RU2534447C1 - Псевдоморфный гетеростуктурный модулировано-легированный полевой транзистор - Google Patents

Псевдоморфный гетеростуктурный модулировано-легированный полевой транзистор Download PDF

Info

Publication number
RU2534447C1
RU2534447C1 RU2013131407/28A RU2013131407A RU2534447C1 RU 2534447 C1 RU2534447 C1 RU 2534447C1 RU 2013131407/28 A RU2013131407/28 A RU 2013131407/28A RU 2013131407 A RU2013131407 A RU 2013131407A RU 2534447 C1 RU2534447 C1 RU 2534447C1
Authority
RU
Russia
Prior art keywords
layer
gate
gaas
pedestal
barrier layer
Prior art date
Application number
RU2013131407/28A
Other languages
English (en)
Inventor
Грачик Хачатурович Аветисян
Алексей Анатольевич Дорофеев
Юрий Владимирович Колковский
Виктор Алексеевич Курмачев
Вадим Минхатович Миннебаев
Original Assignee
Открытое акционерное общество "Научно-производственное предприятие "Пульсар"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственное предприятие "Пульсар" filed Critical Открытое акционерное общество "Научно-производственное предприятие "Пульсар"
Priority to RU2013131407/28A priority Critical patent/RU2534447C1/ru
Application granted granted Critical
Publication of RU2534447C1 publication Critical patent/RU2534447C1/ru

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. Гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. Пьедестал имеет толщину по меньшей мере равную 150 мкм и изготовлен из теплопроводящего слоя CVD поликристаллического алмаза, выполненного с имплантированным Ni и отожженным. Поверх пьедестала расположена базовая подложка из GaAs, буферный слой, гетероэпитаксиальная гетероструктура на основе GaAs/AlGaAs/InGaAs, а на поверхности гетероэпитаксиальной структуры, между истоком, затвором и стоком, последовательно размещены дополнительные слои теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и дополнительный барьерный слой из оксида металла, при этом барьерные слои выполнены с суммарной толщиной 1,0-4,0 нм. В области затвора барьерные слои размещены под затвором, непосредственно на эпитаксиальной структуре в виде градиентного слоя из GaAs n-типа проводимости. Технический результат заключается в повышении теплоотвода от пьедестала и активной области транзистора, обеспечении минимальных утечек тока затвора и достижении наименьшего коэффициента шума в ГГц-диапазоне частот. 4 з.п. ф-лы, 5 ил., 2 табл.

Description

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний.
Гетероструктурные полевые транзисторы с модулированным легированием (ПТМЛ, MODFET) на основе соединений полупроводниковых материалов групп AIIIBV в настоящее время являются самыми быстродействующими полевыми транзисторами, позволяя одновременно достигать наименьшие коэффициенты шума в ГГц-диапазоне частот. Высокое быстродействие достигается за счет эффекта увеличения дрейфовой скорости электронов, образующих двумерный электронный газ у интерфейса модулировано-легированной гетероструктуры (МЛГС).
Из "Уровня техники" известен полевой СВЧ-транзистор, содержащий подложку, на которой сформирован буферный слой из широкозонного полупроводника, на котором расположен активный слой из узкозонного полупроводника с электродами истока, стока и затвора. Кроме того, активный слой под электродом затвора выполнен неравномерно-легированным. При этом концентрация легирующей примеси в направлении электрод истока - электрод стока монотонно возрастает от значения, соответствующего концентрации остаточных примесей, до значения, соответствующего концентрации примесей в буферном слое, а концентрация примесей в буферном слое на 4-5 порядков превышает концентрацию остаточных примесей в активном слое (см. А.С. СССР №1118245, опубл. 19.06.1995).
Недостатками известного устройства являются низкое значение СВЧ-мощности, низкое значение теплоотвода от активной части транзистора и наличие низкочастотных шумов.
Кроме того, известен полевой транзистор на основе нитридов галлия и алюминия, структура которого последовательно включает: подложку, слой GaN, барьерный слой, выполненный из двух подслоев: Al0,2Ga0,8N, на нем GaN. На структуре выполнены контакты: сток, исток и затвор с соответствующими промежутками между ними; далее выполнено диэлектрическое покрытие из MgO, Sc2O3 или SiNx. Между контактами диэлектрическое покрытие находится на барьерном слое и служит для защиты открытых поверхностей барьерного слоя от внешних воздействий, см. B. Luo et al. The role of cleaning conditions and epitaxial layer structure on reliability of Sc2O3 and MgO passivation on AlGaN/GaN HEMTS, Solid-State Electronics, 46, pp.2185-2190, 2002.
Недостатком известного устройства является высокий уровень деградации, обусловленный низким значением теплоотвода от активной части транзистора.
Задачей настоящего изобретения является устранение всех вышеуказанных недостатков.
Технический результат заключается в повышении теплоотвода от пьедестала и активной области транзистора, обеспечении минимальных утечек тока затвора и достижении наименьшего коэффициента шума в ГГц-диапазоне частот.
Технический результат обеспечивается тем, что гетероструктурный модулированно-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. Пьедестал имеет толщину по меньшей мере равную 150 мкм и изготовлен из теплопроводящего слоя CVD поликристаллического алмаза, выполненного с имплантированным Ni и отожженным. Поверх пьедестала расположена базовая подложка из GaAs, буферный слой, гетероэпитаксиальная гетероструктура на основе GaAs/AlGaAs/InGaAs, а на поверхности гетероэпитаксиальной структуры, между истоком, затвором и стоком, последовательно размещены дополнительные слои теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и дополнительный барьерный слой из оксида металла, при этом, барьерные слои выполнены с суммарной толщиной 1,0-4,0 нм. Кроме того, в области затвора барьерные слои размещены под затвором, непосредственно на эпитаксиальной структуре в виде градиентного слоя из GaAs n-типа проводимости.
В соответствии с частными случаями выполнения устройство имеет следующие особенности.
Дополнительный барьерный слой может быть выполнен из Al2O3, или из ZrO2, или из La2O3, или из Y2O3.
Сущность настоящего изобретения поясняется следующими иллюстрациями:
фиг.1 - схематическое изображение энергетических зон у модулированно-легированного гетероперехода n-AlGaAs/GaAs;
фиг.2 - отображает кристалл транзистора;
фиг.3 - отображает зависимость доли DX-центров в общем числе введенных доноров от уровня легирования слоя AlXGa1-XAs:Si в МЛГС AlGaAs/GaAs;
фиг.4 - приведены вольтамперные характеристики мощного транзистора СВЧ без дополнительных слоев на поверхности кристалла транзистора;
фиг.5 - приведены вольтамперные характеристики мощного транзистора СВЧ с дополнительными слоями.
На фиг.2 отображены следующие конструктивные элементы:
1 - базовая подложка из полуизолирующего GaAs;
2 - первый буферный слой;
3 - второй буферный слой из GaAs;
4 - сверхрешетка из AlXGa1-XAs/GaAs;
5 - третий буферный слой;
6 - сильнолегированный n-AlXGa1-XAs;
7 - спейсер AlXGa1-XAs;
8 - сглаживающий слой;
9 - канал InyGa1-yAs;
10 - сглаживающий слой;
11 - спейсер AlXGa1-XAs;
12 - сильнолегированный слой n-типа;
13 - барьерный слой;
14 - барьерный слой n-GaAs;
15 - градиентный слой;
16 - контактный слой;
17 - исток;
18 - затвор;
19 - сток;
20 - омические контакты;
21 - дополнительный теплопроводящий слой CVD полиалмаза;
22 - дополнительный барьерный слой из двуокиси гафния;
23 - дополнительный барьерный слой из двуокиси металла.
Кристалл транзистора крепят на подслой из AuGe, который размещают на пьедестале из теплопроводящего слоя CVD полиалмаза, подвергнутого отжигу после имплантации Ni в его приповерхностные слои. На другой стороне пьедестала размещают слой припоя AuSn. Затем вся структура размещается на фланец.
СВЧ-транзистор разработан на основе эпитаксиальной гетероструктуры GaAs/AlGaAs/InGaAs. Конструкция гетероструктуры приведена в таблице №1, а в таблице №2 представлены основные электрофизические параметры гетеростуктур.
Таблица 1
Слой транзисторной гетероструктуры,
Назначение
Состав
x, y
Толщина Уровень
Легирования,
см-3
базовая подложка из полуизолирующего GaAs 625±25 мкм
первый буферный слой 200 нм Нелегированный
второй буферный слой из GaAs 200 нм Нелегированный
сверхрешетка из AlXGa1-XAs/GaAs 0,22/0,00 (2 нм/2 нм)×10 Нелегированный
третий буферный слой 0,22 100 нм Нелегированный
сильнолегированный n-AlXGa1-XAs 0,22 4,5 нм 3×1018
спейсер AlXGa1-XAs 0,22 2 нм Нелегированный
сглаживающий слой 3 нм Нелегированный
канал InyGa1-yAs 0,16-0,18 12 нм Нелегированный
сглаживающий слой 1,5 нм Нелегированный
спейсер AlXGa1-XAs 0,22 2 нм Нелегированный
сильнолегированный слой n-типа 0,22 16 нм 3×1018
барьерный слой n-типа 0,22 13 нм 5×1016
барьерный слой n-GaAs 15 нм 5×1016
градиентный слой n-типа 20 нм 5×1016- 4×1018
контактный слой n-типа 50 нм 4×1018
Таблица 2
Температура, K Слоевая концентрация носителей заряда в канале не менее, см-2 Подвижность носителей заряда в канале не менее, см2/(B*c)
77 3,0*1012 1,3*104
300 3,0*1012 5,0*103
Изготовление многослойных наногетероструктур твердых растворов GaAs/AlGaAs/InGaAs осуществлялось молекулярно-пучковой эпитаксией.
Настоящее устройство производят следующим образом.
На фланце марки МД-40 толщиной 1600 мкм размещают слой припоя состава AuSn толщиной 25 мкм, затем в заготовленный в качестве пьедестала слой теплопроводящего CVD поликристаллического алмаза толщиной ~170 мкм, в обе приповерхностные области которого, предварительно, способом имплантации введен никель и проведен отжиг. Затем после размещения на поверхности теплопроводящего слоя CVD поликристаллического алмаза размещают подслой из AuGe с содержанием Ge до 12%, толщиной ~25 мкм. Затем на поверхности подслоя AuGe устанавливают кристалл транзистора (фиг.3). Кристалл транзистора содержит последовательно размещенные базовую подложку 1, состоящую из полуизолирующего GaAs толщиной 625 мкм, первый нелегированный буферный слой 2, толщиной 200 нм, второй нелегированный буферный слой 3 из GaAs толщиной 200 нм, сверхрешетку 4 AlXGa1-XAs/GaAs - нелегированный слой толщиной (2 нм/2 нм)*10, третий нелегированный буферный слой 5 толщиной 100 нм, сильнолегированный слой 6 AlXGa1-XAs n-типа концентрацией 3*108 см-3, толщиной 4,5 нм, спейсер 7 AlXGa1-XAs, нелегированный, толщиной 2 нм, нелегированный сглаживающий слой 8 толщиной 3 нм, канал 9 из InyGa1-yAs, нелегированный, толщиной 12 нм, нелегированный сглаживающий слой 10 толщиной 15 нм, спейсер 11 AlXGa1-XAs, нелегированный, толщиной 2 нм, сильнолегированный слой 12 Hs AlXGa1-XAs толщиной 16 нм, барьерный слой 13 толщиной 13 нм, барьерный слой 14 из GaAs n-типа толщиной 15 нм, градиентный слой 15 из GaAs n-типа толщиной 20 нм, низкоомный локальный контактный слой 16 n-типа толщиной 50 нм, исток 17, затвор 18, сток 19, омические контакты 20. Кроме того, устройство снабжают дополнительными слоями, размещенными между истоком 17, затвором 18 и стоком 19. Дополнительные слои выполняют в виде теплопроводящего CVD поликристаллического алмаза 21, барьерного слоя из двуокиси гафния 22 и дополнительного барьерного слоя из оксида металла 23, в качестве которого может быть использован Al2O3, или ZrO2, или La2O3, или Y2O3. При этом барьерные слои 22, 23 выполнены с суммарной толщиной около 4,0 нм. В области затвора 18 барьерные слои 22, 23 размещены под затвором 18, непосредственно на эпитаксиальной структуре в виде градиентного слоя 15 из GaAs n-типа проводимости.
Преимуществами настоящего устройства являются:
1) снижение плотности ростовых дефектов и улучшение электрической изоляции между каналом транзистора и подложкой за счет выполнения дополнительного буферного слоя в виде короткопериодной сверхрешетки AlXGa1-XAs/GaAs;
2) улучшение ограничения носителей в канале короткозатворного транзистора;
3) обеспечение оптимизации отвода тепла из активной области кристалла транзистора и минимизации утечек.
4) отсутствие трудоемких операций при изготовлении;
5) увеличение пробивного напряжения транзистора на по меньшей мере 30%.
На фигурах 4 и 5 приведены вольт-амперные характеристики: фиг.4 - без слоя изолирующего поликристаллического алмаза, на поверхности кристалла СВЧ транзистора, между истоком, затвором и стоком и дополнительных барьерных слоев под затвором; 5) - со слоями изолирующего поликристаллического алмаза на поверхности кристалла транзистора, между истоком, затвором и стоком, а также дополнительными слоями из двуокиси гафния и оксида алюминия под затвором транзистора и поверхизолирующего поликристаллического алмаза.
Размещение слоя изолирующего поликристаллического алмаза на поверхности кристалла СВЧ-транзистора, между истоком, затвором и стоком, уменьшает тепловое сопротивление транзисторной структуры более чем в 1.5 раза и благодаря наличию на поверхности кристалла транзистора слоя теплопроводящего поликристаллического алмаза одновременно с барьерными слоями двуокиси гафния и оксида алюминия, размещенных под затвором, повышает величину пробивного напряжения на более 30%, что обеспечивает повышение эффективности предложенного изобретения.
Все вышеперечисленные преимущества позволяют создавать твердотельные СВЧ-блоки и модули с улучшенными параметрами, предназначенные для антенных фазированных решеток и других радиоэлектронных систем.

Claims (5)

1. Гетероструктурный модулированно-легированный полевой транзистор, содержащий фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты, отличающийся тем, что пьедестал имеет толщину по меньшей мере равную 150 мкм и изготовлен из теплопроводящего слоя CVD поликристаллического алмаза, выполненного с имплантированным Ni и отожженным, поверх пьедестала расположена базовая подложка из GaAs, буферный слой, гетероэпитаксиальная гетероструктура на основе GaAs/AlGaAs/InGaAs, а на поверхности гетероэпитаксиальной структуры, между истоком, затвором и стоком, последовательно размещены дополнительные слои теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и дополнительный барьерный слой из оксида металла, при этом барьерные слои выполнены с суммарной толщиной 1,0-4,0 нм, кроме того, в области затвора барьерные слои размещены под затвором, непосредственно на эпитаксиальной структуре в виде градиентного слоя из GaAs n-типа проводимости.
2. Транзистор по п.1, отличающийся тем, что дополнительный барьерный слой выполнен из Al2O3.
3. Транзистор по п.1, отличающийся тем, что дополнительный барьерный слой выполнен из ZrO2.
4. Транзистор по п.1, отличающийся тем, что дополнительный барьерный слой выполнен из La2O3.
5. Транзистор по п.1, отличающийся тем, что дополнительный барьерный слой выполнен из Y2O3.
RU2013131407/28A 2013-07-09 2013-07-09 Псевдоморфный гетеростуктурный модулировано-легированный полевой транзистор RU2534447C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013131407/28A RU2534447C1 (ru) 2013-07-09 2013-07-09 Псевдоморфный гетеростуктурный модулировано-легированный полевой транзистор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013131407/28A RU2534447C1 (ru) 2013-07-09 2013-07-09 Псевдоморфный гетеростуктурный модулировано-легированный полевой транзистор

Publications (1)

Publication Number Publication Date
RU2534447C1 true RU2534447C1 (ru) 2014-11-27

Family

ID=53383056

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013131407/28A RU2534447C1 (ru) 2013-07-09 2013-07-09 Псевдоморфный гетеростуктурный модулировано-легированный полевой транзистор

Country Status (1)

Country Link
RU (1) RU2534447C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2827690C1 (ru) * 2024-04-23 2024-10-01 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" Мощный полевой транзистор СВЧ на полупроводниковой гетероструктуре на основе нитрида галлия

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075744A (en) * 1990-12-03 1991-12-24 Motorola, Inc. GaAs heterostructure having a GaAsy P1-y stress-compensating layer
US6028328A (en) * 1996-01-03 2000-02-22 Siemens Aktiengesellschaft HEMT double hetero structure
US6465815B2 (en) * 2000-06-14 2002-10-15 National Science Council High-breakdown voltage heterostructure field-effect transistor for high temperature operations
RU80069U1 (ru) * 2008-08-19 2009-01-20 Государственное учреждение "Научно-исследовательский институт микроэлектроники и информационно-измерительной техники Московского государственного института электроники и математики (технического университета)" Гетероэпитаксиальная структура для полевых транзисторов
US7692222B2 (en) * 2006-11-07 2010-04-06 Raytheon Company Atomic layer deposition in the formation of gate structures for III-V semiconductor
RU2474923C1 (ru) * 2011-06-23 2013-02-10 Учреждение Российской академии наук Институт сверхвысокочастотной полупроводниковой электроники РАН (ИСВЧПЭ РАН) ПОЛУПРОВОДНИКОВАЯ МЕТАМОРФНАЯ НАНОГЕТЕРОСТРУКТУРА InAlAs/InGaAs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075744A (en) * 1990-12-03 1991-12-24 Motorola, Inc. GaAs heterostructure having a GaAsy P1-y stress-compensating layer
US6028328A (en) * 1996-01-03 2000-02-22 Siemens Aktiengesellschaft HEMT double hetero structure
US6465815B2 (en) * 2000-06-14 2002-10-15 National Science Council High-breakdown voltage heterostructure field-effect transistor for high temperature operations
US7692222B2 (en) * 2006-11-07 2010-04-06 Raytheon Company Atomic layer deposition in the formation of gate structures for III-V semiconductor
RU80069U1 (ru) * 2008-08-19 2009-01-20 Государственное учреждение "Научно-исследовательский институт микроэлектроники и информационно-измерительной техники Московского государственного института электроники и математики (технического университета)" Гетероэпитаксиальная структура для полевых транзисторов
RU2474923C1 (ru) * 2011-06-23 2013-02-10 Учреждение Российской академии наук Институт сверхвысокочастотной полупроводниковой электроники РАН (ИСВЧПЭ РАН) ПОЛУПРОВОДНИКОВАЯ МЕТАМОРФНАЯ НАНОГЕТЕРОСТРУКТУРА InAlAs/InGaAs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
В. Luo et al. The role of cleaning conditions and epitaxial layer structure on reliability of Sc2O3 and MgO passivation on AlGaN/GaN HEMTS, Solid-State Electronics, 46, pp.2185-2190, 2002. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2827690C1 (ru) * 2024-04-23 2024-10-01 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" Мощный полевой транзистор СВЧ на полупроводниковой гетероструктуре на основе нитрида галлия

Similar Documents

Publication Publication Date Title
US20220173235A1 (en) Breakdown Resistant HEMT Substrate and Device
Nanjo et al. AlGaN channel HEMT with extremely high breakdown voltage
US10050138B2 (en) Nitride semiconductor device
US8933461B2 (en) III-nitride enhancement mode transistors with tunable and high gate-source voltage rating
EP2270870B1 (en) Wide bandgap hemts with source connected field plates
US9130026B2 (en) Crystalline layer for passivation of III-N surface
US20110227132A1 (en) Field-effect transistor
US8941148B2 (en) Semiconductor device and method
US10256332B1 (en) High hole mobility transistor
CN111370471B (zh) 氮化镓高电子移动率晶体管及其栅极结构
US11355626B2 (en) High electron mobility transistor
JP2023176028A (ja) 電子濃度を低減するための構造および電子濃度を低減するためのプロセス
RU135182U1 (ru) Псевдоморфный гетероструктурный модулировано-легированный полевой транзистор
TWI732813B (zh) 半導體裝置,電子部件,電子設備及用於製造半導體裝置之方法
RU2534447C1 (ru) Псевдоморфный гетеростуктурный модулировано-легированный полевой транзистор
US11935947B2 (en) Enhancement mode high electron mobility transistor
KR20180106026A (ko) 게이트 누설 전류가 감소된 고 전자 이동도 트랜지스터
RU2539754C1 (ru) Модулированно-легированный полевой транзистор
RU2563533C2 (ru) Мощный переключатель свч
RU140462U1 (ru) Псевдоморфный гетероструктурный модулировано-легированный полевой транзистор
RU136238U1 (ru) Гетероструктурный модулировано-легированный полевой транзистор
US20220085196A1 (en) High electron mobility transistor
RU2534437C1 (ru) Гетероструктурный модулировано-легированный полевой транзистор
US11552188B2 (en) High-voltage semiconductor structure
US10424659B1 (en) High electron mobility transistor