RU2531802C2 - Способ определения географических координат точек изображения на sar изображениях - Google Patents

Способ определения географических координат точек изображения на sar изображениях Download PDF

Info

Publication number
RU2531802C2
RU2531802C2 RU2012102304/07A RU2012102304A RU2531802C2 RU 2531802 C2 RU2531802 C2 RU 2531802C2 RU 2012102304/07 A RU2012102304/07 A RU 2012102304/07A RU 2012102304 A RU2012102304 A RU 2012102304A RU 2531802 C2 RU2531802 C2 RU 2531802C2
Authority
RU
Russia
Prior art keywords
sar
images
image
coordinates
points
Prior art date
Application number
RU2012102304/07A
Other languages
English (en)
Other versions
RU2012102304A (ru
Inventor
БЕННИНГХОФЕН Беньямин
КОБАН Тамер
ШТАЛЬ Кристоф
Original Assignee
Еадс Дойчланд Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Еадс Дойчланд Гмбх filed Critical Еадс Дойчланд Гмбх
Publication of RU2012102304A publication Critical patent/RU2012102304A/ru
Application granted granted Critical
Publication of RU2531802C2 publication Critical patent/RU2531802C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к геодезической системе глобального позицирования, обеспечивающей воздушно-базированное определение географических координат сопряженных точек изображения из изображений радара с синтезированной апертурой (SAR), при этом SAR изображения представлены в форме изображений Slant Range, и позиция съемки каждого SAR изображения известна, при этом из координат сопряженных точек изображения на SAR изображениях и соответствующих селекторных импульсов дальности определяют соответственно расстояние между каждой ячейкой разрешения на земной поверхности и каждой позицией съемки соответствующего SAR изображения, и на основании определенных расстояний и соотнесенных позиций съемки SAR изображений с применением эллипсоида WGS84 определяют географические координаты сопряженных точек изображения на SAR изображениях. 1 н. и 3 з.п, ф-лы, 7 ил.

Description

Изобретение относится к способу определения географических координат точек изображения на SAR изображениях согласно признакам пункта 1 формулы изобретения.
Часто определение позиции цели с большого удаления (20-100 км) при использовании SAR изображений является неточным из-за погрешностей на SAR изображениях. Погрешности на SAR изображениях типовым образом возникают из-за азимутальных погрешностей и эффектов искажения (Fore-shortening, Layover).
Из US 5,659,318 А известен интерферометрический способ, в котором полученные с помощью двух пространственно разделенных SAR антенн изображения целевой области анализируются в отношении их фазового сдвига, и при этом в соответствии с ограничительной частью настоящего пункта 1 формулы изобретения позиция съемки SAR изображений известна.
Вначале кратко разъясняется известное определение координат цели по одному SAR изображению.
Основой является так называемый эллипсоид WGS84. Система "World Geodetic System 1984" (WGS 84) является геодезической системой отсчета в качестве единой основы для позиционных данных на Земле и в околоземном пространстве. Она состоит из:
- простой, трехмерной базовой поверхности, базового эллипсоида, который приблизительно соотнесен с земной поверхностью,
- подробной модели, отличающейся от этой идеализированной формы фигуры Земли, так называемого геоида,
- двенадцати распределенных по земной поверхности основных станций, для которых задается отношение между этими моделями и земной корой посредством указания (зависимых от времени) координат (так называемый Reference Frame).
Система является геодезической основой системы глобального позиционирования (GPS), которая обеспечивает геодезическую съемку Земли и ориентирование с помощью подходящих спутников (спутники NAVSTAR).
На фиг.1 определены важнейшие величины SAR. На частичном изображении А на фиг.1 показана схема типичной конфигурации SAR. Сенсорная платформа, например самолет, движется на высоте h над земной поверхностью со скоростью v вдоль оси X. Радар облучает сбоку область на земной поверхности. При SAR оптимальное направление обзора составляет 90° относительно направления вектора скорости v. Отклоняющиеся от этого значения направления обзора отрицательно влияют на разрешение, а также на трудоемкость формирования SAR изображений. Размер радарной антенны соответствует реальной апертуре. Для того чтобы иметь возможность перемещения на сенсорной платформе радарной антенны, ее размеры удерживаются относительно малыми. Однако величина антенны или же апертуры определяет разрешение. Чем больше антенна, тем лучше разрешение. Для того чтобы, несмотря на небольшую антенну, добиться высокого разрешения, искусственно формируется большая антенна. Это происходит за счет того, что сенсорная платформа летит вдоль апертуры воображаемой большой антенны и собирает отраженные радарные импульсы с каждого фрагмента воображаемой большой апертуры. То есть сенсорная платформа должна облететь синтетическую апертуру для того, чтобы собрать данные для SAR изображения. После SAR обработки из собранных данных получается SAR изображение. На частичном изображении Б на фиг.1 еще раз подробнее показаны важнейшие SAR параметры. S обозначает позицию сенсорной платформы, а вектор v - соотнесенную скорость. Система координат выбрана так, что v направлен вдоль положительной оси X. Точка Т отображается в центре SAR изображения. Прямая LOS (Line Of Sight) обозначает соединительную линию между позицией S сенсорной платформы и точкой Т. Длина прямой LOS соответствует селекторному импульсу дальности R радара SAR. Проекция вектора v скорости на прямую LOS показывает скорость vr приближения сенсорной платформы к точке Т. Угол ψ между вектором v скорости и прямой LOS здесь обозначается как угол между максимумом диаграммы направленности и осью симметрии зеркала антенны. Проекция прямой LOS на плоскость, которая проходит через точку S и параллельно плоскости XY, дает прямую HLOS (Horizontal Line Of Sight). Угол ψ между LOS и HLOS называется углом отклонения.
При обычном определении координат цели на основании SAR изображения сначала определяются координаты центра SAR изображения. Затем вычисляются координаты пикселя на SAR изображении, который был опознан как цель. Для определения координат центра изображения используются вышеупомянутые величины SAR. На частичном изображении А на фиг.2 показаны обычно используемые для определения координат цели на основании SAR изображения величины. Сенсорная платформа находится на высоте Н над эллипсоидом WGS84, который показан здесь в существенно увеличенном виде как плоскость. Вектор v скорости вместе с углом ψ между максимумом диаграммы направленности и осью симметрии зеркала антенны и расстоянием R (селекторный импульс дальности) задают конус к центру изображения. Этот конус определяет SAR конфигурацию. Основание конуса задает окружность с радиусом r=R sin(ψ). Географические координаты центра SAR изображения лежат в точке пересечения данной окружности с земной поверхностью. На изображении имеются две точки, где окружность пересекает земную поверхность. Но поскольку известно, куда направлен SAR сенсор, то одну точку пересечения, как известно, можно исключить.
После того, как географические координаты Po центра SAR изображения будут вычислены, производится вычисление географических координат определенного в качестве цели пикселя на SAR изображении. Схема важных для этого величин показана на частичном изображении Б на фиг.2. Для этого вычисляются локальные, приведенные к единице касательные векторы nr и ncr на эллипсоиде WGS84 в точке Po. Поскольку координаты px и py пикселя относительно центра SAR изображения известны, то с использованием известных разрешений δX и δY вектор d сдвига от точки Po к точке, которая соответствует пикселю, вычисляется следующим образом:
d = δ x p x n c r + δ y p y n r
Figure 00000001
Из географических координат центра Po изображения и вектора d сдвига путем простого векторного сложения можно вычислить географические координаты целевого пикселя. Вычисление географических координат точки, которая соответствует пикселю, является уровнем техники и известно специалисту со средней подготовкой.
При известном из уровня техники определении цели на основании SAR изображения описанный выше конус также влияет на определение координат цели. Положение данного конуса в пространстве известно лишь относительно вектора скорости. Если данный вектор скорости точно не известен, то возникает погрешность при определении координат. В обычных SAR системах данная погрешность в азимутальном направлении, в направлении вектора скорости, может достигать до 100 м. Дополнительно после определения географических координат центра изображения предполагается, что целевая плоскость планарная. Однако такие типичные эффекты SAR, как Foreshortening или Layover, создают сдвиг соответствующего целевой точке пикселя, что при расчете вектора сдвига до цели создает дополнительную погрешность.
Задача изобретения заключается в том, чтобы предложить способ, в котором погрешность определения позиции можно уменьшить.
Данная задача решена посредством способа согласно признакам настоящего пункта 1 формулы изобретения. Предпочтительные варианты выполнения изобретения являются предметом зависимых пунктов формулы изобретения.
Согласно изобретению из координат сопряженных точек изображения на SAR изображениях и соответствующих селекторных импульсов дальности определяется соответственно расстояние между каждой разрешающей ячейкой на земной поверхности и каждой позицией съемки соответствующего SAR изображения, и на основании определенных расстояний и соотнесенных позиций съемки SAR изображений с использованием эллипсоида WGS84 определяются географические координаты сопряженных точек изображений на SAR изображениях.
Далее изобретение, а также преимущественные варианты выполнения способа согласно изобретению подробнее разъясняются на основании фигур.
Показано на:
Фиг.1 - схематическое изображение принципа SAR,
Фиг.2 - схематическое изображение известного из уровня техники определения координат цели по одному SAR изображению,
Фиг.3 - схематическое изображение определения дальности пикселя по одному SAR изображению,
Фиг.4 - схематическое изображение принципа определения координат цели по двум изображениям SAR согласно изобретению,
Фиг.5 - схематическое изображение принципа определения координат цели по трем изображениям SAR согласно изобретению.
Получение информации о дальности из одного SAR изображения производится следующим образом. В SAR системе для генерации изображения устанавливается селекторный импульс дальности. Данный селекторный импульс дальности определяет дальность между SAR сенсором и соответствующую центру SAR изображения с наклонной дальностью ячейку разрешения на земной поверхности. В дальнейшем данный пиксель обозначается как центральный пиксель. Если как цель задается пиксель, то можно рассчитать удаление до соответствующей пикселю ячейке разрешения на земной поверхности. Это наглядно показано на фиг.3.
На фиг.3 селекторный импульс дальности обозначен как Ro. Расстояние до целевого пикселя обозначается как R. Если координаты x и y целевого пикселя указаны относительно центрального пикселя, то удаление R до данного пикселя можно рассчитать следующим образом:
R = ( δ x x ) 2 + ( δ y y + R 0 ) 2 ( 1 )
Figure 00000002
Величины δX или же δY обозначают разрешение SAR Slant Range изображения в азимутальном направлении или в направлении дальности.
Определение координат посредством использования двух SAR изображений
В дальнейшем будет описано определение координат цели с помощью двух SAR изображений. Если в распоряжении имеются лишь два SAR изображения, то можно извлечь данные по измерению дальности до ячейки разрешения на земной поверхности из SAR Slant Range изображений. Однако для определения координат двух измерений дальности недостаточно. Поэтому в данном методе нужно принять дополнительное допущение о том, что цель находится на эллипсоиде WGS84. На изображении 5 показана схема принципа. Из двух дальностей до цели и соотнесенных позиций, из которых производится измерение, получаются две сферы. У цели есть свойство в том, что она находится на поверхности двух сфер и эллипсоида WGS84. То есть задача заключается в том, чтобы рассчитать множество точек пересечения трех поверхностей. Множество точек пересечения двух сфер в общем случае является окружностью в пространстве. Множество точек пересечения данной окружности с эллипсоидом WGS84 в общем случае состоит из двух точек. Из соображений достоверности одна точка может быть исключена, так как обе точки обычно расположены далеко друг от друга. Поскольку при съемке SAR изображения примерное направление взгляда известно, то одну точку из решения можно исключить. Если известна средняя высота в целевой области, то эту высоту можно использовать для корректировки позиции, соответствующей целевому пикселю ячейки разрешения на земной поверхности.
Проблема описывается посредством приведенных далее обоих уравнений 2 и 3. Здесь x, y и z обозначают искомые координаты цели. Одинаково обозначенные 1 и 2 величины обозначают координаты двух позиций съемки SAR изображений. Два соотнесенные значения дальности до цели обозначены как R1 и R2. Полуоси эллипсоида WGS84 обозначены как А и Б. Таким образом, уравнение 3 описывает, что цель находится на эллипсоиде WGS84.
( x x 1 ) 2 + ( y y 1 ) 2 + ( z z 1 ) 2 = R 1 2 ( x x 2 ) 2 + ( y y 2 ) 2 + ( z z 2 ) 2 = R 2 2 ( 2 )
Figure 00000003
x 2 a 2 + y 2 a 2 + z 2 b 2 = 1 ( 2 )
Figure 00000004
Определение координат посредством использования трех SAR изображений
В дальнейшем будет описано определение координат цели с помощью трех SAR изображений. При определении координат цели с помощью трех SAR изображений полученная из SAR изображений информация о дальности до цели используется для расчета координат. На изображении 4 показана схема принципа. Из трех дальностей до цели и соотнесенных позиций, из которых производится измерение, получаются три сферы. Свойством цели является то, что она лежит на поверхности трех сфер. То есть задача заключается в том, чтобы рассчитать множество точек пересечения трех сфер. Множество точек пересечения двух сфер в общем случае является окружностью в пространстве. Множество точек пересечения данной окружности с третьей сферой в общем случае состоит из двух точек. Обычно одну точку из соображений достоверности можно исключить. Геометрия определения координат обусловливает, что одна точка лежит на поверхности Земли, а другая - далеко над поверхностью Земли. Так как цель находится на земной поверхности, то точку, которая лежит высоко над земной поверхностью, можно исключить из решения.
Проблема описывается следующим уравнением 4:
( x x 1 ) 2 + ( y y 1 ) 2 + ( z z 1 ) 2 = R 1 2 ( x x 2 ) 2 + ( y y 2 ) 2 + ( z z 2 ) 2 = R 2 2 ( 4 ) ( x x 3 ) 2 + ( y y 3 ) 2 + ( z z 3 ) 2 = R 3 2
Figure 00000005
Здесь x, y и z обозначают искомые координаты цели. Одинаково обозначенные 1, 2 и 3 величины обозначают координаты трех позиций съемки SAR изображений. Три соотнесенных дальности до цели обозначены как R1, R2 и R3.

Claims (4)

1. Способ воздушно-базированного определения географических координат сопряженных точек изображения из изображений радара с синтезированной апертурой (SAR), при этом SAR изображения представлены в форме Slant Range изображений, и позиция съемки соответствующего SAR изображения известна,
отличающийся тем, что
- из координат сопряженных точек изображения на SAR изображениях и соответствующих селекторных импульсов дальности определяют в каждом случае расстояние между соответствующей ячейкой разрешения на земной поверхности и соответствующей позицией съемки соответствующего SAR изображения, и
- на основании определенных расстояний и соотнесенных позиций съемки SAR изображений с применением эллипсоида WGS84 определяют географические координаты сопряженных точек изображения на SAR изображениях.
2. Способ по п.1, отличающийся тем, что для определения географических координат сопряженных точек изображения используют предварительно заданную для каждого SAR изображения среднюю высоту целевой области.
3. Способ по п.1, отличающийся тем, что для определения географических координат сопряженных точек изображения используют предварительно заданную для каждого SAR изображения карту высот.
4. Способ по одному из предшествующих пунктов, отличающийся тем, что для определения географических координат сопряженных точек изображения из цифровых изображений радара с синтезированной апертурой используют два или три SAR изображения.
RU2012102304/07A 2009-06-25 2010-06-16 Способ определения географических координат точек изображения на sar изображениях RU2531802C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009030672A DE102009030672B3 (de) 2009-06-25 2009-06-25 Verfahren zur Bestimmung der geographischen Koordinaten von Bildpunkten in SAR Bildern
DE102009030672.2 2009-06-25
PCT/DE2010/000683 WO2010149132A1 (de) 2009-06-25 2010-06-16 Verfahren zur bestimmung der geographischen koordinaten von bildpunkten in sar bildern

Publications (2)

Publication Number Publication Date
RU2012102304A RU2012102304A (ru) 2013-07-27
RU2531802C2 true RU2531802C2 (ru) 2014-10-27

Family

ID=42338967

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012102304/07A RU2531802C2 (ru) 2009-06-25 2010-06-16 Способ определения географических координат точек изображения на sar изображениях

Country Status (8)

Country Link
US (1) US9927513B2 (ru)
EP (1) EP2446298B1 (ru)
KR (1) KR20130004227A (ru)
BR (1) BRPI1014762A2 (ru)
DE (1) DE102009030672B3 (ru)
ES (1) ES2530264T3 (ru)
RU (1) RU2531802C2 (ru)
WO (1) WO2010149132A1 (ru)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20110526A1 (it) * 2011-06-15 2012-12-16 Thales Alenia Space Italia S P A C On Unico Socio Acquisizione di immagini sar per calcolare una quota o un modello digitale di elevazione tramite elaborazioni interferometriche
US9383429B2 (en) * 2012-10-17 2016-07-05 Raytheon Applied Signal Technology, Inc. System and method for determining geo location of a target using locus of emitter positions (LEP)
US9759802B2 (en) * 2013-09-24 2017-09-12 Raytheon Applied Signal Technology, Inc. System and method for determining geo location of a target using a cone coordinate system
US9600999B2 (en) 2014-05-21 2017-03-21 Universal City Studios Llc Amusement park element tracking system
WO2015192056A1 (en) 2014-06-13 2015-12-17 Urthecast Corp. Systems and methods for processing and providing terrestrial and/or space-based earth observation video
WO2016153914A1 (en) 2015-03-25 2016-09-29 King Abdulaziz City Of Science And Technology Apparatus and methods for synthetic aperture radar with digital beamforming
CN108432049B (zh) 2015-06-16 2020-12-29 阿卜杜拉阿齐兹国王科技城 有效平面相控阵列天线组件
CN105093222A (zh) * 2015-07-28 2015-11-25 中国测绘科学研究院 一种sar影像区域网平差连接点自动提取方法
CA3044806A1 (en) 2015-11-25 2017-06-01 Urthecast Corp. Synthetic aperture radar imaging apparatus and methods
KR102394240B1 (ko) * 2016-06-03 2022-05-04 도이췌스 첸트룸 퓌어 루프트-운트 라움파르트 에.파우. 합성 개구를 가지는 레이더를 이용하여 일 영역의 지면 관찰 이미지를 생성하기 위한 방법
EP3631504B8 (en) 2017-05-23 2023-08-16 Spacealpha Insights Corp. Synthetic aperture radar imaging apparatus and methods
WO2018217902A1 (en) 2017-05-23 2018-11-29 King Abdullah City Of Science And Technology Synthetic aperture radar imaging apparatus and methods for moving targets
EP3698167A4 (en) 2017-11-22 2021-11-17 Urthecast Corp. SYNTHETIC OPENING RADAR FORMING APPARATUS AND ASSOCIATED PROCESSES
US10467783B2 (en) 2018-02-23 2019-11-05 ExoAnalytic Solutions, Inc. Visualization interfaces for real-time identification, tracking, and prediction of space objects
US10402672B1 (en) 2018-02-23 2019-09-03 ExoAnalytic Solutions, Inc. Systems and synchronized visualization interfaces for tracking space objects
KR102028324B1 (ko) * 2019-02-26 2019-11-04 엘아이지넥스원 주식회사 영상 레이더의 영상 보정 방법 및 좌표 계산 방법
KR102028323B1 (ko) * 2019-02-26 2019-10-04 엘아이지넥스원 주식회사 영상 레이더의 영상 보정 장치 및 시스템
WO2020196308A1 (ja) * 2019-03-28 2020-10-01 日本電気株式会社 画像処理装置、画像処理方法及び画像処理用コンピュータプログラム
CN110133653B (zh) * 2019-05-29 2020-12-08 中国空间技术研究院 一种基于dsm数据的星载sar图像快速间接定位方法
AU2020319085B2 (en) 2019-07-25 2024-04-18 ExoAnalytic Solutions, Inc. Systems and visualization interfaces for orbital paths and path parameters of space objects
KR102381013B1 (ko) * 2020-08-20 2022-04-01 한국과학기술원 다중 정합 기반 실시간 영상항법 수행 방법, 장치 및 컴퓨터 프로그램
KR102530834B1 (ko) * 2020-11-24 2023-05-10 주식회사 에코센싱 영상레이다 영상의 측지좌표 추정 장치 및 방법
CN112684449B (zh) * 2021-03-22 2021-07-16 北京东方至远科技股份有限公司 基于sar技术的水域电力线弧垂反演方法和装置
CN113917418B (zh) * 2021-12-15 2022-02-22 中国科学院空天信息创新研究院 一种用于斜视星载sar地平面二维分辨率评估方法
CN117741622B (zh) * 2024-01-19 2024-06-04 哈尔滨集睿谱光电技术有限公司 一种Gm-APD激光雷达距离门自动调节方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245250B1 (en) * 2005-08-16 2007-07-17 Itt Manufacturing Enterprises, Inc. Synthetic aperture radar image compression
US7277042B1 (en) * 2006-05-12 2007-10-02 Raytheon Company Compensation of flight path deviation for spotlight SAR
RU2007141646A (ru) * 2005-04-11 2009-05-20 Навком Текнолоджи, Инк. (Us) Система определения местоположения с преднамеренным сигналом многолучевого распространения

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659318A (en) * 1996-05-31 1997-08-19 California Institute Of Technology Interferometric SAR processor for elevation
US6011505A (en) * 1996-07-11 2000-01-04 Science Applications International Corporation Terrain elevation measurement by interferometric synthetic aperture radar (IFSAR)
US7194389B2 (en) * 2003-03-25 2007-03-20 The United States Of America As Represented By The Secretary Of The Army Fusion of data from differing mathematical models
PT104798B (pt) * 2009-10-23 2018-12-31 Inst Politecnico De Beja Método gerador de cartas aeroportuárias de obstáculos baseado na fusão de dados de interferometria por radares de abertura sintética assentes em plataformas espaciais com outros dados captados por sensores remotos

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007141646A (ru) * 2005-04-11 2009-05-20 Навком Текнолоджи, Инк. (Us) Система определения местоположения с преднамеренным сигналом многолучевого распространения
US7245250B1 (en) * 2005-08-16 2007-07-17 Itt Manufacturing Enterprises, Inc. Synthetic aperture radar image compression
US7277042B1 (en) * 2006-05-12 2007-10-02 Raytheon Company Compensation of flight path deviation for spotlight SAR

Also Published As

Publication number Publication date
WO2010149132A1 (de) 2010-12-29
US20120133550A1 (en) 2012-05-31
KR20130004227A (ko) 2013-01-09
RU2012102304A (ru) 2013-07-27
BRPI1014762A2 (pt) 2016-04-19
US9927513B2 (en) 2018-03-27
EP2446298B1 (de) 2014-12-03
EP2446298A1 (de) 2012-05-02
DE102009030672B3 (de) 2010-08-19
ES2530264T3 (es) 2015-02-27

Similar Documents

Publication Publication Date Title
RU2531802C2 (ru) Способ определения географических координат точек изображения на sar изображениях
US9194954B2 (en) Method for geo-referencing an imaged area
GREJNER‐BRZEZINSKA Direct exterior orientation of airborne imagery with GPS/INS system: Performance analysis
EP2353024B1 (fr) Procede de geo-localisation d'un objet par multitelemetrie
EP3617749B1 (en) Method and arrangement for sourcing of location information, generating and updating maps representing the location
CN110108984B (zh) 电力巡线激光雷达系统多传感器的空间关系同步方法
EP2588882B1 (en) Method for producing a digital photo wherein at least some of the pixels comprise position information, and such a digital photo
EP2413097A2 (en) A method, tool, and device for determining the coordinates of points on a surface by means of an accelerometer and a camera
US9897445B2 (en) Target direction determination method and system
US20100295940A1 (en) Method and apparatus for determining distance
CN113311436A (zh) 一种移动平台上激光测风雷达运动姿态测风订正方法
De Oliveira et al. Assessment of radargrammetric DSMs from TerraSAR-X Stripmap images in a mountainous relief area of the Amazon region
US20230168387A1 (en) Measurement apparatus, measurement method and program
KR20030005749A (ko) 3차원 위치 측정 장치 및 그 방법
JP2012242318A (ja) 位置補正データ生成装置、位置標定装置、ユーザインタフェース装置、位置補正データ生成装置の位置補正データ生成方法、位置標定装置の位置標定方法、ユーザインタフェース装置の情報処理方法、位置補正データ生成プログラム、位置標定プログラムおよびユーザインタフェースプログラム
EP1662228A1 (en) Scanning of three-dimensional objects
Spore et al. Collection, processing, and accuracy of mobile terrestrial lidar survey data in the coastal environment
RU2406071C1 (ru) Способ навигации движущихся объектов
US20230136186A1 (en) Position measurement apparatus, positioning method and program
JP3503384B2 (ja) 地球形状計測装置
Tamimi et al. Performance Assessment of a Mini Mobile Mapping System: Iphone 14 pro Installed on a e-Scooter
Niu et al. Directly georeferencing terrestrial imagery using MEMS-based INS/GNSS integrated systems
Cramer et al. Data capture
KR200257148Y1 (ko) 3차원 위치 측정 장치
Patias et al. Robust pose estimation through visual/GNSS mixing

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190617