RU2536076C2 - Способ соединения, герметичная конструкция, изготовленная данным способом, и система герметичных конструкций - Google Patents

Способ соединения, герметичная конструкция, изготовленная данным способом, и система герметичных конструкций Download PDF

Info

Publication number
RU2536076C2
RU2536076C2 RU2012141152/28A RU2012141152A RU2536076C2 RU 2536076 C2 RU2536076 C2 RU 2536076C2 RU 2012141152/28 A RU2012141152/28 A RU 2012141152/28A RU 2012141152 A RU2012141152 A RU 2012141152A RU 2536076 C2 RU2536076 C2 RU 2536076C2
Authority
RU
Russia
Prior art keywords
metal
connection
temperature
plate
pressure
Prior art date
Application number
RU2012141152/28A
Other languages
English (en)
Other versions
RU2012141152A (ru
Inventor
Нильс ХОЙВИК
Биргер СТАРК
Андерс ЭЛФИНГ
Кайин ВАН
Original Assignee
Сенсонор Ас
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сенсонор Ас filed Critical Сенсонор Ас
Publication of RU2012141152A publication Critical patent/RU2012141152A/ru
Application granted granted Critical
Publication of RU2536076C2 publication Critical patent/RU2536076C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0118Bonding a wafer on the substrate, i.e. where the cap consists of another wafer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • B81C2203/035Soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2746Plating
    • H01L2224/27462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2746Plating
    • H01L2224/27464Electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/276Manufacturing methods by patterning a pre-deposited material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a permanent auxiliary member being left in the finished device, e.g. aids for holding or protecting the layer connector during or after the bonding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • H01L2224/83204Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding with a graded temperature profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • H01L2224/83207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8381Soldering or alloying involving forming an intermetallic compound at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/83825Solid-liquid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/8383Solid-solid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16235Connecting to a semiconductor or solid-state bodies, i.e. cap-to-chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/163Connection portion, e.g. seal
    • H01L2924/164Material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Использование: для соединения герметичных корпусов устройств на базе микроэлектромеханических систем (МЭМС). Сущность изобретения заключается в том, что формирование на поверхности как первой пластины, так и второй пластины стопы из первого металла, подверженного окислению на воздухе; формирование на верхней поверхности каждой стопы из первого металла слоя второго металла, температура плавления у которого ниже, чем у первого металла (причем толщину слоя второго металла выбирают достаточной для предотвращения окисления верхней поверхности первого металла); приведение слоя второго металла на первой пластине в контакт со слоем второго металла на второй пластине, чтобы образовать зону соединения, и приложение к первой и второй пластинам давления соединения при температуре зоны соединения, которая ниже температуры плавления второго металла, чтобы инициировать соединение, причем давление соединения выбирают достаточным для деформирования слоев второго металла в зоне соединения. Технический результат: обеспечение возможности создания герметичного корпуса. 12 з.п. Ф-лы, 5 ил.

Description

Область техники
Изобретение относится к способу соединения с применением взаимной диффузии микро- и наноконструкций (структур) и, в частности, к способу (осуществляемому преимущественно на уровне полупроводниковых пластин), предназначенному для трехразмерной (3D) интеграции, а также для корпусирования чувствительных и хрупких конструкций или компонентов пластин.
Уровень техники
При разработке чувствительных конструкций, таких как нано- и микроэлектромеханические системы (МЭМС) и устройства на их основе, существует проблема, связанная с тем, что почти все МЭМС-устройства требуют специально изготовленного корпуса, чтобы герметизировать и/или защитить чувствительные и нежесткие компоненты. В частности, некоторые классы МЭМС-устройств для функционирования согласно конструктивным и функциональным требованиям к ним нуждаются в высокой степени вакуумизации внутри корпуса, тогда как другие их классы требуют наличия определенного давления и/или присутствия газовой смеси.
В US 7132721 предложен способ соединения, в котором на поверхность первой пластины наносят первый материал, на поверхность второй пластины наносят второй материал и поверхности обеих пластин прижимают одна к другой, чтобы осуществить соединение, причем в результате взаимной диффузии первого и второго материалов образуется сплав, который удерживает пластины вместе.
Однако с этим и аналогичными методами связана проблема, состоящая в том, что нанесение на каждую пластину различных материалов может приводить к росту иррегулярных и неоднородных участков на соединяемой поверхности каждой пластины, которые ухудшат качество результирующего соединения. Кроме того, если нанесенные материалы являются окисляемыми на воздухе, на соединяемых поверхностях может образоваться природный оксид, который уменьшает смачиваемость и действует как барьер, препятствующий взаимному перемешиванию первого и второго материалов в процессе соединения поверхностей при приведении в контакт либо пластины и кристалла, либо пары пластин. Поэтому в случае образования на соединяемых поверхностях оксида требуется, как правило, дополнительная обработка, чтобы удалить этот слой перед тем, как материалы могут быть соединены.
Предварительная обработка обычно включает операцию с применением флюса и поэтому, чтобы предотвратить окисление, которое может произойти очень быстро, она предпочтительно выполняется in-situ в процессе сборки системы, а не ex-situ. Примерами реагентов, обычно применяемых при выполнении подобных операций, являются соляная кислота, серная кислота, муравьиная кислота в газообразном состоянии и формиргаз. Однако, хотя эти кислоты эффективны при удалении оксида, известно, что они негативно влияют на чувствительность микро- или наноструктур. В частности, любые жидкостные обработки, которые обычно включают обработку пластины в жидкой кислоте или аналогичной среде, неприемлемы с открытыми и хрупкими микро- или наноструктурами без дополнительных процедур, усложняющих обработку в целом.
Кроме того, большинство простых методов обработки поверхности наиболее эффективны при температурах, близких к температуре плавления второго материала. Поэтому по завершении проводимых in situ операций предварительной обработки, таких как упомянутые операции под флюсом, первый и второй материалы обычно приводятся в контакт под давлением, уже находясь при относительно высоких температурах, которые затем постепенно повышают до температуры, превышающей температуру плавления второго материала. В результате возможно одновременное расплавление большого объема второго материала, что может привести к нежелательным выдавливанию и утечке второго материала в окружающее пространство. Это, в свою очередь, может вызвать короткие замыкания или повреждение микро- или наноустройств. Существует также риск того, что любой второй материал, не прореагировавший до завершения способа соединения, может повторно расплавиться во время последующих высокотемпературных операций обработки, таких как активация геттера или бессвинцовая пайка.
Как следствие, осуществление в рамках способа соединения применительно к непрочным конструкциям, таким как МЭМС-компоненты, тонкопленочные металлические проводники или диэлектрики, любой поверхностной обработки с целью удаления оксидного слоя без риска повреждения этих непрочных конструкций обычно связано со значительными трудностями.
Другим хорошо известным способом соединения на основе взаимной диффузии является технология взаимной диффузии твердого и жидкого компонентов (solid liquid inter-diffusion, SLID), которая была разработана применительно к процессам "кристалл к пластине" для 3D интеграции микросистем. Типичный вариант этой технологии включает нанесение на кристалл с первым металлом, который может быть чувствителен к окислению на воздухе, слоя второго металла, причем первый металл имеет более высокую температуру плавления, чем второй металл. Примером является SLID соединение Cu-Sn, в котором Cu легко окисляется на воздухе и имеет намного более высокую температуру плавления, чем Sn.
Однако с известными процессами соединения "кристалл к пластине" по технологии SLID также ассоциируется ряд проблем. Например, при прикреплении к пластине индивидуальных кристаллов типичные используемые максимальные температуры зон соединения, т.е. температуры, при которых может находиться пластина, превышают температуру плавления второго металла. Это исключает возможность присутствия на поверхности пластины одновременно первого и второго металлов, поскольку диффузия первого металла во второй привела бы к нежелательному образованию, до завершения сборки всех кристаллов, химического соединения по всей толщине слоя вплоть до соединяемой поверхности. Поэтому на поверхность пластины наносят только первый металл, тогда как на поверхность кристалла наносят и первый и второй металлы.
Альтернативный способ соединения "кристалл к пластине", описанный в US 6872464, основан на низкотемпературной сборке, за которой следует высокотемпературный процесс "рифлоу" (процесс обратного течения). Однако этот процесс включает низкотемпературное формирование предварительного соединения с применением припоя на основе термопластичного полимера. Аналогично в US 2006/0292824 предложен способ соединения "кристалл к пластине", в котором на первой пластине вокруг кристалла структурируется слой полимерного адгезива, и в процессе осуществления способа соединения производят отверждение этого адгезива для получения постоянного клеящего слоя, обеспечивающего соединение кристалла и пластины после снятия давления соединения.
Однако ни один из этих двух способов не подходит для формирования герметичных корпусов для МЭМС, поскольку полимер со временем будет разрушаться (с газовыделением) и его молекулы будут распространяться внутри герметизированной вакуумной полости корпуса, снижая уровень вакуума.
Раскрытие изобретения
Изобретение направлено на создание способа соединения для формирования, на уровне пластины, герметичного корпуса для инкапсулирования в нем МЭМС-устройств, в частности химически чувствительных МЭМС-устройств, таких как микроболометры.
Согласно изобретению предлагается способ соединения с применением взаимной диффузии металлов для формирования, на уровне пластин, герметичных корпусов (контейнеров) для МЭМС-устройств, включающий следующие этапы: формирование на поверхности как первой пластины, так и второй пластины стопы из первого металла, подверженного окислению на воздухе; формирование на верхней поверхности каждой стопы из первого металла слоя второго металла, температура плавления у которого ниже, чем у первого металла (причем толщину слоя второго металла выбирают достаточной для предотвращения окисления верхней поверхности первого металла); приведение слоя второго металла на первой пластине в контакт со слоем второго металла на второй пластине, чтобы образовать зону соединения, и приложение к первой и второй пластинам давления соединения при температуре зоны соединения, которая ниже температуры плавления второго металла, чтобы инициировать соединение. При этом давление соединения выбирают достаточным для деформирования слоев второго металла в зоне соединения.
Таким образом, изобретение обеспечивает создание способа соединения, позволяющего осуществить соединение металлов в зоне между пластинами для инкапсулирования устройств, имеющих непрочные или химически чувствительные компоненты, которые, во многих приложениях, требуют их помещения в герметичные вакуумированные или невакуумированные полости. Используя способ по изобретению, можно обеспечить соединение и 3D-интеграцию на уровне пластина к пластине для пластин, неспособных выдержать обработку под флюсом или другие варианты предварительной обработки поверхности, которые обычно требуются для удаления поверхностных оксидов или предотвращения окисления соединяемых поверхностей. Благодаря этому непрочные или химически чувствительные компоненты или устройства могут быть сформированы на обеих соединяемых пластинах.
Это обусловлено тем, что второй металл, имеющий меньшую температуру плавления, чем первый металл, действует как защитный слой для первого металла на обеих соединяемых пластинах, предотвращая окисление поверхности первого металла. Тем самым обеспечивается увеличение сроков хранения заранее изготовленных соединяемых частей по сравнению с частями, имеющими открытые поверхности первого металла, которые подвержены окислению.
Более конкретно, в отсутствие второго металла, действующего как защитный слой, открытая поверхность первого металла быстро бы покрылась слоем природного оксида, что привело бы при осуществлении способа соединения к нежелательному эффекту предотвращения смачивания и взаимной диффузии двух металлов. Как следствие, потребовалось бы удалить этот слой с использованием процессов травления или восстановления потенциально вредных для непрочных компонентов.
Кроме того, поскольку давление соединения является достаточным, чтобы деформировать поверхности слоев второго металла в зоне соединения, обеспечивается эффективное удаление любых поверхностных неоднородностей на любом из слоев с получением высококачественных, однородных границ соединения. Улучшается также смачиваемость соединяемых поверхностей, которые в этом случае являются поверхностями из одного и того же металла.
В дополнение, приведение пластин во взаимный контакт при температуре относительно низкой по сравнению с температурой плавления второго металла обеспечивает более однородное температурное распределение по стопе пластин на каждом этапе процесса, поскольку обе пластины находятся в тепловом контакте с применяемыми в процессе соединения зажимами с регулируемой температурой.
Еще одно преимущество изобретения состоит в том, что основная часть интерметаллидов образуется при температурах ниже температуры плавления второго металла, что уменьшает объем жидких материалов, присутствующих при осуществлении способа соединения по сравнению с известными методами SLID.
Изобретение, таким образом, обеспечивает бесфлюсовый способ соединения, свободный также от каких-либо иных предварительных обработок поверхности, таких как предварительный отжиг или использование припоя, и, как следствие, пригоден для непрочных микро- и наноэлектромеханических устройств, тонкопленочных металлических проводников или поверхностей диэлектриков, в частности, если они не используются в течение какого-то времени после их открывания.
Краткое описание чертежей
Далее, со ссылками на прилагаемые чертежи, будет описан пример осуществления изобретения.
На фиг.1 представлены две пластины, подготовленные к осуществлению соединения согласно изобретению.
На фиг.2а пластины по фиг.1 показаны приведенными во взаимный контакт.
На фиг.2b представлен временной график температуры, относящийся к этапу способа соединения, проиллюстрированному на фиг.2а.
На фиг.3а показана область, в которой при повышении температуры образуется, за счет взаимной диффузии, соединение.
На фиг.3d представлен временной график температуры, относящийся к этапу способа соединения, проиллюстрированному на фиг.3а.
На фиг.4а иллюстрируется завершающий этап формирования конструкции после образования соединения.
На фиг.4b представлен временной график температуры, относящийся к этапу способа соединения, проиллюстрированному на фиг.4а.
На фиг.5а иллюстрируется зона соединения между двумя пластинами, соединенными способом по изобретению при приложении давления около 10 МПа.
На фиг.5b иллюстрируется зона соединения между двумя пластинами, соединенными способом по изобретению при приложении давления около 17 МПа.
Осуществление изобретения
Хотя в рассматриваемом примере первым металлом является медь (Cu), а вторым - олово (Sn), специалистам должно быть понятно, что можно использовать и другие комбинации подходящих металлов, в состав которых должен входить металл с более высокой температурой плавления, окисляющийся на воздухе с образованием толстого слоя природного оксида. В качестве такого металла можно использовать серебро (Ag) или никель (Ni). В приводимых примерах рассматривается также использование кремниевой пластины (подложки), но должно быть понятно, что она может содержать и другие материалы, например Ge, стекло, кварц, SiC и/или полупроводники из групп III-V Периодической таблицы.
На поверхности первой пластины 1 (которая в этом примере является кремниевой пластиной) формируют стопу 3 слоев Cu, толщина которой в типичном варианте составляет 1-10 мкм. Затем поверх этой стопы наносят слой 4 Sn (см. фиг.1). Слой 4 Sn является достаточно толстым, чтобы предотвратить окисление поверхности стопы 3 Cu и гарантировать, что при приведении первой пластины 1 в контакт с соответствующей второй пластиной 2 (как это будет описано далее) некоторое количество Sn останется не затронутым этим контактом. В этом примере слой 4 Sn имеет толщину более 0,5 мкм. Чтобы последующий процесс взаимной диффузии мог быть завершен (т.е. чтобы гарантировать полную трансформацию результирующего Cu3Sn в твердотельное соединение 7), отношение Cu/Sn должно превышать 1,3.
В дополнение к тому, что оно образует часть финального интерметаллида, Sn защищает Cu от окисления, так что пластины 1, 2 могут храниться длительное время между осуществлением процессов нанесения и сборки.
В рассматриваемом примере паттерн Cu и Sn, сформированный на поверхности первой пластины 1, задает границы углубления 5, образованного в поверхности этой пластины. В углубление, выполненное на первой или второй пластине, может быть помещен геттерный или иной химически чувствительный материал (не изображен). На вторую пластину 2, имеющую схожую конфигурацию, также наносят слои Cu и Sn предпочтительно (но не обязательно) с такими же толщинами и с такой же геометрией в поперечном направлении, что и для стопы 3 Cu и слоя 4 Sn, нанесенных на первую пластину 1.
Для наглядности вторая пластина 2 изображена несущей группу мелких и непрочных компонентов 8. Подобные компоненты часто являются химически чувствительными, причем, в зависимости от назначения изготавливаемой конструкции, они могут находиться на первой пластине 1 и/или на второй пластине 2.
Нанесение может осуществляться, например, методом электроосаждения или химического восстановления (electroless-plating) с использованием соответствующих затравочных слоев или любым другим подходящим известным способом.
На фиг.2а первая и вторая пластины 1, 2 показаны приведенными в начальный взаимный контакт путем приложения к первой пластине 1 (в предположении, что вторая пластина 2 установлена на твердую поверхность) усилия F соединения, чтобы инициировать способ по изобретению. Этот начальный этап способа осуществляют при температуре ниже температуры плавления Sn, как это проиллюстрировано на графике "время - температура" (см. фиг.2b). Целесообразно осуществлять указанный начальный этап при относительно низких температурах по сравнению с известными способами типа SLID, даже при комнатной температуре, если это необходимо. Однако, как это будет понятно специалистам, температура, при которой пластины приводятся в контакт одна с другой, зависит от требуемых свойств результирующей соединенной конструкции, которые определяются назначением устройства, таким, например, как инкапсулирование в вакуумизированном объеме или герметизация.
На фиг.3а иллюстрируется следующий этап рассматриваемого примера, на котором, после создания контакта между первой и второй пластинами 1, 2, производят деформирование (сжатие) слоев 4 Sn под действием давления, создаваемого усилием F соединения, что облегчает непосредственный контакт между металлами на границе раздела Sn-Sn. Как можно видеть из фиг.3b, этот этап способа также осуществляют при температуре, которая ниже температуры плавления Sn, но которая начинает повышаться после начала формирования соединения. Давление, создаваемое усилием F соединения, приводит к деформации Sn, разрушая любой тонкий оксидный слой, который, как правило, образуется на Sn, и сглаживая шероховатость поверхности. Данная деформация может быть дополнительно усилена приложением ультразвуковой энергии.
Нагрев ускоряет взаимную атомную диффузию и, таким образом, создание соединения Sn-Sn. Нагрев ускоряет также образование интерметаллидов 6 на границах Cu-Sn в каждой стопе 3 Cu. В результате, когда будет превышена температура плавления Sn, приблизительно (в зависимости от температурного профиля и толщин металлов) составляющая 232°С, между стопами 3 Cu останется только очень тонкий слой 4 чистого Sn или вообще не останется этого слоя. При температурах ниже 150°С интерметаллиды 6 состоят из соединения Cu6Sn5, которое при более высоких температурах и при избытке Cu постепенно преобразуется в Cu3Sn.
На фиг.4а представлена конструкция, полученная в результате завершения процесса, в которой первая и вторая пластины 1, 2 соединены сплавом 7 CuxSny. Состав этого сплава CuxSny зависит от температуры на границе раздела Cu-Sn при осуществлении соединения, хотя предпочтительным является Cu3Sn. Как можно видеть из температурного профиля, представленного для этого примера на фиг.4b, способ соединения завершается при температуре, превышающей температуру плавления Sn. При этом температурный профиль должен быть выбран так, чтобы обеспечить полное преобразование Sn 4 в желательный сплав CuxSny.
В этом примере повышение температуры в ходе процесса было равномерным. Однако это повышение температуры может и не быть равномерным, причем она может варьировать в интервале ниже и выше температуры плавления Sn. Эту вариабельность можно рассматривать как преимущество в терминах управления соединением. Однако, как уже было упомянуто, при правильном выборе температурного профиля данный процесс позволяет получить хорошее промежуточное соединение Sn-Sn и в то же время уменьшить остаточный объем Sn, не вступившего в химическую реакцию до того, как будет достигнута температура плавления.
Соответственно, способ по изобретению можно рассматривать как твердотельный процесс, в котором стадии образования интерметаллида 6 и/или получаемого на завершающем этапе сплава 7 CuxSny не требуют обязательного перевода слоя 4 Sn в жидкое состояние, поскольку фазы Cu6Sn5 и Cu3Sn имеют более высокие температуры плавления, чем температура плавления Sn и максимальная температура в процессе соединения. В зависимости от выбранных параметров процесса жидкая фаза Sn может вообще отсутствовать или быть ограниченной очень узкой областью вблизи границы Sn-Sn.
Суммарное усилие соединения, прикладываемое к первой и второй пластинам 1, 2 после их состыковки, должно быть достаточно высоким, чтобы слои 4 Sn, которые образуют стыкующиеся поверхности на обеих пластинах 1, 2, могли вступить в настолько плотный контакт, что любые поверхностные неоднородности пластин 1, 2 окажутся поглощенными пластичным Sn.
Наличие слоя 4 Sn на каждой из стыкующихся поверхностей позволяет также повысить однородность Sn по толщине по сравнению с процессами, известными из уровня техники. Кроме того, появляется возможность компенсировать неоднородности на любой из пластин 1, 2, модифицируя поверхность другой пластины 2, 1. Такая модификация может предусматривать, например, формирование на этих пластинах зеркальных вспомогательных структур.
Усилие соединения, прикладываемое к пластинам в процессе сборки, должно быть достаточно высоким, чтобы обеспечить давление соединения больше 0,05 МПа, предпочтительно в интервале 5-50 МПа. При таком давлении любые поверхностные неоднородности пластин 1, 2 окажутся поглощенными пластичным Sn. Было, в частности, установлено, что давление соединения в интервале 15-25 МПа является полезным для ослабления влияния любых шероховатостей поверхности, приводя к хорошим и однородным соединениям.
На фиг.5а показан, в сечении, участок корпуса, сформированный посредством соединения согласно изобретению при пониженной температуре и при давлении соединения около 10 МПа. Можно видеть, что при таком давлении соединения поверхности 13 Sn деформировались с образованием высококачественной зоны соединения, хотя все же наблюдается некоторое количество пустот 9. На фиг.5b показан, в сечении, участок корпуса, сформированный посредством соединения при давлении 17 МПа, которое лежит в предпочтительном интервале давлений 15-25 МПа. Можно видеть, что в этом случае поверхности Sn 13 деформировались в достаточной степени, чтобы обеспечить полностью гладкую границу соединения, т.е. исключить любые пустоты 9.
В приведенном примере температурный профиль был выбран таким, что значительная взаимная диффузия Cu и Sn происходит при температуре ниже температуры плавления Sn (равной 232°С, как это отмечено на фиг.2а и 3b). При таком подходе легче добиться того, чтобы к моменту достижения температуры плавления Sn на границе раздела Sn-Sn оставалось очень малое (или нулевое) количество Sn, не вступившей в реакцию. Соответственно, поскольку в процессе соединения присутствует очень небольшое (или нулевое) количество расплавленного материала, обеспечивается эффективная минимизация любого неконтролируемого стекания Sn. Фиг.4а и 4b иллюстрируют результирующее соединение с образованием CuxSny 7 при температуре, превышающей температуру плавления Sn. Как уже упоминалось, для различных применений результирующей структуры могут потребоваться различные композиции CuxSny.
Отсутствие необходимости поддерживать структуру в течение длительного времени в ходе ее образования при температуре выше температуры плавления Sn (поскольку основная часть процесса взаимной диффузии успевает завершиться при более низких температурах) является преимуществом изобретения.
Любые неоднородности толщины по поверхностям пластин 1, 2 будут в ходе процесса поглощаться пластичным Sn в результате приложения к пластинам 1, 2 во время повышения температуры значительного усилия F соединения.
В другом примере изобретения с использованием соединительных структур CuSn могут быть реализованы трехмерные соединения. При этом сборка на уровне пластин без применения флюса может быть осуществлена формированием на обеих пластинах конфигурации из стопы 3 слоев Cu и слоя Sn аналогично тому, как это было описано выше. Образующиеся в этом примере структуры можно рассматривать как индивидуальные контакты, причем образование Sn в жидком состоянии здесь также может быть минимизировано созданием для Cu-Sn/Sn-Cu возможности взаимной диффузии при температурах ниже 232°С.
Оба рассмотренных примера пригодны для крупномасштабного производства с использованием традиционных процессов на уровне пластин, причем возможно комбинирование этих процессов на одной пластине.
Достоинством изобретения является то, что ни одну из соединяемых поверхностей второго металла, имеющего более низкую температуру плавления, в частности Sn, не требуется обрабатывать флюсом до или в процессе формирования соединения. При этом в бесфлюсовом процессе могут быть получены герметичные соединения на уровне пластин с оптимизацией параметров соединения с целью ограничить образование текучей Sn при осуществлении соединения пластин путем подбора температурного профиля и усилия, отличных от используемых в известных способах, которые требуют применения флюса.
Хотя подробно рассмотренный пример предназначен для осуществления соединения на уровне пластин, специалисту будет понятно, что те же принципы применимы для соединений между кристаллами (чипами) с чувствительными и нежесткими компонентами, которые могли бы быть повреждены при использовании способа, требующего предварительной обработки соединяемых поверхностей.
Таким образом, изобретение обеспечивает создание способа соединения, относящегося к типу SLID и пригодного для соединения, на уровне пластин, чувствительных структур, которые могут содержать хрупкие компоненты, без необходимости какой-либо предварительной обработки отдельных пластин.

Claims (13)

1. Способ соединения с применением взаимной диффузии металлов для формирования, на уровне пластин, герметичных корпусов для устройств (8) на базе микроэлектромеханических систем (МЭМС), включающий следующие этапы:
формирование на поверхности как первой пластины (1), так и второй пластины (2) стопы (3) из первого металла, подверженного окислению на воздухе;
формирование на верхней поверхности каждой стопы из первого металла слоя (4) второго металла, температура плавления у которого ниже, чем у первого металла, причем толщину слоя второго металла выбирают достаточной для предотвращения окисления верхней поверхности первого металла;
приведение слоя (4) второго металла на первой пластине (1) в контакт со слоем (4) второго металла на второй пластине (2), чтобы образовать зону соединения, и
приложение к первой и второй пластинам (1, 2) давления соединения при температуре зоны соединения, которая ниже температуры плавления второго металла, чтобы инициировать соединение, причем давление соединения выбирают достаточным для деформирования слоев (4) второго металла в зоне соединения.
2. Способ по п.1, дополнительно включающий повышение температуры зоны соединения до температуры плавления второго металла для образования интерметаллида (6), который соединяет первую и вторую пластины (1, 2).
3. Способ по п.1, в котором первый металл является медью, а второй оловом.
4. Способ по п.1, в котором, пока приложено давление соединения, температуру зоны соединения повышают регулярным образом.
5. Способ по п.1, в котором, пока приложено давление соединения, температуру зоны соединения повышают нерегулярным образом.
6. Способ по п.1, в котором, пока приложено усилие соединения, температура зоны соединения не превышает температуру плавления второго металла.
7. Способ по п.1, в котором давление соединения превышает 0,05 МПа.
8. Способ по п.7, в котором давление соединения составляет 5-50 МПа.
9. Способ по п.7, в котором давление соединения составляет 15-25 МПа.
10. Способ по п.1, при осуществлении которого, с целью изменения взаимной диффузии, обеспечиваемой в зоне соединения, контролируют один или более таких параметров соединения, как усилие (F), температуру и акустическую энергию.
11. Способ по п.1, в котором соединение содержит интерметаллид (6), причем указанный интерметаллид содержит интерметаллическую зону соединения.
12. Способ по п.1, в котором на поверхности первой пластины (1) и/или на поверхности второй пластины (2) формируют МЭМС-устройство (8), геттерный материал или химически чувствительный материал.
13. Способ по п.12, в котором МЭМС-устройство (8) является химически чувствительным.
RU2012141152/28A 2010-03-02 2011-03-01 Способ соединения, герметичная конструкция, изготовленная данным способом, и система герметичных конструкций RU2536076C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10155251A EP2363373A1 (en) 2010-03-02 2010-03-02 Bonding process for sensitive micro-and nano-systems
EP10155251.1 2010-03-02
PCT/EP2011/053047 WO2011107484A1 (en) 2010-03-02 2011-03-01 Bonding process for sensitive micro- and nano-systems

Publications (2)

Publication Number Publication Date
RU2012141152A RU2012141152A (ru) 2014-04-10
RU2536076C2 true RU2536076C2 (ru) 2014-12-20

Family

ID=42331043

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012141152/28A RU2536076C2 (ru) 2010-03-02 2011-03-01 Способ соединения, герметичная конструкция, изготовленная данным способом, и система герметичных конструкций

Country Status (6)

Country Link
US (1) US20120321907A1 (ru)
EP (2) EP2363373A1 (ru)
CN (1) CN102883991B (ru)
CA (1) CA2791334A1 (ru)
RU (1) RU2536076C2 (ru)
WO (1) WO2011107484A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662061C1 (ru) * 2017-10-25 2018-07-23 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Способ герметизации мэмс устройств

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5588419B2 (ja) * 2011-10-26 2014-09-10 株式会社東芝 パッケージ
NO2944700T3 (ru) * 2013-07-11 2018-03-17
FR3008690B1 (fr) * 2013-07-22 2016-12-23 Commissariat Energie Atomique Dispositif comportant un canal fluidique muni d'au moins un systeme micro ou nanoelectronique et procede de realisation d'un tel dispositif
CN103434998B (zh) * 2013-08-29 2016-04-20 上海华虹宏力半导体制造有限公司 晶圆级气密性的测试结构及测试方法
CN110071049B (zh) 2013-09-13 2023-12-08 Ev 集团 E·索尔纳有限责任公司 用于施加接合层的方法
CN105826243A (zh) * 2015-01-09 2016-08-03 中芯国际集成电路制造(上海)有限公司 晶圆键合方法以及晶圆键合结构
US11094661B2 (en) * 2015-11-16 2021-08-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Bonded structure and method of manufacturing the same
US9865565B2 (en) * 2015-12-08 2018-01-09 Amkor Technology, Inc. Transient interface gradient bonding for metal bonds
GB2569466B (en) * 2016-10-24 2021-06-30 Jaguar Land Rover Ltd Apparatus and method relating to electrochemical migration
US10037957B2 (en) 2016-11-14 2018-07-31 Amkor Technology, Inc. Semiconductor device and method of manufacturing thereof
CN111792621B (zh) * 2020-07-06 2024-04-16 中国科学院上海微系统与信息技术研究所 一种圆片级薄膜封装方法及封装器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0365807A1 (en) * 1988-10-12 1990-05-02 International Business Machines Corporation Bonding of metallic surfaces
DE19531158A1 (de) * 1995-08-24 1997-02-27 Daimler Benz Ag Verfahren zur Erzeugung einer temperaturstabilen Verbindung
RU2219027C2 (ru) * 2002-01-15 2003-12-20 Общество с ограниченной ответственностью "Амалгамэйтед Технологическая группа" Способ изготовления неразъемного соединения двух тел, выполненных из разнородных металлов, и неразъемное соединение, получаемое этим способом
US20080026247A1 (en) * 2006-07-25 2008-01-31 Nissan Motor Co., Ltd. Method and apparatus for bonding dissimilar materials made from metals
EP2144282A1 (en) * 2007-04-27 2010-01-13 Sumitomo Bakelite Company Limited Method for bonding semiconductor wafers and method for manufacturing semiconductor device
WO2010031845A1 (en) * 2008-09-18 2010-03-25 Imec Methods and systems for material bonding
US20100178419A1 (en) * 2007-10-15 2010-07-15 Commissariat A L'energie Atomique Structure comprising a getter layer and an adjusting sublayer and fabrication process
CN102104090A (zh) * 2009-12-22 2011-06-22 财团法人工业技术研究院 发光二极管芯片固晶方法、固晶的发光二极管及芯片结构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821161A (en) * 1997-05-01 1998-10-13 International Business Machines Corporation Cast metal seal for semiconductor substrates and process thereof
EP0951068A1 (en) * 1998-04-17 1999-10-20 Interuniversitair Micro-Elektronica Centrum Vzw Method of fabrication of a microstructure having an inside cavity
US6853067B1 (en) * 1999-10-12 2005-02-08 Microassembly Technologies, Inc. Microelectromechanical systems using thermocompression bonding
ATE306354T1 (de) 2000-09-07 2005-10-15 Infineon Technologies Ag Lotmittel zur verwendung bei diffusionslotprozessen
JP3735526B2 (ja) * 2000-10-04 2006-01-18 日本電気株式会社 半導体装置及びその製造方法
US6667225B2 (en) * 2001-12-17 2003-12-23 Intel Corporation Wafer-bonding using solder and method of making the same
US6793829B2 (en) 2002-02-27 2004-09-21 Honeywell International Inc. Bonding for a micro-electro-mechanical system (MEMS) and MEMS based devices
WO2004016384A1 (en) * 2002-08-16 2004-02-26 New Transducers Limited Method of bonding a piezoelectric material and a substrate
US7402509B2 (en) * 2005-03-16 2008-07-22 Intel Corporation Method of forming self-passivating interconnects and resulting devices
EP1732116B1 (en) * 2005-06-08 2017-02-01 Imec Methods for bonding and micro-electronic devices produced according to such methods
US7981765B2 (en) * 2008-09-10 2011-07-19 Analog Devices, Inc. Substrate bonding with bonding material having rare earth metal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0365807A1 (en) * 1988-10-12 1990-05-02 International Business Machines Corporation Bonding of metallic surfaces
DE19531158A1 (de) * 1995-08-24 1997-02-27 Daimler Benz Ag Verfahren zur Erzeugung einer temperaturstabilen Verbindung
RU2219027C2 (ru) * 2002-01-15 2003-12-20 Общество с ограниченной ответственностью "Амалгамэйтед Технологическая группа" Способ изготовления неразъемного соединения двух тел, выполненных из разнородных металлов, и неразъемное соединение, получаемое этим способом
US20080026247A1 (en) * 2006-07-25 2008-01-31 Nissan Motor Co., Ltd. Method and apparatus for bonding dissimilar materials made from metals
EP2144282A1 (en) * 2007-04-27 2010-01-13 Sumitomo Bakelite Company Limited Method for bonding semiconductor wafers and method for manufacturing semiconductor device
US20100178419A1 (en) * 2007-10-15 2010-07-15 Commissariat A L'energie Atomique Structure comprising a getter layer and an adjusting sublayer and fabrication process
WO2010031845A1 (en) * 2008-09-18 2010-03-25 Imec Methods and systems for material bonding
CN102104090A (zh) * 2009-12-22 2011-06-22 财团法人工业技术研究院 发光二极管芯片固晶方法、固晶的发光二极管及芯片结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662061C1 (ru) * 2017-10-25 2018-07-23 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Способ герметизации мэмс устройств

Also Published As

Publication number Publication date
WO2011107484A1 (en) 2011-09-09
EP2542500A1 (en) 2013-01-09
US20120321907A1 (en) 2012-12-20
CN102883991A (zh) 2013-01-16
CN102883991B (zh) 2015-06-10
EP2363373A1 (en) 2011-09-07
CA2791334A1 (en) 2011-09-09
RU2012141152A (ru) 2014-04-10

Similar Documents

Publication Publication Date Title
RU2536076C2 (ru) Способ соединения, герметичная конструкция, изготовленная данным способом, и система герметичных конструкций
US8304324B2 (en) Low-temperature wafer bonding of semiconductors to metals
US8742600B2 (en) Dual-phase intermetallic interconnection structure and method of fabricating the same
JP5571988B2 (ja) 接合方法
US9922894B1 (en) Air cavity packages and methods for the production thereof
EP0951068A1 (en) Method of fabrication of a microstructure having an inside cavity
US8618670B2 (en) Corrosion control of stacked integrated circuits
KR101927559B1 (ko) 고체 상태 확산 또는 상 변환에 의해 연결 층에 의한 웨이퍼의 영구 접착을 위한 방법
US20050257877A1 (en) Bonded assemblies
US20150158112A1 (en) Method for sealing two elements by low temperature thermocompression
KR101963933B1 (ko) 기판을 코팅 및 본딩하기 위한 방법
CN112930594A (zh) 粘合基板的方法
TWI545665B (zh) 氣密式晶圓封裝
CN111370339B (zh) 晶圆的室温等静压金属键合方法
US11535945B2 (en) Immersion plating treatments for indium passivation
Suni et al. Wafer-level AuSn and CuSn bonding for MEMS encapsulation
CN109075127B (zh) 贯通孔的密封结构及密封方法、以及用于将贯通孔密封的转印基板
US20080061114A1 (en) Method for the fabrication of low temperature vacuum sealed bonds using diffusion welding
CN117410259A (zh) 一种晶圆级封装结构及其封装方法
KR20230006122A (ko) 금속 전해도금막을 이용한 구리 대 구리 직접 접합 방법, 이를 이용한 웨이퍼 레벨 패키징 방법 및 이를 이용하여 제조된 반도체 소자
CN115458464A (zh) 一种临时键合晶圆的设备及方法、半导体器件的制备工艺
KR101530922B1 (ko) Ge 박막을 이용한 웨이퍼 레벨 패키지의 제조방법과 이에 의해 제조된 웨이퍼 레벨 패키지
WO2012023899A1 (en) Hermetic seal and method of manufacture thereof
KR20050016867A (ko) 전기화학적 제조 공정
JP2004311602A (ja) Icチップの実装方法

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160302