока в виде отработанного пара или потока (15) сточных вод. Тогда поток растворителя (8), почти полностью освобожденный от воды, снова пригоден для использования в осушке газа.
На Фиг.2 поток газа (1) для обработки смешивают с растворителем (9), почти полностью освобожденным от воды. Смесь газа и жидкости проходит через первую камеру (20) охлаждения, при этом получают содержащий растворитель поток (2) газа. Поток (14) содержащего воду растворителя отделяют от предварительно осушенного потока (3) газа в первом газожидкостном сепараторе (21). Предварительно осушенный поток (3) газа смешивают с содержащим воду потоком (12) растворителя. Полученную таким образом смесь газа и жидкости совместно охлаждают во второй камере (22) охлаждения, получая содержащий растворитель поток (4) газа. Отделение предварительного осушенного газа (5) от содержащего воду потока (13) растворителя осуществляют в газожидкостном сепараторе (23). Второй регенерированный поток (10) растворителя подают в предварительно осушенный поток (5) газа, выходящий из второго газожидкостного сепаратора (23). Затем смесь газа и жидкости проходит через третью камеру (24) охлаждения, также с образованием на выходе содержащего растворитель потока (6) газа. Растворитель поглощает большую часть остаточной воды из газа. Отделение осушенного газа (7) от содержащего воду потока (11) растворителя осуществляют в газожидкостном сепараторе (25). С помощью насоса (27) содержащий воду поток (12) растворителя подают рециклом выше по потоку от второй камеры (22) охлаждения для дальнейшей осушки предварительного осушенного газа (3).
Содержащий воду поток (14) растворителя из первого газожидкостного сепаратора (21) и содержащий воду поток (13) растворителя из второго газожидкостного сепаратора (23) возвращают в блок (26) регенерации растворителя. Воду, поглощенную растворителем, отделяют от растворителя в блоке (26) регенерации растворителя и выпускают из блока в виде отработанного пара или потока (15) сточных вод. Тогда поток растворителя (8), почти полностью освобожденный от воды, снова пригоден для использования в осушке газа.
Модификация способа согласно Фиг.2 состоит в том, что содержащий воду поток (13) растворителя, выходящий из второго газожидкостного сепаратора (23), не возвращают в блок регенерации растворителя, а направляют вместе с первой частью потока (9) регенерированного растворителя выше по потоку от первой камеры (20) охлаждения.
Перечень обозначений
1. Поток газа для обработки
2. Содержащий растворитель поток газа
3. Предварительно осушенный газ
4. Содержащий растворитель поток газа
5. Предварительно осушенный газ
6. Содержащий растворитель поток газа
7. Осушенный газ
8. Поток растворителя, почти полностью освобожденный от воды
9. Первая часть потока регенерированного растворителя, почти полностью освобожденного от воды
10. Вторая часть потока регенерированного растворителя
11. Содержащий воду поток растворителя
12. Содержащий воду поток растворителя из насоса
13. Содержащий воду поток растворителя
14. Содержащий воду поток растворителя
15. Отходящий пар/сточные воды
20. Первая камера охлаждения
21. Первый газожидкостной сепаратор
22. Вторая камера охлаждения
23. Второй газожидкостной сепаратор
24. Третья камера охлаждения
25. Третий газожидкостной сепаратор
26. Блок регенерации растворителя
27. Насос
Claims (7)
1. Способ осушки природного газа (1) путем совместного охлаждения растворителя (9) и природного газа (1), в котором
- растворитель (9), освобожденный от воды в блоке (26) регенерации растворителя, подают на осушку газа, и
- подаваемый газ (1) пропускают через две или более камеры (20, 22, 24) охлаждения, соединенные последовательно, причем в каждую из камер (20, 22, 24) охлаждения подают поток (9, 10, 12) растворителя, который удаляет воду из газа (1, 3, 5), поступающего в соответствующую камеру (20, 22, 24) охлаждения, и
- смешанный поток (2, 4, 6), состоящий из газа и растворителя, поступает в каждую из этих камер (20, 22, 24) охлаждения, проходит через соответствующую камеру (20, 22, 24) охлаждения и после совместного охлаждения в соответствующей камере (20, 22, 24) охлаждения его разделяют с помощью соответствующего газожидкостного сепаратора (21, 23, 25), соединенного с соответствующей камерой (20, 22, 24) охлаждения на выходе, на поток (3, 5, 7) газа с пониженным содержанием воды и поток (11, 13, 14) обогащенного водой растворителя, и
- содержание воды в газе (1, 3, 5) постепенно снижают от первой в направлении потока камеры (20) охлаждения к последней в направлении потока камере (22, 24) охлаждения, причем каждый поток (11, 13, 14) растворителя, отделенный и обогащенный водой, либо используют в качестве питающего потока (12) для камеры (20, 22) охлаждения выше по потоку, или возвращают непосредственно в блок (26) регенерации растворителя, в котором обогащенный водой растворитель (13, 14) снова освобождают почти полностью от воды (15),
отличающийся тем, что
- растворитель (13, 14) ниже по потоку от по меньшей мере одной камеры (20, 22, 24) охлаждения направляют из газожидкостных сепараторов (21, 23, 25) в блок (26) регенерации, рециркулируют и подают по меньшей мере выше по потоку от последней камеры (23, 25) охлаждения в смесь (8, 10) газа и растворителя, так что температура газа на выходе по меньшей мере одной камеры (22, 24) охлаждения, расположенной ниже по потоку, ниже, чем температура газа из камеры (20, 22) охлаждения, расположенной выше по потоку, и
- регенерированный поток (8, 10) растворителя после блока (26) регенерации растворителя подают в поток (6) газа последней в направлении потока камеры (22, 24) охлаждения из камер охлаждения, соединенных последовательно выше по потоку от входа в эту камеру охлаждения, и соответствующий поток (12) растворителя, отделенный с помощью газожидкостного сепаратора (23, 25) соответствующей камеры (22, 24) охлаждения ниже по потоку, подают во все другие камеры охлаждения, установленные выше по потоку, и обогащенный водой растворитель (14), полученный из первого в направлении потока газожидкостного сепаратора (20), возвращают в блок (26) регенерации растворителя для удаления воды.
- растворитель (9), освобожденный от воды в блоке (26) регенерации растворителя, подают на осушку газа, и
- подаваемый газ (1) пропускают через две или более камеры (20, 22, 24) охлаждения, соединенные последовательно, причем в каждую из камер (20, 22, 24) охлаждения подают поток (9, 10, 12) растворителя, который удаляет воду из газа (1, 3, 5), поступающего в соответствующую камеру (20, 22, 24) охлаждения, и
- смешанный поток (2, 4, 6), состоящий из газа и растворителя, поступает в каждую из этих камер (20, 22, 24) охлаждения, проходит через соответствующую камеру (20, 22, 24) охлаждения и после совместного охлаждения в соответствующей камере (20, 22, 24) охлаждения его разделяют с помощью соответствующего газожидкостного сепаратора (21, 23, 25), соединенного с соответствующей камерой (20, 22, 24) охлаждения на выходе, на поток (3, 5, 7) газа с пониженным содержанием воды и поток (11, 13, 14) обогащенного водой растворителя, и
- содержание воды в газе (1, 3, 5) постепенно снижают от первой в направлении потока камеры (20) охлаждения к последней в направлении потока камере (22, 24) охлаждения, причем каждый поток (11, 13, 14) растворителя, отделенный и обогащенный водой, либо используют в качестве питающего потока (12) для камеры (20, 22) охлаждения выше по потоку, или возвращают непосредственно в блок (26) регенерации растворителя, в котором обогащенный водой растворитель (13, 14) снова освобождают почти полностью от воды (15),
отличающийся тем, что
- растворитель (13, 14) ниже по потоку от по меньшей мере одной камеры (20, 22, 24) охлаждения направляют из газожидкостных сепараторов (21, 23, 25) в блок (26) регенерации, рециркулируют и подают по меньшей мере выше по потоку от последней камеры (23, 25) охлаждения в смесь (8, 10) газа и растворителя, так что температура газа на выходе по меньшей мере одной камеры (22, 24) охлаждения, расположенной ниже по потоку, ниже, чем температура газа из камеры (20, 22) охлаждения, расположенной выше по потоку, и
- регенерированный поток (8, 10) растворителя после блока (26) регенерации растворителя подают в поток (6) газа последней в направлении потока камеры (22, 24) охлаждения из камер охлаждения, соединенных последовательно выше по потоку от входа в эту камеру охлаждения, и соответствующий поток (12) растворителя, отделенный с помощью газожидкостного сепаратора (23, 25) соответствующей камеры (22, 24) охлаждения ниже по потоку, подают во все другие камеры охлаждения, установленные выше по потоку, и обогащенный водой растворитель (14), полученный из первого в направлении потока газожидкостного сепаратора (20), возвращают в блок (26) регенерации растворителя для удаления воды.
2. Способ осушки природного газа (1) посредством совместного охлаждения растворителя (9) и природного газа (1) по п.1, отличающийся тем, что часть потока (9, 10) регенерированного растворителя из блока (26) регенерации растворителя подают в соответствующие потоки газа первой в направлении потока камеры (20, 22) охлаждения и последней в направлении потока камеры (22, 24) охлаждения из камер (20, 22, 24) охлаждения, соединенных последовательно, выше по потоку от входа в указанные камеры охлаждения, и соответствующий поток (12) растворителя, отделенный с помощью газожидкостного сепаратора (23, 25) соответствующей камеры охлаждения (22, 24) ниже по потоку, подают во все другие промежуточные камеры (22) охлаждения, и содержащий воду поток (13, 14) растворителя, отделенный первым и вторым в направлении потока газожидкостными сепараторами (21, 23), возвращают в блок (26) регенерации растворителя для удаления воды.
3. Способ осушки природного газа (1) посредством совместного охлаждения растворителя (9) и природного газа (1) по п.1, отличающийся тем, что сепаратор, требующийся для соответствующего разделения газа и жидкости, выполнен как единое целое с соответствующей камерой (20, 22, 24) охлаждения.
4. Способ осушки природного газа (1) посредством совместного охлаждения растворителя (9) и природного газа (1) по п.1, отличающийся тем, что сепаратор (21, 23, 25), требующийся для разделения газа и жидкости, представляет собой пластинчатый сепаратор.
5. Способ осушки природного газа (1) посредством совместного охлаждения растворителя (9) и природного газа (1) по любому из пп.1-4, отличающийся тем, что в качестве физического растворителя используют этиленгликоль, диэтиленгликоль, триэтиленгликоль или тетраэтиленгликоль, или смесь этих веществ.
6. Способ осушки природного газа (1) посредством совместного охлаждения растворителя (9) и природного газа (1) по любому из пп.1-4, отличающийся тем, что в качестве физического растворителя используют N-метилморфолин или N-ацетилморфолин, или смесь этих веществ.
7. Способ осушки природного газа (1) посредством совместного охлаждения растворителя (9) и природного газа (1) по любому из пп.1-4, отличающийся тем, что в качестве физического растворителя используют метанол или алкилированные полиэтиленгликоли, или смесь этих веществ.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009041104.6 | 2009-09-14 | ||
DE102009041104A DE102009041104A1 (de) | 2009-09-14 | 2009-09-14 | Verfahren zum Trocknen von Erdgas durch gemeinsame Kühlung von Lösungsmittel und Erdgas |
PCT/EP2010/005597 WO2011029621A1 (de) | 2009-09-14 | 2010-09-13 | Verfahren zum trocknen von erdgas durch gemeinsame kühlung von lösungsmittel und erdgas |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012113140A RU2012113140A (ru) | 2013-10-27 |
RU2536513C2 true RU2536513C2 (ru) | 2014-12-27 |
Family
ID=43384483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012113140/05A RU2536513C2 (ru) | 2009-09-14 | 2010-09-13 | Способ осушки природного газа путем совместного охлаждения растворителя и природного газа |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120272824A1 (ru) |
EP (1) | EP2477725B1 (ru) |
BR (1) | BR112012005510A2 (ru) |
CA (1) | CA2774129A1 (ru) |
DE (1) | DE102009041104A1 (ru) |
RU (1) | RU2536513C2 (ru) |
WO (1) | WO2011029621A1 (ru) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10543456B2 (en) * | 2017-04-24 | 2020-01-28 | Hall Labs Llc | Method for separating components using solids producing multi-stage direct and indirect-contact exchange |
CN111023664B (zh) * | 2019-12-30 | 2021-09-17 | 常州大学 | 一种带低温相变的协同控制车载冷柜除冰与辅冷复合系统 |
US20230111285A1 (en) | 2020-03-30 | 2023-04-13 | Basf Se | Method for electrochemical hydrogen separation from natural-gas pipelines |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19830458C1 (de) * | 1998-07-08 | 2000-03-16 | Dsd Gas Und Tankanlagenbau Gmb | Verfahren und Vorrichtung zum Trocknen von bei der Erdölförderung anfallenden Erdgasen |
RU2176266C1 (ru) * | 2000-03-27 | 2001-11-27 | Дочернее открытое акционерное общество "Гипрогазцентр" | Способ очистки и осушки природного и попутного нефтяного газов с высоким содержанием сероводорода |
DE60002710T2 (de) * | 1999-03-23 | 2004-03-18 | Statoil Asa | Verfahren und vorrichtung zum trocknen von erdgas |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2608516A (en) * | 1949-01-04 | 1952-08-26 | Phillips Petroleum Co | Combination high and low pressure absorption process |
US3105748A (en) | 1957-12-09 | 1963-10-01 | Parkersburg Rig & Reel Co | Method and system for drying gas and reconcentrating the drying absorbent |
DE1669328C3 (de) | 1967-04-15 | 1974-07-25 | Linde Ag, 6200 Wiesbaden | Verfahren zum Entfernen von sauren Komponenten aus Erdgas |
US3492787A (en) * | 1968-02-05 | 1970-02-03 | Black Sivalls & Bryson Inc | Method and system for dehydrating gas streams |
US3633338A (en) * | 1970-03-06 | 1972-01-11 | Phillips Petroleum Co | Gas method and apparatus for drying |
NO158058C (no) * | 1978-07-17 | 1988-07-06 | Dut Pty Ltd | Fremgangsmaate for fremstilling av gassformede og kondenserte avvannede hydrokarbonprodukter ved metanoltilsetning, avkjoeling og separering. |
EP1022046A1 (de) * | 1999-01-22 | 2000-07-26 | Krupp Uhde GmbH | Verfahren zur Entfernung von Kohlendioxid, Schwefelverbindungen, Wasser und aromatischen und höheren aliphatischen Kohlenwasserstoffen aus technischen Gasen |
FR2845392B1 (fr) * | 2002-10-07 | 2006-05-26 | Inst Francais Du Petrole | Procede de desacidification d'un gaz naturel |
NO20031458D0 (no) * | 2003-03-28 | 2003-03-28 | Minox Technology As | Anlegg for gasstörking |
DE602004012420T2 (de) * | 2003-09-09 | 2008-06-19 | Shell Internationale Research Maatschappij B.V. | Gas/flüssigkeits-abscheider |
ITMI20042352A1 (it) * | 2004-12-10 | 2005-03-10 | Eni Spa | Procedimento per la disitratazione di un gas |
JP2012505747A (ja) * | 2008-10-14 | 2012-03-08 | エクソンモービル アップストリーム リサーチ カンパニー | ガス流からの酸性ガスの除去 |
-
2009
- 2009-09-14 DE DE102009041104A patent/DE102009041104A1/de not_active Ceased
-
2010
- 2010-09-13 BR BR112012005510A patent/BR112012005510A2/pt not_active IP Right Cessation
- 2010-09-13 WO PCT/EP2010/005597 patent/WO2011029621A1/de active Application Filing
- 2010-09-13 RU RU2012113140/05A patent/RU2536513C2/ru not_active IP Right Cessation
- 2010-09-13 CA CA2774129A patent/CA2774129A1/en not_active Abandoned
- 2010-09-13 US US13/496,146 patent/US20120272824A1/en not_active Abandoned
- 2010-09-13 EP EP10765569.8A patent/EP2477725B1/de not_active Not-in-force
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19830458C1 (de) * | 1998-07-08 | 2000-03-16 | Dsd Gas Und Tankanlagenbau Gmb | Verfahren und Vorrichtung zum Trocknen von bei der Erdölförderung anfallenden Erdgasen |
DE60002710T2 (de) * | 1999-03-23 | 2004-03-18 | Statoil Asa | Verfahren und vorrichtung zum trocknen von erdgas |
RU2176266C1 (ru) * | 2000-03-27 | 2001-11-27 | Дочернее открытое акционерное общество "Гипрогазцентр" | Способ очистки и осушки природного и попутного нефтяного газов с высоким содержанием сероводорода |
Also Published As
Publication number | Publication date |
---|---|
EP2477725A1 (de) | 2012-07-25 |
CA2774129A1 (en) | 2011-03-17 |
EP2477725B1 (de) | 2014-01-08 |
DE102009041104A1 (de) | 2011-04-14 |
BR112012005510A2 (pt) | 2019-09-24 |
WO2011029621A1 (de) | 2011-03-17 |
US20120272824A1 (en) | 2012-11-01 |
RU2012113140A (ru) | 2013-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2600348C2 (ru) | Способ улавливания углекислого газа из дымового газа электростанции и установка для его осуществления | |
RU2429051C2 (ru) | Установка и способ для извлечения co2 | |
CA2316577C (en) | Method and apparatus for removing aromatic hydrocarbons from a gas stream prior to an amine-based gas sweetening process | |
RU2605978C2 (ru) | Способ и устройство для извлечения газа из газовой смеси с использованием эжектора вентури | |
US20160199774A1 (en) | Separating Impurities from a Fluid Stream Using Multiple Co-Current Contactors | |
US8876954B2 (en) | Natural gas dehydration unit with continuously fired reboiler | |
RU2536511C2 (ru) | Способ и установка для удаления воды из природного газа или промышленных газов с использованием физических растворителей | |
EA023729B1 (ru) | Способ очистки сырьевого газа от кислых компонентов | |
AU2009311516A1 (en) | Reabsorber for ammonia stripper offgas | |
CN105861089B (zh) | 一种气相提浓式三甘醇脱水再生系统 | |
CN107438475B (zh) | 从吸收剂中能量有效回收二氧化碳的方法和适于运行该方法的设备 | |
NO317894B1 (no) | Fremgangsmate og apparatur for torking av naturgass | |
CN109432955B (zh) | 一种含非水溶性VOCs尾气的处理方法 | |
JP5036183B2 (ja) | 改善された溶媒の使用および再生 | |
JPS63104633A (ja) | メタンを含む湿潤ガスの水除去を目的とする総合的処理方法 | |
RU2536513C2 (ru) | Способ осушки природного газа путем совместного охлаждения растворителя и природного газа | |
NL2015921B1 (en) | Process for the purification of a gas | |
US9511323B2 (en) | Dehydration of gases with liquid desiccant | |
US9695373B2 (en) | System and method for natural gas dehydration | |
CN116407862A (zh) | 含水三甘醇溶液的脱水方法、天然气的脱水方法及装置 | |
CN107916151B (zh) | 一种用于天然气的脱水系统及方法 | |
WO2021045852A1 (en) | Desiccant regenerator comprising a co-current contactor and a stripping gas recirculation system | |
RU2120587C1 (ru) | Установка очистки сжиженных углеводородных газов от метанола | |
RU2224581C1 (ru) | Установка подготовки углеводородного газа | |
CN217459352U (zh) | 一种天然气脱蜡脱水装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20150914 |