RU2535605C2 - Повторная калибровка предварительно записанных изображений во время вмешательства с использованием игольчатого устройства - Google Patents
Повторная калибровка предварительно записанных изображений во время вмешательства с использованием игольчатого устройства Download PDFInfo
- Publication number
- RU2535605C2 RU2535605C2 RU2011153794/14A RU2011153794A RU2535605C2 RU 2535605 C2 RU2535605 C2 RU 2535605C2 RU 2011153794/14 A RU2011153794/14 A RU 2011153794/14A RU 2011153794 A RU2011153794 A RU 2011153794A RU 2535605 C2 RU2535605 C2 RU 2535605C2
- Authority
- RU
- Russia
- Prior art keywords
- image
- sensor
- needle
- local data
- needle device
- Prior art date
Links
- 238000001454 recorded image Methods 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000012545 processing Methods 0.000 claims abstract description 20
- 238000004590 computer program Methods 0.000 claims abstract description 7
- 239000013307 optical fiber Substances 0.000 claims description 24
- 238000004611 spectroscopical analysis Methods 0.000 claims description 12
- 230000004913 activation Effects 0.000 claims description 7
- 238000001506 fluorescence spectroscopy Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000001069 Raman spectroscopy Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 238000012014 optical coherence tomography Methods 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 abstract description 11
- 239000000126 substance Substances 0.000 abstract 1
- 210000001519 tissue Anatomy 0.000 description 46
- 230000003287 optical effect Effects 0.000 description 26
- 239000000835 fiber Substances 0.000 description 16
- 238000001228 spectrum Methods 0.000 description 12
- 239000004744 fabric Substances 0.000 description 9
- 206010028980 Neoplasm Diseases 0.000 description 6
- 238000001574 biopsy Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 210000004872 soft tissue Anatomy 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 230000003936 working memory Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000009026 tissue transition Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0833—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
- A61B8/0841—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6848—Needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/12—Arrangements for detecting or locating foreign bodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5229—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
- A61B6/5247—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5238—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
- A61B2090/3614—Image-producing devices, e.g. surgical cameras using optical fibre
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/374—NMR or MRI
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/376—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
- A61B2090/3782—Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
- A61B2090/3784—Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument both receiver and transmitter being in the instrument or receiver being also transmitter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0068—Confocal scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0073—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Computer Vision & Pattern Recognition (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Endoscopes (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Изобретение относится к медицинской технике, а именно к системам для направлений медицинского устройства в намеченное местоположение. Интервенционная система включает устройство формирования изображения для обеспечения прямого изображения объекта, игольчатое устройство, выполненное с возможностью введения в объект и имеющее положение в объекте, обнаруживаемое на прямом изображении, и обрабатывающее устройство, выполненное с возможностью получения предварительно записанного изображения объекта из баз данных. Игольчатое устройство включает датчик обеспечения местных данных, соответствующих свойствам ткани вблизи датчика, а обрабатывающее устройство выполнено с возможностью совмещения наложением предварительно записанного изображения и прямого изображения друг на друга, причем местные данные от датчика используются для повторной калибровки совмещения наложением на основе предварительно записанного изображения, положения игольчатого устройства на прямом изображении и местных данных от датчика. Машиночитаемый носитель системы имеет сохраненную на нем компьютерную программу, которая предписывает обрабатывающему устройству выполнять способ совмещения предварительно записанного изображения и прямого изображения объекта. Использование изобретения позволяет повысить точность наложения изображений. 2 н. и 10 з.п. ф-лы, 8 ил.
Description
Область техники, к которой относится изобретение
Настоящее изобретение относится к интервенционной системе, включающей в себя устройство формирования изображения и игольчатое устройство. Также, изобретение относится к способу объединения предварительно записанных изображений с прямыми изображениями интересующего объекта. В частности, изобретение относится к системе и способу, обеспечивающим повторную калибровку наложения предварительно записанных изображений и прямых изображений друг на друга.
Уровень техники
Во время вмешательства, врач, осуществляющий вмешательство, использует предварительно записанные изображения и отображение прямого изображения для направления медицинского устройства, такого как игла, в намеченное местоположение. До вмешательства получают детальное изображение организма. Это изображение чаще всего представляет собой трехмерное изображение. Систему координат этого трехмерного изображения соединяют с местоположением стола и/или медицинского оборудования формирования изображения, используемого во время вмешательства. Таким образом, осуществляют наложение прямых изображений, полученных во время вмешательства и предварительно записанного изображения друг на друга. Точность наложения явно зависит от точности системы координат и, например, точности положения стола и оборудования формирования прямого изображения. Более того, точность наложения также зависит от движения пациента, например, при дыхании. Для некоторых вмешательств, таких как, например, биопсия небольших глубоко расположенных повреждений, точность наложения недостаточна.
Сущность изобретения
Задачей изобретения является предоставление интервенционной системы и способа объединения изображений, где точность наложения изображений возрастает.
В основном, это достигается посредством использования информации о местной ткани. Подобная информация может быть предоставлена посредством, так называемой, фотонной иглы, т.е. посредством игольчатого устройства, содержащего оптическое волокно. Оптическое волокно может представлять собой датчик, посредством которого игольчатое устройство может обнаруживать признаки ткани. Такие признаки также могут быть обнаружены на изображениях, подлежащих объединению.
Таким образом, существенным признаком изобретения является то, что информацию от датчика игольчатого устройства объединяют с информацией, предоставленной посредством прямого и предварительно записанных изображений для увеличения точности наложения предварительно записанного и прямого изображений друг на друга, посредством повторной калибровки системы координат предварительного записанного изображения с системой координат прямого изображения, используя признаки, выявленные датчиком игольчатого устройства, причем эти признаки присутствуют на предварительно записанных изображениях и в большей или меньшей мере представлены на прямых изображениях.
Для выполнения совмещения наложением идентифицируют систему координат или ориентир на каждом из накладываемых изображений. В некоторых случаях прямое изображение не показывает все детали предварительно записанного изображения. В этом случае, датчик игольчатого устройства, положение которого может быть обнаружено на прямом изображении, обеспечивает дополнительную информацию о ткани в местоположении датчика. Эту дополнительную информацию используют для предоставления более точной идентификации системы координат или ориентира на прямом изображении, причем эту систему координат или ориентир также можно идентифицировать на предварительно записанном изображении так, чтобы посредством системы согласно изобретению увеличить точность наложения.
Другими словами, исходя из конкретного типа ткани, распознанного посредством иглы в определенный момент, и зная приблизительно ее положение, можно точно обнаружить объем анализируемой ткани в системе координат предварительно записанного, т.е. предоперационного изображения, так как информация о ткани также доступна из предварительно записанного изображения. Исходя из пространственного соотношения между этим объемом ткани и иглой, и зная положение иглы на прямых изображениях, также можно определить положение этого объема ткани по отношению к системе координат прямых изображений. Таким образом, поскольку местоположение ткани известно в системе координат предварительно записанного изображения и в системе координат прямых изображений, можно выполнять повторную калибровку совмещения наложением.
Вышеупомянутая задача решена посредством объекта соответствующих независимых пунктов формулы изобретения. Также описаны примеры вариантов осуществления в соответствующих зависимых пунктах формулы изобретения.
В целом, интервенционная система согласно изобретению включает в себя устройство формирования изображения, обеспечивающее изображения объекта, игольчатое устройство и обрабатывающее устройство. Игольчатое устройство включает в себя датчик для обеспечения данных, соответствующих свойствам ткани. Обрабатывающее устройство выполнено с возможностью совмещения наложением друг на друга предварительно записанных изображений и прямых изображений, предоставленных устройством формирования изображения, с использованием данных от датчика.
Согласно другому варианту осуществления, интервенционная система может дополнительно содержать анализирующее устройство, причем анализирующее устройство соединено с датчиком и выполнено с возможностью обработки данных от датчика, таким образом, генерируя информацию о свойствах ткани.
Датчик игольчатого устройства включает в себя оптическое волокно, выполненное с возможностью излучать и принимать свет. Анализирующее устройство включает в себя консоль для спектроскопии, причем консоль и оптическое волокно соединены друг с другом.
Консоль для спектроскопии выполнена с возможностью предоставления информации от одного вида спектроскопии из группы, состоящей из отражательной спектроскопии, флуоресцентной спектроскопии, аутофлуоресцентной спектроскопии, спектроскопии при различной длине траектории, спектроскопии комбинационного рассеяния света, оптической когерентной томографии и мультифотонной флуоресцентной спектроскопии.
Кроме того, датчик игольчатого устройства включает в себя элементы с возможностью формирования микроскопического изображения. Такие элементы могут включать оптическое волокно, пучок оптических волокон, линзу и средство активации. Средство активации может перемещать оптическое(ие) волокно(а) вместе с линзой или может перемещать только оптическое(ие) волокно(а) или линзу. Также, возможность формирования изображений может быть реализована при помощи только пучка волокон и линзы, без средства активации. С такой возможностью формирования изображений можно формировать микроскопические изображения ткани перед игольчатым устройством.
Согласно еще одному варианту осуществления, устройство формирования изображения является неинвазивным средством формирования изображения, принадлежащим к одному из группы, состоящей из рентгеновского устройства, компьютерного томографа, магнитно-резонансного томографа и ультразвукового устройства.
Следует отметить, что игольчатое устройство включает в себя структуру и материал, выполненные с возможностью визуализации посредством устройства формирования изображения.
Другими словами, интегрированная система согласно изобретению включает неинвазивное средство формирования изображения, выполненное с возможностью формировать изображение внутренней части организма; игольчатое устройство, содержащее датчик, включающий в себя по меньшей мере одно волокно, причем волокно соединено с консолью, выполненной с возможностью зондировать ткань впереди наконечника игольчатого устройства или вблизи него. Неинвазивное средство формирования изображения может формировать изображение игольчатого устройства внутри тела, обеспечивая предварительное наведение игольчатого устройства на основе неинвазивного средства формирования изображения. Оптическое средство применяют для уточнения положения части наконечника игольчатого устройства в ткани-мишени. Предпочтительно, оптическую информацию совмещают с изображением неинвазивного средства формирования изображения. Предпочтительно, в случае обеспечения неинвазивным средством формирования изображения трехмерного изображения, оптическую информацию совмещают с трехмерной системой координат изображения.
Следует отметить, что игольчатым устройством может быть, с одной стороны, игла для биопсии, канюля или троакар, или, с другой стороны, может также быть катетер, выполненный с возможностью вмещения иглы, посредством которой, например, непосредственно выполняют биопсию.
"Ткань", изучаемая системой, включает все виды живой или мертвой ткани, например ткани человека, в частности эпителиальную ткань (например, поверхность кожи, внутреннюю оболочку желудочно-кишечного тракта), соединительную ткань (например, кровь, костную ткань), мышечную ткань и нервную ткань (например, мозга, спинного мозга и периферической нервной системы). "Ткань" также может содержать пищевые продукты, биоматериалы, синтетические материалы, жидкие или вязкие вещества и т.д.
Согласно другому аспекту изобретения, способ объединения предварительно записанных изображений с прямыми изображениями интересующего объекта включает в себя этапы наложения предварительно записанных изображений и прямых изображений друг на друга, получения информации о местной ткани, повторной калибровки наложения изображений с использованием полученной информации о местной ткани.
Согласно одному варианту осуществления, способ может дополнительно содержать этапы приема предварительно записанных изображений из базы данных и приема прямых изображений от устройства формирования изображения. Информацию о местной ткани можно также получить посредством игольчатого устройства.
Согласно другому варианту осуществления, в способе этап наложения включает задание системы координат на предварительно записанном изображении и идентификацию соответствующей системы координат на прямом изображении или наоборот.
Согласно другому варианту осуществления, в способе этап повторной калибровки наложения может включать идентификацию структур на предварительно записанном изображении, соответствующих полученной информации.
Предварительно записанные изображения, прямые изображения и информация о местной ткани могут быть обработаны в режиме реального времени для вычисления ошибки в наложении.
Изобретение также относится к компьютерной программе для обрабатывающего устройства, при которой способ согласно изобретению исполняют соответствующей системой. Компьютерную программу предпочтительно загружают в рабочую память процессора данных. Процессор данных оснащают таким образом, чтобы выполнить способ согласно изобретению. Также, изобретение относится к машиночитаемому носителю, такому как CD-Rom, на котором хранится компьютерная программа. Однако компьютерная программа также может быть представлена в сети, такой как всемирная сеть и может быть загружена в рабочую память процессора данных из такой сети.
Следует отметить, что варианты осуществления изобретения описаны в отношении различных объектов изобретения. В частности, некоторые варианты осуществления описаны в отношении пунктов формулы изобретения, относящихся к способу, тогда как другие варианты осуществления описаны в отношении пунктов формулы изобретения, относящихся к устройству. Однако специалист в данной области техники сделает вывод из вышесказанного и последующего описания, что если не указано иначе, в дополнение к любой комбинации признаков, принадлежащих одному типу объекта изобретения, в настоящем описании считается раскрытой также любая комбинация признаков, относящихся к разным объектам изобретения.
Аспекты, описанные выше, а также дополнительные аспекты, признаки и преимущества настоящего изобретения могут также быть извлечены из примеров вариантов осуществления, описанных ниже, и объяснены со ссылкой на примеры вариантов осуществления. Далее изобретение будет описано более подробно со ссылкой на примеры вариантов осуществления, но настоящее изобретение не ограничено этими вариантами осуществления.
Краткое описание чертежей
На фигуре 1 представлено игольчатое устройство согласно изобретению, включающее сенсорные средства.
На фигуре 2 представлено детальное изображение части наконечника игольчатого устройства, включая систему линз датчика, согласно примеру варианта осуществления игольчатого устройства.
На фигуре 3 представлена интервенционная система согласно изобретению.
Фигура 4 демонстрирует примеры изображений, показывающих игольчатое устройство в объекте, где наконечник игольчатого устройства расположен на разном расстоянии от структуры-мишени.
Фигура 5 представляет собой первое изображение длин волн для нескольких спектров.
Фигура 6 представляет собой второе изображение длин волн для нескольких спектров.
Фигура 7 представляет собой изображение длин волн для трех иллюстративных спектров.
Фигура 8 представляет собой блок-схему последовательности операций способа согласно изобретению.
Изображения на чертежах схематичны и не приведены в масштабе. Следует заметить, что на разных фигурах, сходные элементы обозначены одинаковыми ссылочными позициями.
Подробное описание примеров вариантов осуществления
Как представлено на фигуре 1, игольчатое устройство 200, являющееся частью системы согласно одному варианту осуществления изобретения, включает в себя стержень 210, скос на части наконечника стержня, по меньшей мере, одно волокно 230 и удерживающую часть 290.
Например, стержень может иметь длину 150 мм и диаметр 1,3 мм. Также, скос может образовывать угол с осью стержня, составляющий 20°. Такие размеры позволяют видеть порядок величин и соотношения для иглы, предназначенной для исследования тканей на основе оптической спектроскопии.
В этом варианте осуществления волокно 230, проходящее от дистального конца, т.е. от поверхности скоса, через стержень 210 к удерживающей части 290, проходит через отверстие в удерживающей части 290 вне иглы.
Кроме того, на фигуре 1 схематично представлены элементы системы согласно изобретению. Система включает в себя игольчатое устройство 200, источник 110 света, приемник 120 света, обрабатывающий блок 620 и монитор 610. Обрабатывающий блок 620 выполнен с возможностью управления источником 110 света, чтобы испускать свет в волокно 230, таким образом, чтобы испускать свет через дистальный конец поверхности волокна 230 на вершине скоса в окружающую ткань.
В зависимости от вида ткани перед скосом, будет отражаться больше или меньше испускаемого света в направлении к основанию скоса, воспринимаемого другим волокном. Через указанное другое волокно свет достигает приемника 120 света, выполненного с возможностью преобразования света в электрические сигналы. Эти электрические сигналы будут переданы посредством, например, провода на обрабатывающий блок 620. Обрабатывающий блок обработает данные, соответствующие электрическим сигналам таким образом, чтобы обработанные данные были доступны для визуализации на мониторе 610. На основании указанных данных визуализации возможна диагностика, является ли особым типом ткань перед частью наконечника иглы 200.
Следует отметить, что также подмножество волокон, составляющих множество волокон, может быть использовано для направления света в ткань, тогда как другое подмножество волокон применяют для сбора света, исходящего от ткани, в которой расположена игла.
Отношение падающего света к исходящему свету определяют как коэффициент отражения. Посредством освещения ткани белым светом и спектрального разрешения обнаруженного света, может быть получен спектр отражения от ткани.
Спектры отражения различных типов тканей в основном различаются в зависимости от различного молекулярного строения тканей. В результате измерения этих спектров можно отличить ткани друг от друга. Так как при оптическом способе возможна только ограниченная глубина проникновения (глубина изображения составляет от нескольких миллиметров до нескольких сантиметров), направление иглы или канюли без наведения неинвазивным средством затруднительно из-за отсутствия обзора положения иглы или канюли в пространстве.
Посредством правильного выделения признаков, эту информацию о ткани можно использовать для классификации ткани на разные типы тканей. Эту информацию можно использовать для правильного размещения иглы в точном местоположении в теле.
Фигура 2 представляет собой схематический чертеж игольчатого устройства в поперечном сечении согласно примеру варианта осуществления, в соответствии с которым датчик 220 реализован посредством системы линз, содержащей линзу 250 и систему 260,270 активации.
Для создания компактной системы линз применяют асферическую поверхность линзы 250. Путем изготовления линзы 250 из соответствующего полимера можно создать компактную систему линз, подходящую для массового производства. Предпочтительно, полимер должен быть полимером низкой плотности для предоставления легкого смещения системы линз.
Систему линз располагают на расстоянии L от оптического выхода оптического волокна 230, заданном посредством крепления 240. Расстояние (L) значительно больше, чем диаметр сердцевины оптического волокна 230.
Система линз может быть частью, установленной на стержне 210 игольчатого устройства вместе с системой активации, включающей в себя электромеханическую двигательную систему с катушками 270, работающими совместно с магнитами 260, причем магниты механически прикреплены к оптическому волокну 230 таким образом, чтобы выполнять сканирование оптическим волокном 230 и линзой 250 под действием двигательной системы, причем возможна как активация только оптического волокна, так и активация оптического волокна вместе с линзой.
В этом примере варианта осуществления, линза 250 представляет собой единственную плоско-асферическую линзу впереди тонкой плоской стеклянной пластины 280 выходного отверстия, как наглядно представлено на фигуре 2. Асферическая линза выполнена из полиметилметакрилата (РММА) и содержит входной зрачок диаметром 0,82 мм. Числовая апертура (NA) составляет 0,67, а фокусное расстояние (измеренное в воздухе) составляет 0,678 мм. Система линз оптимизирована для длины волны равной 780 нм. Выходное отверстие 280 плоское и не имеет оптической силы.
Следует заметить, что свободное рабочее расстояние линзы 250 объектива должно быть больше, чем толщина выходного отверстия 280. Будет выполнено сканирование линзы 250 объектива перед выходным отверстием. Для большей прочности выходное отверстие должно иметь определенную толщину. Как правило, толщина составляет более, чем 0,1 мм.
Этот вариант осуществления является особенно, но не исключительно, выгодным для получения улучшенного оптического датчика, особенно подходящего для миниатюрных устройств, например для медицинских устройств для исследований in vivo. Посредством прочного прикрепления или установки системы линз на оптическом волокне, область обзора оптического датчика может быть определена напрямую поперечным ходом оптического волокна. Таким образом, требуется лишь относительно небольшой ход. Область обзора, таким образом, больше не ограничена ходом. Так как система линз используется сама по себе только для формирования изображений вблизи оптической оси (т.е. небольшая область обзора), она может обеспечивать упрощение (т.е. менее сложный комплекс и меньшее количество элементов линзы) ее оптического дизайна, которое облегчает изготовление с сохранением той же высокой разрешающей способности.
Следует также упомянуть, что оптический датчик, в частности, подходит для относительно простого и крупномасштабного производства благодаря установке системы линз с возможностью смещения на конечной части оптического волокна. С практической точки зрения, это может снизить необходимую точность во время изготовления, что, в свою очередь, может снизить стоимость за единицу на зонд.
Это особенно важно, так как эндоскоп, катетер или иглу с встроенным оптическим датчиком, как правило, утилизируют после однократного применения в соответствии с санитарными требованиями.
На фигуре 3 представлена интервенционная система согласно примеру варианта осуществления изобретения. Система включает удлиненное игольчатое устройство 200, датчик 220, расположенный на части наконечника игольчатого устройства, устройство 500 формирования изображения, способствующее предварительному наведению, анализирующее устройство 100, способствующее улучшенному наведению, и вычислительное устройство 600. Анализирующее устройство включает источник 110 света и спектрограф в качестве приемника 120 света. Устройство 500 формирования изображения включает источник 510 излучения и детекторную матрицу 520. Вычислительное устройство включает обрабатывающий блок 620 для обработки сигналов, идущих от устройства 500 формирования изображения и от анализирующего устройства 100, и монитор 610 для контроля информации, способствующей направлению устройств для биопсии в тело.
Как представлено на фигуре 3, интервенционная система, включает в себя основанную на рентгеновском излучении систему 500 наведения иглы с наведением по изображению и игольчатое устройство 200, включающее в себя датчик, т.е. оптическое волокно, соединенное с анализирующим устройством 100. Система наведения иглы с наведением по изображению обеспечивает формирование двух/трехмерного изображения повреждения и интерактивный контроль за продвижением иглы с наведением по изображению, каждое из которых связано с оптической информацией, полученной посредством иглы, причем рентгеновская система 500 обеспечивает предварительное наведение, тогда как оптическая информация, принятая от анализирующего устройства 100, обеспечивает окончательное точное наведение к местоположению устройства.
Система способна в интерактивном режиме отслеживать игольчатое устройство от места разреза до точки-мишени посредством наложения двухмерных фотоскопических изображений на трехмерную реконструкцию ткани и предоставлять молекулярную информацию о ткани в каждой точке вдоль траектории иглы, совмещенную с положением внутри тела пациента. Область вдоль траектории иглы может быть отсканирована (сканирование вперед и сканирование в сторону) с целью предоставления индикации наличия повреждения на молекулярном уровне. Предпочтительно при реконструкции того, какая ткань находится перед иглой, данные рентгеновского излучения и информация о положении иглы активно используются для оптической реконструкции того, какая ткань находится перед иглой.
Например, сравнивают границы опухоли, выведенные из сканирования иглой и из рентгеновского излучения. Информация рентгеновского излучения дает оценку формы опухоли, но точные границы определить невозможно. Фотонная игла дает детальную информацию о границах опухоли, но эту информацию получают только вдоль траектории иглы. Объединяя рентгеновскую форму опухоли с одномерной информацией иглы, можно вычислить новое оценочное значение трехмерного размера опухоли. Вновь выведенная расширенная граница будет лучшей оценкой границ опухоли. Рентгеновскую информацию и информацию фотонной иглы далее связывают с MRI-изображениями той же области (совокупность MR-данных можно совместить с совокупностью данных, полученных посредством рентгеновского аппарата). Игольчатое устройство, оснащенное оптическим волокном, также можно использовать, например, для размещения провода локализации. Провод локализации включает в себя средство фиксации и может быть оснащен волокном.
Другой аспект извлечения пользы из информации от датчика игольчатого устройства в целях изобретения, состоит в трудности перевода измеренных оптических данных в тип ткани, когда морфология окружающей ткани не известна. Таким образом, для оптимального принятия решения о характеристике ткани необходима информация о морфологии, получаемая от неинвазивной системы формирования изображения в качестве входной информации. Таким образом, предпочтительно сначала совмещать оптические данные с данными неинвазивной системы формирования изображения, а затем использовать оптическую информацию вместе с морфологической информацией вокруг иглы, поступающей от неинвазивного средства формирования изображения, для перевода измеренных оптических данных в тип ткани перед иглой или возле нее. Например, когда игла находится в мягкой ткани, на оптическую информацию может влиять наличие или отсутствие близости костной структуры. Принимая это во внимание, возможна более надежная характеристика ткани.
Для демонстрации изобретения описано экспериментальное вмешательство с использованием иглы. Фантом, т.е. объект, подвергающийся биопсии, помещают на, например, опору с С-образным рычагом и устанавливают иглу на шаговый двигатель, передвигающий иглу в осевом направлении (минимальный шаг составляет 0,25 микрон). Иглу соединяют с оптическими волокнами спектрометра. По меньшей мере одно из волокон обнаруживает свет, отраженный от ткани, таким образом представляя собой оптический элемент.
Вмешательство с использованием иглы состоит из получения рентгенологических и фотоскопических рентгенологических изображений, кроме того, в дополнение оптический отраженный спектр измеряют посредством иглы, содержащей волокна, соединенные с консолью, соединенной с рентгенологической системой.
После полного поворота С-образного рычага вокруг объекта, возможно образование трехмерных реконструкций объекта из рентгенологической информации, включая положение иглы. Кроме того, продвижение иглы выполняют на основе фотоскопического рентгенологического изображения. Параллельно получают информацию о ткани посредством иглы.
На фигуре 4 представлены три изображения, которые могут быть показаны на мониторе для помощи в направлении игольчатого устройства. Каждое из изображений представляет собой, в основном, изображение от рентгенологического устройства, добавленное в верхнем левом углу изображения спектра, полученного анализирующим устройством на основании информации о ткани от иглы. Фотоскопическое изображение от рентгенологического устройства позволяет определить относительное положение иглы (удлиненная черная линия от середины каждого изображения до верхнего правого угла) по отношению к фантому (черная тень), тогда как спектральная информация четко показывает, когда достигнута небольшая трубка (черная контрастная линия с левой стороны до нижнего правого угла). Это позволяет определить местоположение иглы с точностью до 100 микрон. Хотя информация о рентгенологическом изображении и оптическая информация примерно представлены в объединенном изображении, существуют различные другие способы представления объединенной информации, например, посредством использования цвета.
В качестве примера рассмотрим структуру, требующую детального предварительно записанного изображения. Та же структура представляет собой прямое изображение, полученное посредством устройства формирования изображения (например, фотоскопического рентгенологического средства формирования изображения). Это предоставляет менее подробное изображение и меньшую точность совмещения предварительно записанного изображения с данным изображением. Посредством использования оптических данных (см.вставки на фигуре 4), положение иглы по отношению к соответствующим признакам может быть определено с более высокой точностью. Теперь может быть выполнено совмещение вновь полученного изображения с совокупностью предварительно записанных данных с большей точностью, на основе информации от игольчатого устройства.
Использование информации от датчика игольчатого устройства также может предоставлять возможность сразу начать продвижение иглы без прямого наведения, основываясь только на предварительно записанном изображении. Используя информацию о локальной ткани посредством фотонной иглы, врач может оценить приблизительное расположение иглы на предварительно записанном изображении.
Фигуры с 5 по 7 представляют примеры обнаружения спектра при вмешательстве посредством иглы при различных положениях иглы в ткани. Чем выше число спектров, тем дальше игла находится в ткани.
На фигурах 5 и 6 четко видны переходы от одного типа ткани к другому типу ткани. На фигуре 7 представлены спектры для трех различных положений. В этом примере представлены четкие переходы, а спектры достаточно отличны друг от друга, чтобы различить переход. Например, эти переходы мягких тканей могут быть не видны на рентгенологическом изображении. Таким образом, при связывании рентгенологического изображения с предварительно записанным, например, MR-изображением, показывающим эти переходы мягких тканей, эти ориентиры можно не использовать. Это стало возможно с использованием оптической информации.
Фигура 8 представляет собой блок-схему последовательности операций способа объединения предварительно записанных изображений с прямым изображением интересующего объекта согласно изобретению. Следует понимать, что этапы, описанные в отношении способа, являются основными этапами, причем эти основные этапы могут быть дифференцированы или разделены на несколько подэтапов. Кроме того, также возможны подэтапы между этими основными этапами. Таким образом, подэтап упоминается только, если указанный этап важен для понимания принципов способа согласно изобретению.
На этапе Sl способа согласно изобретению, предварительно записанное изображение интересующей области пациента измеряют и сохраняют след системы координат.
На этапе S2, осуществляют вмешательство, используя прямое изображение.
На этапе S3, выполняют наложение предварительно записанного и прямого изображения друг на друга.
Этап выявления признаков, на котором вручную или, предпочтительно, автоматически выявляют характерные и отличительные особенности объектов (замкнутые области, края, контуры, линии пересечения, углы и т.д). Для дальнейшей обработки, эти признаки могут быть представлены посредством их отличительных характерных особенностей (центров тяжести, концов линий, отличительных точек), называемых контрольными точками.
Этап сопоставления признаков, на котором устанавливают соответствия между признаками, выявленными на прямом изображении и выявленными на предварительно записанном изображении. С этой целью применяют различные описания признаков и сходные измерения наряду с пространственными отношениями признаков.
Этап оценки модели преобразования, на котором оценивают тип и параметры, так называемых функций отображения, сверяя прямое изображение и предварительно записанное изображение. Параметры функций отображения рассчитывают посредством установленного соответствия признаков.
Этап повторной выборки и трансформации изображения, на котором прямое изображение преобразуют посредством функций отображения. Значения изображения в нецелой оси координат вычисляют посредством интерполяционной техники.
На этапе S4 способа согласно изобретению, в качестве отличительного признака получают информацию о локальной ткани от фотонной иглы.
На этапе S5, структуры на прямом изображении идентифицируют в пределах сферы, образованной в результате точного наложения, на предварительно записанном изображении, которые соответствуют информации, предоставленной фотонной иглой, как, например, граница между типами тканей или кровеносными сосудами, или другими структурами.
На этапе S6, систему координат предварительно записанного изображения повторно калибруют по отношению к прямому изображению таким образом, что структура, обнаруженная фотонной иглой, находится точно на наконечнике иглы на предварительно записанном изображении (разумеется, наконечник иглы видим на прямом изображении).
Несмотря на то, что изобретение представлено и детально описано на чертежах и в приведенном выше описании, подобное представление и описание следует рассматривать как иллюстративное или приведенное в качестве примера, а не ограничительным; изобретение не ограничено представленными вариантами осуществления.
Другие разновидности представленных вариантов осуществления могут быть понятны и реализованы специалистами в данной области техники при применении на практике заявленного изобретения, в результате изучения чертежей, описания и прилагаемой формулы изобретения. В формуле изобретения слово «включающий» не исключает других элементов или этапов, а единственное число не исключает множественного числа. Один процессор или другое устройство может выполнять функции нескольких элементов, перечисленных в формуле изобретения. Простой факт того, что определенные показатели приводятся во взаимно различных зависимых пунктах формулы изобретения, не указывает на невозможность использования комбинации этих показателей для получения преимущества. Компьютерную программу можно хранить/размещать на подходящем носителе информации, таком как оптическое устройство для хранения информации или полупроводниковый носитель информации, поставляемый вместе или в качестве части другой аппаратуры, но также можно размещать и в других формах, как, например, через Интернет или другие проводные или беспроводные телекоммуникационные системы. Любые ссылочные позиции в формуле изобретения не следует рассматривать в качестве ограничения объема изобретения.
ПЕРЕЧЕНЬ ССЫЛОЧНЫХ ПОЗИЦИЙ
100 - анализирующее устройство
110 - источник света
120 - приемник света
200 - игольчатое устройство
210 - стержень
220 - датчик
230 - волокно
240 - крепление
250 - линза
260 - магнит
270 - катушка
280 - отверстие
290 - удерживающая часть
500 - устройство формирования изображения
510 - источник излучения
520 - детекторная матрица
600 - обрабатывающее устройство
610 - монитор
620 - обрабатывающий блок
Claims (12)
1. Интервенционная система, включающая в себя:
- устройство (500) формирования изображения для обеспечения прямого изображения объекта,
- игольчатое устройство (200), выполненное с возможностью введения в объект и имеющее положение в объекте, обнаруживаемое на прямом изображении,
- обрабатывающее устройство (600), выполненное с возможностью получения предварительно записанного изображения объекта из баз данных,
причем игольчатое устройство (200) включает в себя датчик (220) для обеспечения местных данных, соответствующих свойствам ткани вблизи датчика (220), и
обрабатывающее устройство (600) выполнено с возможностью совмещения наложением предварительно записанного изображения и прямого изображения друг на друга, причем местные данные от датчика (220) используются для повторной калибровки совмещения наложением на основе предварительно записанного изображения, положения игольчатого устройства (200) на прямом изображении и местных данных от датчика (220).
- устройство (500) формирования изображения для обеспечения прямого изображения объекта,
- игольчатое устройство (200), выполненное с возможностью введения в объект и имеющее положение в объекте, обнаруживаемое на прямом изображении,
- обрабатывающее устройство (600), выполненное с возможностью получения предварительно записанного изображения объекта из баз данных,
причем игольчатое устройство (200) включает в себя датчик (220) для обеспечения местных данных, соответствующих свойствам ткани вблизи датчика (220), и
обрабатывающее устройство (600) выполнено с возможностью совмещения наложением предварительно записанного изображения и прямого изображения друг на друга, причем местные данные от датчика (220) используются для повторной калибровки совмещения наложением на основе предварительно записанного изображения, положения игольчатого устройства (200) на прямом изображении и местных данных от датчика (220).
2. Интервенционная система по п.1, дополнительно включающая в себя:
анализирующее устройство (100), причем анализирующее устройство соединено с датчиком (220) и выполнено с возможностью обработки местных данных от датчика, таким образом, генерируя информацию о свойствах ткани.
анализирующее устройство (100), причем анализирующее устройство соединено с датчиком (220) и выполнено с возможностью обработки местных данных от датчика, таким образом, генерируя информацию о свойствах ткани.
3. Интервенционная система по п.2, в которой датчик (220) игольчатого устройства(200) включает в себя оптическое волокно (230), выполненное с возможностью испускать и принимать свет, и анализирующее устройство (100) включает в себя консоль для спектроскопии, причем консоль и оптическое волокно (230) соединены друг с другом.
4. Интервенционная система по п.3, в которой консоль для спектроскопии (100) выполнена с возможностью предоставления информации от одного из группы, состоящей из отражательной спектроскопии, флуоресцентной спектроскопии, аутофлуоресцентной спектроскопии, спектроскопии при различной длине траектории, спектроскопии комбинационного рассеяния света, оптической когерентной томографии и мультифотонной флуоресцентной спектроскопии.
5. Интервенционная система по п.3, в которой датчик (220) игольчатого устройства (200) включает в себя линзу (250) с возможностью формирования микроскопического изображения для формирования микроскопического изображения ткани впереди игольчатого устройства.
6. Интервенционная система по п.5, дополнительно содержащая средства (260, 270) активации для перемещения оптического волокна вместе с линзой (250), для перемещения только оптического волокна или для перемещения только линзы.
7. Интервенционная система по п.1, в которой устройство (500) формирования изображения является неинвазивным средством формирования изображения, выбранным из группы, включающей в себя рентгеновское устройство, компьютерный томограф, магнитно-резонансный томограф и ультразвуковое устройство.
8. Интервенционная система по п.1, в которой игольчатое устройство (200) включает в себя структуру и материал, обнаруживаемые посредством устройства (500) формирования изображения.
9. Машиночитаемый носитель, имеющий сохраненную на нем компьютерную программу, которая при исполнении на обрабатывающем устройстве (600) интервенционной системы по п.1, предписывает обрабатывающему устройству выполнять способ совмещения предварительно записанного изображения и прямого изображения объекта, причем способ включает в себя этапы:
- приема предварительно записанного изображения из базы данных,
- формирования прямого изображения от устройства (500) формирования изображения,
- определения положения игольчатого устройства (200) в прямом изображении,
- формирование совмещения наложением предварительно записанного изображения и прямого изображения друг на друга,
- приема местных данных от датчика (220), размещенного в игольчатом устройстве (200), причем местные данные соответствуют свойствам ткани вблизи датчика (220), и
- повторной калибровки совмещения наложением предварительно записанного изображения и прямого изображения с использованием местных данных от датчика (220), причем местные данные от датчика (220) используют для повторной калибровки совмещения наложением на основе предварительно записанного изображения, положения игольчатого устройства (200) на прямом изображении и местных данных от датчика (220).
- приема предварительно записанного изображения из базы данных,
- формирования прямого изображения от устройства (500) формирования изображения,
- определения положения игольчатого устройства (200) в прямом изображении,
- формирование совмещения наложением предварительно записанного изображения и прямого изображения друг на друга,
- приема местных данных от датчика (220), размещенного в игольчатом устройстве (200), причем местные данные соответствуют свойствам ткани вблизи датчика (220), и
- повторной калибровки совмещения наложением предварительно записанного изображения и прямого изображения с использованием местных данных от датчика (220), причем местные данные от датчика (220) используют для повторной калибровки совмещения наложением на основе предварительно записанного изображения, положения игольчатого устройства (200) на прямом изображении и местных данных от датчика (220).
10. Машиночитаемый носитель по п.9, причем этап формирования совмещения наложением включает в себя этап задания системы координат на предварительно записанном изображении и этап задания соответствующей системы координат на прямом изображении.
11. Машиночитаемый носитель по п.9, причем этап повторной калибровки совмещения наложением включает в себя этап определения признаков на прямом изображении, соответствующих полученным местным данным.
12. Машиночитаемый носитель по п.9, причем ошибка в совмещении наложением вычисляется посредством обработки в режиме реального времени предварительно записанного изображения, прямого изображения и местных данных.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09161321 | 2009-05-28 | ||
EP09161321.6 | 2009-05-28 | ||
PCT/IB2010/052030 WO2010136922A1 (en) | 2009-05-28 | 2010-05-07 | Re-calibration of pre-recorded images during interventions using a needle device |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011153794A RU2011153794A (ru) | 2013-07-10 |
RU2535605C2 true RU2535605C2 (ru) | 2014-12-20 |
Family
ID=42697286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011153794/14A RU2535605C2 (ru) | 2009-05-28 | 2010-05-07 | Повторная калибровка предварительно записанных изображений во время вмешательства с использованием игольчатого устройства |
Country Status (7)
Country | Link |
---|---|
US (1) | US9980698B2 (ru) |
EP (1) | EP2434943B1 (ru) |
JP (1) | JP5658747B2 (ru) |
CN (1) | CN102448366B (ru) |
BR (1) | BRPI1008269A2 (ru) |
RU (1) | RU2535605C2 (ru) |
WO (1) | WO2010136922A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2703688C2 (ru) * | 2015-06-26 | 2019-10-21 | Конинклейке Филипс Н.В. | Система контроля изображений |
RU2804287C2 (ru) * | 2022-02-21 | 2023-09-26 | Частное Учреждение По Обеспечению Научного Развития Атомной Отрасли "Наука И Инновации" (Частное Учреждение "Наука И Инновации") | Способ регистрации и обработки данных оптической биопсии в динамическом режиме |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5836612B2 (ja) * | 2011-03-13 | 2015-12-24 | 株式会社リバーセイコー | 内視鏡またはカテーテルの先端構造 |
JP5657467B2 (ja) * | 2011-05-13 | 2015-01-21 | オリンパスメディカルシステムズ株式会社 | 医療用画像表示システム |
CA2794226C (en) * | 2012-10-31 | 2020-10-20 | Queen's University At Kingston | Automated intraoperative ultrasound calibration |
US9216010B2 (en) * | 2013-06-26 | 2015-12-22 | General Electric Company | System and method for aligning a biopsy collecting device |
EP3024399A4 (en) * | 2013-07-26 | 2017-04-05 | The Royal Institution for the Advancement of Learning / McGill University | Biopsy device and method for obtaining a tomogram of a tissue volume using same |
EP3091907A1 (en) * | 2014-01-02 | 2016-11-16 | Koninklijke Philips N.V. | Ultrasound navigation/tissue characterization combination |
JP6688557B2 (ja) | 2014-01-07 | 2020-04-28 | キヤノンメディカルシステムズ株式会社 | X線ct装置 |
US10013808B2 (en) | 2015-02-03 | 2018-07-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
WO2016145506A1 (en) * | 2015-03-17 | 2016-09-22 | Synaptive Medical (Barbados) Inc. | Method and device for registering surgical images |
US9934570B2 (en) * | 2015-10-09 | 2018-04-03 | Insightec, Ltd. | Systems and methods for registering images obtained using various imaging modalities and verifying image registration |
EP3393355A1 (en) | 2015-12-21 | 2018-10-31 | Erasmus University Medical Center Rotterdam | Optical probe for measuring a tissue sample |
KR20180066781A (ko) * | 2016-12-09 | 2018-06-19 | 삼성전자주식회사 | 의료 영상을 표시하는 방법 및 장치 |
JP7242537B2 (ja) * | 2017-02-09 | 2023-03-20 | コーニンクレッカ フィリップス エヌ ヴェ | 組織判別に基づく位置検出 |
DE102017221924B3 (de) * | 2017-12-05 | 2019-05-02 | Siemens Healthcare Gmbh | Verfahren zur Fusionierung eines Analysedatensatzes mit einem Bilddatensatz, Positionierungseinrichtung und Computerprogramm |
US20190254753A1 (en) | 2018-02-19 | 2019-08-22 | Globus Medical, Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
US10594112B1 (en) * | 2019-04-29 | 2020-03-17 | Hua Shang | Intervention photon control method and device |
US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
US12133772B2 (en) | 2019-12-10 | 2024-11-05 | Globus Medical, Inc. | Augmented reality headset for navigated robotic surgery |
US11464581B2 (en) | 2020-01-28 | 2022-10-11 | Globus Medical, Inc. | Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums |
US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
US11607277B2 (en) | 2020-04-29 | 2023-03-21 | Globus Medical, Inc. | Registration of surgical tool with reference array tracked by cameras of an extended reality headset for assisted navigation during surgery |
US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2195981C2 (ru) * | 1998-04-10 | 2003-01-10 | Жаров Владимир Павлович | Фотоматричное устройство |
WO2004019799A2 (en) * | 2002-08-29 | 2004-03-11 | Computerized Medical Systems, Inc. | Methods and systems for localizing of a medical imaging probe and of a biopsy needle |
WO2008111070A2 (en) * | 2007-03-12 | 2008-09-18 | David Tolkowsky | Devices and methods for performing medical procedures in tree-like luminal structures |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5207673A (en) * | 1989-06-09 | 1993-05-04 | Premier Laser Systems, Inc. | Fiber optic apparatus for use with medical lasers |
JP2002209870A (ja) * | 2001-01-18 | 2002-07-30 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
US20020115931A1 (en) * | 2001-02-21 | 2002-08-22 | Strauss H. William | Localizing intravascular lesions on anatomic images |
US20060241450A1 (en) * | 2003-03-17 | 2006-10-26 | Biotelligent Inc. | Ultrasound guided tissue measurement system |
JP4317412B2 (ja) * | 2003-09-29 | 2009-08-19 | 株式会社日立製作所 | 画像処理方法 |
EP2712553A3 (en) * | 2005-01-11 | 2014-09-17 | Volcano Corporation | Vascular image co-registration |
US8298147B2 (en) * | 2005-06-24 | 2012-10-30 | Volcano Corporation | Three dimensional co-registration for intravascular diagnosis and therapy |
DE102005045362B4 (de) | 2005-09-22 | 2012-03-22 | Siemens Ag | Vorrichtung zur Positionsbestimmung eines medizinischen Instruments, dazugehörige bildgebende Untersuchungseinrichtung nebst dazugehörigem Verfahren |
US7874987B2 (en) * | 2005-10-28 | 2011-01-25 | Biosense Webster, Inc. | Targets and methods for ultrasound catheter calibration |
US20070118100A1 (en) | 2005-11-22 | 2007-05-24 | General Electric Company | System and method for improved ablation of tumors |
US20070238997A1 (en) * | 2006-03-29 | 2007-10-11 | Estelle Camus | Ultrasound and fluorescence imaging |
CN101449292B (zh) | 2006-05-24 | 2012-07-04 | 皇家飞利浦电子股份有限公司 | 坐标系配准 |
US8126239B2 (en) * | 2006-10-20 | 2012-02-28 | Siemens Aktiengesellschaft | Registering 2D and 3D data using 3D ultrasound data |
JP5269376B2 (ja) | 2007-09-28 | 2013-08-21 | 株式会社東芝 | 画像表示装置及びx線診断治療装置 |
CN101959450B (zh) * | 2008-03-03 | 2013-05-29 | 皇家飞利浦电子股份有限公司 | 通过基于图像的x射线引导系统 |
JP4604101B2 (ja) * | 2008-03-26 | 2010-12-22 | 株式会社日立製作所 | 画像情報作成方法,断層撮影装置の断層画像情報作成方法及び断層撮影装置 |
-
2010
- 2010-05-07 EP EP10726240.4A patent/EP2434943B1/en active Active
- 2010-05-07 US US13/321,189 patent/US9980698B2/en active Active
- 2010-05-07 WO PCT/IB2010/052030 patent/WO2010136922A1/en active Application Filing
- 2010-05-07 BR BRPI1008269A patent/BRPI1008269A2/pt not_active IP Right Cessation
- 2010-05-07 JP JP2012512481A patent/JP5658747B2/ja active Active
- 2010-05-07 RU RU2011153794/14A patent/RU2535605C2/ru not_active IP Right Cessation
- 2010-05-07 CN CN201080022939.8A patent/CN102448366B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2195981C2 (ru) * | 1998-04-10 | 2003-01-10 | Жаров Владимир Павлович | Фотоматричное устройство |
WO2004019799A2 (en) * | 2002-08-29 | 2004-03-11 | Computerized Medical Systems, Inc. | Methods and systems for localizing of a medical imaging probe and of a biopsy needle |
WO2008111070A2 (en) * | 2007-03-12 | 2008-09-18 | David Tolkowsky | Devices and methods for performing medical procedures in tree-like luminal structures |
Non-Patent Citations (1)
Title |
---|
Adam C Waspe et al. Design, calibration and evaluation of a robotic needle-positioning system for small animal imaging applications, Physics in Medicine and Biology, Volume 52, Number 7,2007, abstract * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2703688C2 (ru) * | 2015-06-26 | 2019-10-21 | Конинклейке Филипс Н.В. | Система контроля изображений |
RU2804287C2 (ru) * | 2022-02-21 | 2023-09-26 | Частное Учреждение По Обеспечению Научного Развития Атомной Отрасли "Наука И Инновации" (Частное Учреждение "Наука И Инновации") | Способ регистрации и обработки данных оптической биопсии в динамическом режиме |
Also Published As
Publication number | Publication date |
---|---|
JP2012527936A (ja) | 2012-11-12 |
JP5658747B2 (ja) | 2015-01-28 |
CN102448366B (zh) | 2014-06-25 |
RU2011153794A (ru) | 2013-07-10 |
WO2010136922A1 (en) | 2010-12-02 |
US20120059251A1 (en) | 2012-03-08 |
EP2434943B1 (en) | 2013-05-01 |
EP2434943A1 (en) | 2012-04-04 |
BRPI1008269A2 (pt) | 2019-09-24 |
CN102448366A (zh) | 2012-05-09 |
US9980698B2 (en) | 2018-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2535605C2 (ru) | Повторная калибровка предварительно записанных изображений во время вмешательства с использованием игольчатого устройства | |
US11412985B2 (en) | Biopsy guidance by image-based X-ray system and photonic needle | |
JP5701615B2 (ja) | 電磁トラッキング及び光針による生検誘導 | |
JP6200152B2 (ja) | 医療処置におけるトラッキング方法及び装置 | |
US8483796B2 (en) | Arrangement and method for quantitatively determining the blood flow within blood vessels | |
RU2544465C2 (ru) | Алгоритм для консоли фотонной иглы | |
CA2860026C (en) | Biopsy device with integrated optical spectroscopy guidance | |
CN108135563A (zh) | 光和阴影引导的针定位系统和方法 | |
EP3259705A1 (en) | System and method for positional registration of medical image data | |
WO2009141769A1 (en) | Reproducible positioning of sensing and/or treatment devices | |
CN104067313B (zh) | 成像装置 | |
JP6734052B2 (ja) | 画像ガイダンスにおける統合遅延光フィードバック | |
US20160120524A1 (en) | Apparatus and method for supporting biopsy | |
CN107427202B (zh) | 用于照射人类或动物身体内部的感兴趣结构的设备、系统和方法 | |
US20150080711A1 (en) | Photonic needle system with measurement integration times depending on needle displacement speed | |
CN105534606A (zh) | 用于外科手术的智能成像系统 | |
CN102228378A (zh) | Oct电子腹胸腔镜 | |
NL2025324B1 (en) | A Surgical Tool, System and Method for Tissue Characterisation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160508 |