RU2534264C1 - Способ управления процессами сушки и хранения растительного сырья с повышенным содержанием жирных кислот - Google Patents

Способ управления процессами сушки и хранения растительного сырья с повышенным содержанием жирных кислот Download PDF

Info

Publication number
RU2534264C1
RU2534264C1 RU2013126917/13A RU2013126917A RU2534264C1 RU 2534264 C1 RU2534264 C1 RU 2534264C1 RU 2013126917/13 A RU2013126917/13 A RU 2013126917/13A RU 2013126917 A RU2013126917 A RU 2013126917A RU 2534264 C1 RU2534264 C1 RU 2534264C1
Authority
RU
Russia
Prior art keywords
steam
heating
zones
ejector
air
Prior art date
Application number
RU2013126917/13A
Other languages
English (en)
Inventor
Сергей Александрович Шевцов
Алексей Викторович Дранников
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ")
Priority to RU2013126917/13A priority Critical patent/RU2534264C1/ru
Application granted granted Critical
Publication of RU2534264C1 publication Critical patent/RU2534264C1/ru

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

Изобретение относится к автоматизации технологических процессов сушки и хранения зерновых культур, в частности масличных культур. Способ предусматривает осциллирующую по температурному режиму сушку растительного сырья в гравитационно-движущемся слое шахтной сушилки, состоящей из последовательно чередующихся зон нагрева и охлаждения; обработку сырья антиоксидантом и подачей его на силосное хранение с периодическим активным вентилированием; подачу отработанного воздуха после зон нагрева на предварительный подогрев растительного сырья; отвод полученной паровоздушной смеси отработанного воздуха после зон охлаждения, предварительного подогрева растительного сырья и активного вентилирования в циклон для очистки от содержащихся в ней взвешенных твердых частиц с последующим охлаждением и осушением в испарителе и нагреванием сначала в конденсаторе теплового насоса, а затем в калорифере; подачу подготовленного в тепловом насосе кондиционированного воздуха в зоны нагрева и охлаждения с образованием замкнутого цикла, а также стабилизацию термовлажностных характеристик сырья при сушке и хранении воздействием на расход, температуру и влагосодержание кондиционированного воздуха, подаваемого в зоны нагрева и охлаждения сушилки, и на расход антиоксиданта в зависимости от расхода высушенного растительного сырья новым является то, что после каждой зоны нагрева осуществляют смешивание растительного сырья с антиоксидантом, а для получения кондиционированного воздуха используют пароэжекторный тепловой насос, включающий парогенератор с электронагревательными элементами и предохранительным клапаном, эжектор, испаритель, холодоприемник, теплообменник-рекуператор, конденсатор, терморегулирующий вентиль, сборник конденсата, работающие по замкнутому термодинамическому циклу; в холодоприемнике пароэжекторного теплового насоса охлаждают паровоздушную смесь до температуры точки росы и осуществляют ее осушение путем конденсации содержащейся в ней влаги на охлаждающей поверхности холодоприемника в виде капельной жидкости; полученный кондиционированный воздух из холодоприемника выводят по трем потокам: один направляют в зоны охлаждения сушилки, второй на активное вентилирование, а третий последовательно в теплообменник-рекуператор, конденсатор пароэжекторного теплового насоса, калориферы и далее в зоны нагрева сушилки; в парогенераторе получают рабочий пар и подают его по двум потокам, один из которых направляют в калориферы для дополнительного нагрева кондиционированного воздуха перед подачей в зоны нагрева сушилки, а другой - в сопло эжектора, создавая при этом разрежение в испарителе с пониженной температурой кипения хладагента, в качестве которого используют воду; смесь паров хладагента и рабочего пара после эжектора подают в конденсатор для подогрева кондиционированного воздуха перед калориферами; одну часть образовавшегося в конденсаторе конденсата подают в испаритель для пополнения убыли воды, а другую его часть в теплообменник-рекуператор и далее вместе с конденсатом, образовавшимся в холодоприемнике и в калориферах, отводят сначала в сборник конденсата, а затем в парогенератор с образованием замкнутого цикла; по текущим значениям влажности растительного сырья в зонах нагрева устанавливают расход антиоксиданта на этапах смешивания; по количеству водяных паров в паровоздушной смеси после сушилки и силосов устанавливают коэффициент эжекции пароэжекторного теплового насоса воздействием на соотношение расходов рабочего пара, подаваемого в сопло эжектора, и эжектируемого пара хладагента из испарителя путем изменения расхода рабочего пара, причем производительность парогенератора устанавливают воздействием на мощность его электронагревательных элементов в зависимости от давления рабочего пара, подаваемого в эжектор. Изобретение позволяет обеспечить стабилизацию качества растительного сырья с повышенным содержанием жирных кислот. 1 ил.

Description

Изобретение относится к автоматизации технологических процессов и может быть использовано при автоматизации процессов сушки и хранения зерновых культур, в частности масличных культур, например семян рапса, льна, амаранта, подсолнечника и т.д.
Наиболее близким по технической сущности и достигаемому эффекту является способ стабилизации термовлажностных характеристик зерна при его сушке и хранении [Патент №2425304 РФ, F 26 B 3/14, F 26 B 21/08, F 26 B 21/10. Способ стабилизации термовлажностных характеристик зерна злаковых и масличных культур при сушке и хранении [Текст] /А.А. Шевцов, Д. А. Бритиков, А.В. Дранников, О.Н. Ожерельева, Л.Н. Фролова (Россия) - №2010110880; заявлено 22.03.2010; опубликовано 27.07.2011; Бюл. №21],
предусматривающий осциллирующую по температурному режиму сушку растительного сырья в гравитационно-движущемся слое шахтной сушилки, состоящей из последовательно чередующихся зон нагрева и охлаждения; обработку сырья антиоксидантом и подачей его на силосное хранение с периодическим активным вентилированием; подачу отработанного воздуха после зон нагрева на предварительный подогрев растительного сырья; отвод полученной паровоздушной смеси отработанного воздуха после зон охлаждения, предварительного подогрева растительного сырья и активного вентилирования в циклон для очистки от содержащихся в ней взвешенных твердых частиц с последующим охлаждением и осушением в испарителе и нагреванием сначала в конденсаторе теплового насоса, а затем в калорифере; подачу подготовленного в тепловом насосе кондиционированного воздуха в зоны нагрева и охлаждения с образованием замкнутого цикла, а также стабилизацию термовлажностных характеристик сырья при сушке и хранении воздействием на расход, температуру и влагосодержание кондиционированного воздуха, подаваемого в зоны нагрева и охлаждения сушилки, и на расход антиоксиданта в зависимости от расхода высушенного растительного сырья.
Однако известный способ имеет следующие недостатки:
- не позволяет обеспечить стабилизацию качества растительного сырья с повышенным содержанием жирных кислот, так как не предусмотрено смешивание антиоксиданта с подсушенным материалом после зон нагрева;
- отклонение качества готового продукта от требуемого вследствие выхода из строя используемой компрессионной теплонасосной установки, у которой надежность при эксплуатации ниже чем, например, у пароэжектрной холодильной машины.
Технической задачей изобретения является повышение качества растительного сырья с повышенным содержанием жирных кислот при стабилизации его термовлажностных характеристик в процессах сушки и хранения.
Поставленная техническая задача достигается тем, что в способе управления процессами сушки и хранения растительного сырья с повышенным содержанием жирных кислот, предусматривающем осциллирующую по температурному режиму сушку растительного сырья в гравитационно-движущемся слое шахтной сушилки, состоящей из последовательно чередующихся зон нагрева и охлаждения; обработку сырья антиоксидантом и подачей его на силосное хранение с периодическим активным вентилированием; подачу отработанного воздуха после зон нагрева на предварительный подогрев растительного сырья; отвод полученной паровоздушной смеси отработанного воздуха после зон охлаждения, предварительного подогрева растительного сырья и активного вентилирования в циклон для очистки от содержащихся в ней взвешенных твердых частиц с последующим охлаждением и осушением в испарителе и нагреванием сначала в конденсаторе теплового насоса, а затем в калорифере; подачу подготовленного в тепловом насосе кондиционированного воздуха в зоны нагрева и охлаждения с образованием замкнутого цикла, а также стабилизацию термовлажностных характеристик сырья при сушке и хранении воздействием на расход, температуру и влагосодержание кондиционированного воздуха, подаваемого в зоны нагрева и охлаждения сушилки, и на расход антиоксиданта в зависимости от расхода высушенного растительного сырья новым является то, что после каждой зоны нагрева осуществляют смешивание растительного сырья с антиоксидантом, а для получения кондиционированного воздуха используют пароэжекторный тепловой насос, включающий парогенератор с электронагревательными элементами и предохранительным клапаном, эжектор, испаритель, холодоприемник, теплообменник-рекуператор, конденсатор, терморегулирующий вентиль, сборник конденсата, работающие по замкнутому термодинамическому циклу; в холодоприемнике пароэжекторного теплового насоса охлаждают паровоздушную смесь до температуры точки росы и осуществляют ее осушение путем конденсации содержащейся в ней влаги на охлаждающей поверхности холодоприемника в виде капельной жидкости; полученный кондиционированный воздух из холодоприемника выводят по трем потокам: один направляют в зоны охлаждения сушилки, второй на активное вентилирование, а третий последовательно в теплообменник-рекуператор, конденсатор пароэжекторного теплового насоса, калориферы и далее в зоны нагрева сушилки; в парогенераторе получают рабочий пар и подают его по двум потокам, один из которых направляют в калориферы для дополнительного нагрева кондиционированного воздуха перед подачей в зоны нагрева сушилки, а другой - в сопло эжектора, создавая при этом разрежение в испарителе с пониженной температурой кипения хладагента, в качестве которого используют воду; смесь паров хладагента и рабочего пара после эжектора подают в конденсатор для подогрева кондиционированного воздуха перед калориферами; одну часть образовавшегося в конденсаторе конденсата подают в испаритель для пополнения убыли воды, а другую его часть в теплообменник-рекуператор и далее вместе с конденсатом, образовавшимся в холодоприемнике и в калориферах, отводят сначала в сборник конденсата, а затем в парогенератор с образованием замкнутого цикла; по текущим значениям влажности растительного сырья в зонах нагрева устанавливают расход антиоксиданта на этапах смешивания; по количеству водяных паров в паровоздушной смеси после сушилки и силосов устанавливают коэффициент эжекции пароэжекторного теплового насоса воздействием на соотношение расходов рабочего пара, подаваемого в сопло эжектора, и эжектируемого пара хладагента из испарителя, путем изменения расхода рабочего пара, причем производительность парогенератора устанавливают воздействием на мощность его электронагревательных элементов в зависимости от давления рабочего пара, подаваемого в эжектор.
Технический результат изобретения заключается в повышении качества растительного сырья с повышенным содержанием жирных кислот при стабилизации его термовлажностных характеристик в процессах сушки и хранения.
На фиг. 1 представлена схема, реализующая предлагаемый способ управления процессами сушки и хранения растительного сырья с повышенным содержанием жирных кислот.
Схема содержит шахтную сушилку 1 с чередующимися зонами нагрева 2 и охлаждения растительного сырья 3; шнековые смесители 4; устройства для ввода и вывода растительного сырья 5; теплообменник 6; калориферы 7; вентиляторы для подачи горячего воздуха 8 в зоны нагрева; вентиляторы для подачи кондиционированного воздуха 9 в зоны охлаждения; вентилятор для отвода отработанного воздуха на очистку 10; вентилятор для подачи воздуха на активное вентилирование растительного сырья 11; силосы 12; циклон 13; норию 14; парогенератор с электронагревательными элементами 15; предохранительный клапан 16; насос для подачи конденсата в парогенератор 17; циркуляционный насос 18; сборник конденсата 19; эжектор 20; испаритель 21; холодоприемник 22; конденсатор 23; теплообменник-рекуператор 24; терморегулирующий вентиль 25; распределитель потока воздуха 26; распределитель потока пара 27; микропроцессор 28; потоки: 0.2 - влажное растительное сырье; 0.2.1 - высушенное растительное сырье; 0.2.2 - взвешенные частицы; 1.0 - хладагент; 1.1. - пары хладагента; 1.2 - конденсат; 2.1 - рабочий пар; 2.2 - смесь паров хладагента и рабочего пара; 3.1 - отработанный воздух после зон нагрева; 3.2 - отработанный воздух после зон охлаждения; 3.3 - смесь отработанного воздуха после сушилки; 3.4 - отработанный воздух после силосов; 3.5 - смесь отработанного воздуха после сушилки и силосов; 3.6 - кондиционированный воздух; 3.7 - нагретый воздух; 4.0 - антиоксидант; датчики: ТЕ - температуры; МЕ - влажности; FE - расхода; РЕ - давления; НЕ - уровня; И - исполнительные механизмы; ↓- входные каналы управления; ↑ - выходные каналы управления.
Способ управления процессами сушки и хранения растительного сырья с повышенным содержанием жирных кислот осуществляется следующим образом.
Влажное растительное сырье по линии 0.2 подают сначала в теплообменник 6 для предварительного нагрева, а затем в зону нагрева 2 шахтной сушилки 1, где продувается нагретым воздухом. Далее растительное сырье направляют в шнековые смесители 4 где осуществляют его смешивание с антиоксидантом. Ввод антиоксиданта непосредственно после каждой зоны нагрева позволяет предотвратить процессы окисления в сырье с повышенным содержанием жирных кислот и достичь равномерного его смешивания с исходным продуктом.
После смешивания с антиоксидантом растительное сырье попадает в зону охлаждения 3 шахтной сушилки 1, где охлаждается кондиционированным воздухом. Последующее чередование нагревания, смешивания и охлаждения продукта позволяет обеспечить осциллирующие режимы сушки, при которых снижается скорость внутреннего теплопереноса по сравнению со скоростью влагопереноса. При этом температура растительного сырья не превышает области допустимых значений, а снижение влажности до конечной достигается благодаря тепловому воздействию в зонах нагрева. Причем режимы нагрева, смешивания и охлаждения, а также количество вносимого антиоксиданта и его вид зависят от исходного растительного сырья.
Высушенное и смешанное с антиоксидантом растительное сырье с помощью нории 14 подают по линии 0.2.1 на хранение в силосы 12.
Отработанный воздух после секций нагрева 2 шахтной сушилки 1 по линии 3.1 направляют в теплообменник 6 для подогрева влажного растительного сырья и далее вместе с отработанным воздухом, отводимым по линии 3.2 из секций охлаждения 3 шахтной сушилки 1 вентилятором 10, подают по линии 3.3 в циклон 13 для очистки от взвешенных твердых частиц. В циклон 13 также на очистку от взвешенных твердых частиц по линии 3.4 направляют отработанный воздух после активного вентилирования растительного сырья в силосах 12.
Очищенную паровоздушную смесь отработанного воздуха по линии 3.5 подают на кондиционирование в пароэжекторный тепловой насос, включающий парогенератор с электронагревательными элементами 15 и предохранительным клапаном 16, эжектор 20, испаритель 21, холодоприемник 22, теплообменник-рекуператор 24, конденсатор 23, терморегулирующий вентиль 25, сборник конденсата 19, работающие по замкнутому термодинамическому циклу.
В холодоприемнике 22 паровоздушную смесь охлаждают до температуры точки росы и осуществляют ее осушение путем конденсации содержащейся в ней влаги на охлаждающей поверхности холодоприемника в виде капельной жидкости. Полученный кондиционированный воздух из холодоприемника 22 выводят по линии 3.6 и с помощью распределителя потока воздуха 26 разделяют на три потока: один из которых направляют вентиляторами 9 в зоны охлаждения 3 сушилки 1, второй вентилятором 11 на активное вентилирование в силосы 12, а третий последовательно в теплообменник-рекуператор 24, конденсатор пароэжекторного теплового насоса 23, калориферы 7 и далее вентиляторами 8 в зоны нагрева 2 сушилки 1.
В парогенераторе 15 получают рабочий пар и по линии 2.1 подают в распределитель потока пара 27, с помощью которого разделяют на два потока: один из которых направляют в калориферы 7 для дополнительного нагрева кондиционированного воздуха перед подачей в зоны нагрева 2 сушилки 1, а другой - в сопло эжектора 20, создавая при этом разрежение в испарителе 21 с пониженной температурой кипения хладагента, в качестве которого используют воду. Смесь паров хладагента и рабочего пара после эжектора 20 по линии 2.2 подают в конденсатор 23 для подогрева кондиционированного воздуха перед калориферами 7. При этом одну часть образовавшегося конденсата направляют по линии 1.2 в испаритель 21 для пополнения убыли воды, а другую его часть в теплообменник-рекуператор 24 и далее вместе с конденсатом, полученным в холодоприемнике 22 и в калориферах 7, отводят сначала в сборник конденсата 19, а затем с помощью насоса 17 в парогенератор 15 с образованием замкнутого цикла.
По текущей информации о расходе растительного сырья с повышенным содержанием жирных кислот в линии 0.2 микропроцессор 28, в соответствии с заложенным в него алгоритмом, устанавливает массовый и тепловой расход воздуха на входе в зоны нагрева 2 шахтной сушилки 1 воздействием на мощность регулируемых приводов вентиляторов 8 и на расход рабочего пара в калориферах 7 посредством исполнительных механизмов. По текущим значениям влажности растительного сырья в зонах нагрева 2 микропроцессор 28 устанавливает расход антиоксиданта на этапах смешивания воздействием на исполнительные механизмы шнековых смесителей 4, а по текущей температуре растительного сырья в секциях охлаждения 3 микропроцессор 28 устанавливает расход кондиционированного воздуха на входе в эти секции воздействием на мощность регулируемых приводов вентиляторов 9.
Причем вид антиоксиданта и его необходимое количество, направляемое в шнековые смесители 4, зависит от вида обрабатываемого растительного сырья и его характеристик после зон нагрева.
По информации датчиков о расходе и влагосодержании паровоздушной смеси после сушилки 1 и силосов 12 в линии 3.5 микропроцессор 28 определяет количество водяных паров в смеси, в зависимости от которого устанавливает коэффициент эжекции пароэжекторного теплового насоса воздействием на соотношение расходов рабочего пара, подаваемого по линии 2.1 в сопло эжектора, и эжектируемого пара хладагента по линии 1.1 из испарителя 21 путем изменения расхода рабочего пара. Причем микропроцессор 28 устанавливает производительность парогенератора 15 воздействием на мощность его электронагревательных элементов в зависимости от давления рабочего пара, подаваемого в эжектор 20 по линии 2.1.
Микропроцессор 28 непрерывно контролирует температуру в различных сечениях растительного сырья по высоте силосов 12. При отклонении текущей температуры растительного сырья в любой из точек измерения от заданного значения микропроцессор 28 устанавливает заданный расход смеси кондиционированного и свежего воздуха в линии 3.6 воздействием на мощность регулируемого привода вентилятора 11 с помощью соответствующего исполнительного механизма.
По информации датчика давления микропроцессор 28 осуществляет непрерывную стабилизацию давления рабочего пара в парогенераторе 15 воздействием на мощность электронагревательных элементов посредством исполнительного механизма. При этом достигается заданное значение производительности парогенератора, необходимое для эжектирования паров хладагента из испарителя 21.
Информация о текущем значении уровня конденсата в парогенераторе 15 с помощью датчика передается в микропроцессор 28. При изменении уровня конденсата микропроцессор осуществляет двухпозиционное регулирование приводом питающего насоса 17 с помощью исполнительного механизма. Причем включает питающий насос при достижении уровня конденсата в парогенераторе нижнего заданного значения и отключает его при достижении верхнего заданного значения. В случае технологических и аварийных сбоев в работе парогенератора, связанных с возможным увеличением давления рабочего пара в его рабочем объеме, предусмотрен предохранительный клапан 16.
Предлагаемый способ управления процессами сушки и хранения растительного сырья с повышенным содержанием жирных кислот позволяет:
- обеспечить стабилизацию качества растительного сырья с повышенным содержанием жирных кислот, вследствие использования двухэтапного смешивания антиоксиданта с подсушенным материалом после зон нагрева;
- повысить стабилизацию качества готового за счет применения пароэжектрной холодильной машины, у которой надежность при эксплуатации выше, чем у компрессионной теплонасосной установки.

Claims (1)

  1. Способ управления процессами сушки и хранения растительного сырья с повышенным содержанием жирных кислот, предусматривающий осциллирующую по температурному режиму сушку растительного сырья в гравитационно-движущемся слое шахтной сушилки, состоящей из последовательно чередующихся зон нагрева и охлаждения; обработку сырья антиоксидантом и подачей его на силосное хранение с периодическим активным вентилированием; подачу отработанного воздуха после зон нагрева на предварительный подогрев растительного сырья; отвод полученной паровоздушной смеси отработанного воздуха после зон охлаждения, предварительного подогрева растительного сырья и активного вентилирования в циклон для очистки от содержащихся в ней взвешенных твердых частиц с последующим охлаждением и осушением в испарителе и нагреванием сначала в конденсаторе теплового насоса, а затем в калорифере; подачу подготовленного в тепловом насосе кондиционированного воздуха в зоны нагрева и охлаждения с образованием замкнутого цикла, а также стабилизацию термовлажностных характеристик сырья при сушке и хранении воздействием на расход, температуру и влагосодержание кондиционированного воздуха, подаваемого в зоны нагрева и охлаждения сушилки, и на расход антиоксиданта в зависимости от расхода высушенного растительного сырья отличающийся тем, что после каждой зоны нагрева осуществляют смешивание растительного сырья с антиоксидантом, а для получения кондиционированного воздуха используют пароэжекторный тепловой насос, включающий парогенератор с электронагревательными элементами и предохранительным клапаном, эжектор, испаритель, холодоприемник, теплообменник-рекуператор, конденсатор, терморегулирующий вентиль, сборник конденсата, работающие по замкнутому термодинамическому циклу; в холодоприемнике пароэжекторного теплового насоса охлаждают паровоздушную смесь до температуры точки росы и осуществляют ее осушение путем конденсации содержащейся в ней влаги на охлаждающей поверхности холодоприемника в виде капельной жидкости; полученный кондиционированный воздух из холодоприемника выводят по трем потокам: один направляют в зоны охлаждения сушилки, второй на активное вентилирование, а третий последовательно в теплообменник-рекуператор, конденсатор пароэжекторного теплового насоса, калориферы и далее в зоны нагрева сушилки; в парогенераторе получают рабочий пар и подают его по двум потокам, один из которых направляют в калориферы для дополнительного нагрева кондиционированного воздуха перед подачей в зоны нагрева сушилки, а другой - в сопло эжектора, создавая при этом разрежение в испарителе с пониженной температурой кипения хладагента, в качестве которого используют воду; смесь паров хладагента и рабочего пара после эжектора подают в конденсатор для подогрева кондиционированного воздуха перед калориферами; одну часть образовавшегося в конденсаторе конденсата подают в испаритель для пополнения убыли воды, а другую его часть в теплообменник-рекуператор и далее вместе с конденсатом, образовавшимся в холодоприемнике и в калориферах, отводят сначала в сборник конденсата, а затем в парогенератор с образованием замкнутого цикла; по текущим значениям влажности растительного сырья в зонах нагрева устанавливают расход антиоксиданта на этапах смешивания; по количеству водяных паров в паровоздушной смеси после сушилки и силосов устанавливают коэффициент эжекции пароэжекторного теплового насоса воздействием на соотношение расходов рабочего пара, подаваемого в сопло эжектора, и эжектируемого пара хладагента из испарителя, путем изменения расхода рабочего пара, причем производительность парогенератора устанавливают воздействием на мощность его электронагревательных элементов в зависимости от давления рабочего пара, подаваемого в эжектор.
RU2013126917/13A 2013-06-13 2013-06-13 Способ управления процессами сушки и хранения растительного сырья с повышенным содержанием жирных кислот RU2534264C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013126917/13A RU2534264C1 (ru) 2013-06-13 2013-06-13 Способ управления процессами сушки и хранения растительного сырья с повышенным содержанием жирных кислот

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013126917/13A RU2534264C1 (ru) 2013-06-13 2013-06-13 Способ управления процессами сушки и хранения растительного сырья с повышенным содержанием жирных кислот

Publications (1)

Publication Number Publication Date
RU2534264C1 true RU2534264C1 (ru) 2014-11-27

Family

ID=53382984

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013126917/13A RU2534264C1 (ru) 2013-06-13 2013-06-13 Способ управления процессами сушки и хранения растительного сырья с повышенным содержанием жирных кислот

Country Status (1)

Country Link
RU (1) RU2534264C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729174A (zh) * 2015-03-23 2015-06-24 河北省机电一体化中试基地 用于农作物烘干的热泵干燥控制器及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317874A (ja) * 2000-04-28 2001-11-16 Japan Science & Technology Corp 乾燥装置
RU2303213C1 (ru) * 2005-11-02 2007-07-20 Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия Способ стабилизации термовлажностных характеристик зерна при его сушке и хранении
RU2425304C1 (ru) * 2010-03-22 2011-07-27 Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (ГОУ ВПО ВГТА) Способ стабилизации термовлажностных характеристик зерна злаковых и масличных культур при сушке и хранении

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317874A (ja) * 2000-04-28 2001-11-16 Japan Science & Technology Corp 乾燥装置
RU2303213C1 (ru) * 2005-11-02 2007-07-20 Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия Способ стабилизации термовлажностных характеристик зерна при его сушке и хранении
RU2425304C1 (ru) * 2010-03-22 2011-07-27 Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (ГОУ ВПО ВГТА) Способ стабилизации термовлажностных характеристик зерна злаковых и масличных культур при сушке и хранении

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729174A (zh) * 2015-03-23 2015-06-24 河北省机电一体化中试基地 用于农作物烘干的热泵干燥控制器及其控制方法

Similar Documents

Publication Publication Date Title
CN107076513B (zh) 糊状产品的热干燥方法和设备
US7624514B2 (en) Drying system
CA2868285C (en) Multiple product belt drier for drying pasty and/or powdery materials, particularly for sludges from treatment plants or biomass
CN105605889A (zh) 一种茶叶烘干装置
CN106242229B (zh) 污泥脱水处理装置
TW201829972A (zh) 產品乾燥設備及方法
RU84956U1 (ru) Зерносушилка
CN103292586A (zh) 干燥机系统
US2590757A (en) Cork bonding process
RU2534264C1 (ru) Способ управления процессами сушки и хранения растительного сырья с повышенным содержанием жирных кислот
CN103307859A (zh) 塔式机械蒸汽再压缩过热一体蒸汽干燥系统及方法
RU2425304C1 (ru) Способ стабилизации термовлажностных характеристик зерна злаковых и масличных культур при сушке и хранении
RU2510479C1 (ru) Способ управления процессами сушки и хранения зерна
CN106766810A (zh) 一种干燥机
EP3421914B1 (en) Vertical dryer
RU2278527C1 (ru) Способ управления процессом приготовления комбикормов
US1829139A (en) Dry kiln
Nimmol et al. Multistage impinging stream drying for Okara
CN102551105A (zh) 一种基于鳀鱼、毛虾船上加工生产线的品质控制系统
RU2471558C2 (ru) Способ автоматического управления процессом гидротермической обработки зерна овса при производстве толокна
CN201274750Y (zh) 二次杀菌冷却风干成套设备
RU2328140C1 (ru) Способ управления процессом получения обжаренных зернопродуктов
CN210663588U (zh) 一种流化床控温除湿进风装置
RU2352185C1 (ru) Способ управления процессом приготовления комбикормов
RU2302122C1 (ru) Способ управления процессом приготовления экструдированного комбикорма

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160614