RU2526953C1 - Способ комплексного освоения месторождений бурого угля - Google Patents

Способ комплексного освоения месторождений бурого угля Download PDF

Info

Publication number
RU2526953C1
RU2526953C1 RU2013125154/03A RU2013125154A RU2526953C1 RU 2526953 C1 RU2526953 C1 RU 2526953C1 RU 2013125154/03 A RU2013125154/03 A RU 2013125154/03A RU 2013125154 A RU2013125154 A RU 2013125154A RU 2526953 C1 RU2526953 C1 RU 2526953C1
Authority
RU
Russia
Prior art keywords
coal
wells
filling
gasification
underground
Prior art date
Application number
RU2013125154/03A
Other languages
English (en)
Inventor
Николай Михайлович Качурин
Игорь Евгеньевич Зоркин
Александр Николаевич Качурин
Екатерина Константиновна Мосина
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тульский государственный университет" (ТулГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тульский государственный университет" (ТулГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тульский государственный университет" (ТулГУ)
Priority to RU2013125154/03A priority Critical patent/RU2526953C1/ru
Application granted granted Critical
Publication of RU2526953C1 publication Critical patent/RU2526953C1/ru

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение относится к горному делу и может быть использовано для комплексного освоения месторождений бурого угля. Технический результат заключается в обеспечении эффективного комплексного использования месторождений бурого угля и комплексной защите окружающей среды от воздействия технологического процесса. Способ комплексного освоения месторождений бурого угля включает деление месторождения на блоки, бурение дренажных скважин и подземную газификацию угля, растворение золошлаковых остатков угля и откачку продуктивного раствора на поверхность для последующей экстракции ценных компонентов, заполнение выработанного пространства блока закладочным материалом. Бурят 6 рядов вертикальных скважин, расположенных в блоке друг от друга на расстоянии 20…25 м, которые последовательно используют как дренажные, продуктивные для газификации угля, для растворения и извлечения золошлаковых остатков угля и для нагнетания закладочной смеси. В каждом ряду располагают 10…12 вертикальных скважин на расстоянии 15…20 м друг от друга. Откачивают подземную воду и через узел водоподготовки направляют к потребителю. Газ подземной газификации угля очищают от примесей в узле очистки энергетического газа и сжигают в локальной газовой электростанции. Образующийся диоксид углерода нагнетают в закладочный массив посредством узла аккумулирования, а продуктивный раствор очищают от твердых примесей и откачивают по трубопроводу к химико-технологическому узлу, связанному с закладочным комплексом посредством узла неутилизированных отходов. 1 ил., 2 табл.

Description

Изобретение относится к отрасли горного дела и может быть использовано для комплексного освоения месторождений бурого угля в тонких и средней мощности пластах, залегающих на малых глубинах в неустойчивых вмещающих породах.
Известен способ экологически чистой подземной газификации углей, заключающийся в бурении на участке газификации серии скважин, соединении дутьевых и газоотводящих скважин в единый подземный газогенератор с первоначальным реакционным каналом газификации путем розжига угольного пласта при помощи поперечной наклонно-горизонтальной и соединенных с ней вертикальных скважин, подготовке газоотводящих и эксплуатации дутьевых скважин в процессе осуществления газификации при контролировании давления в подземном газогенераторе и корректировке гидравлических режимов дутьевых и газоотводящих скважин, контролировании гидростатического уровня подземных вод и концентрации химических загрязнителей в подземных водах с помощью гидронаблюдательных и дренажных скважин и снижении гидростатического уровня подземных вод путем включения в работу вертикальных скважин, которые оборудуют к началу процесса газификации в качестве водоотливных, и дренажных скважин, при этом процесс газификации осуществляют последовательно в две стадии - нагнетательную при повышенном давлении в подземном газогенераторе и нагнетательно-отсосную при минимальном давлении в подземном газогенераторе, причем при повышении в гидронаблюдательных и/или дренажных скважинах концентрации химических загрязнителей в подземных водах в первой стадии процесса газификации повышают гидростатический уровень подземных вод путем отключения водоотливных и дренажных скважин, а во второй стадии процесса газификации увеличивают производительность водоотливных скважин и дымососов на газоотводящих скважинах, при этом отобранные водоотливными и дренажными скважинами подземные воды подвергают очистке в поверхностном комплексе от химических загрязнителей.
При этом первую стадию процесса газификации осуществляют при повышенном давлении в подземном газогенераторе, равном примерно давлению существующего гидростатического столба подземных вод на участке газификации, для чего фиксируют гидростатический уровень подземных вод над первоначальным реакционным каналом газификации, контролируют в ходе выгазовывания угля снижение этого уровня с помощью гидронаблюдательных и дренажных скважин и соответственно снижают давление на дутьевых скважинах до 0,2÷0,3 МПа, затем переходят ко второй стадии процесса газификации при минимальном давлении в подземном газогенераторе, для чего фиксируют статическое давление в подземном газогенераторе.
До начала процесса газификации по боковым границам подземного газогенератора бурят заградительные направленные скважины по угольному пласту, соединяют их с вертикальными скважинами и осуществляют огневую проработку угольной части заградительных направленных скважин путем противоточного перемещения очага горения нагнетанием в них дутья, а для снижения гидростатического уровня подземных вод в процессе газификации их отбор проводят из заградительных направленных скважин через вертикальные скважины, оборудованные к началу процесса газификации в качестве водоотливных.
В гидронаблюдательных и дренажных скважинах фиксируют гидростатические уровни подземных вод на участке газификации и по ним строят эпюры депрессионной воронки над подземным газогенератором и рядом с ним, затем используют эти эпюры для корректировки гидравлических режимов дутьевых и газоотводящих скважин, а также для определения моментов включения или отключения дренажных и водоотливных скважин.
После окончания процесса газификации при наличии остаточной концентрации химических загрязнителей в подземных водах отработанного пространства подземного газогенератора, превышающей предельно допустимые значения, производят в нем очистку подземных вод с использованием биологического метода разложения и нейтрализации загрязнителей (патент РФ №2360106, МПК7 E21B 43/295, опубликован 26.06.2008 г., Карасевич A.M., Крейнин Е.В., Дворникова Е.В. и др. Способ экологически чистой подземной газификации углей).
Данный способ экологически чистой газификации углей имеет следующие недостатки:
1. Данное техническое решение ограничивается только обеспечением получения результата, выражающегося в выявлении комплексной и универсальной минимизации миграции продуктов газификации из подземного газогенератора и существенного сокращения возможности загрязнения подземных вод.
2. Предлагаемый способ не предусматривает глубокой переработки угля в условиях естественного подземного залегания.
3. Не рассматривается возможность получения электроэнергии в едином геотехнологическом комплексе.
Известен способ получения электроэнергии при бесшахтной углегазификации и подземном углесжигании, включающий газификацию и/или сжигание угля в массиве и отвод генераторного газа на газовую турбину с электрогенератором одновременно с газификацией и/или подземным сжиганием на одних эксплуатируемых участках-панелях угольного массива, на других близлежащих панелях осуществляют дегазацию с отсосом метана, при этом полученный в результате метан смешивают с генераторным газом перед подачей на газовую турбину, а панели угольного массива последовательно подвергают сначала дегазации, а затем газификации. При этом тепло генераторного газа, полученное от его охлаждения после вывода из угольного массива, отводят на паровую турбину и осуществляют выработку электроэнергии по комбинированному циклу с использованием газовой и паровой турбин, работающих на один электрогенератор. В массив угля бурят скважины с поверхности и используют их сначала как дегазационные для отсоса метана, а затем для подачи дутья в огневой забой подземного газогенератора и отвода генераторного газа. Дегазации и газификации подвергают некондиционные запасы угля для повышения степени использования угольных месторождений как источника невозобновляемой энергии (патент РФ №2100588, МПК7 E21B 43/295, опубликован 31.10.1995 г., Васючков Ю.Ф., Воробьев Б.М. Способ получения электроэнергии при бесшахтной углегазификации и подземном углесжигании).
Недостатками данного способа являются следующие особенности технологического процесса:
1. Необходимость наличия метана в угле.
2. Оставление зольного остатка, образующегося при подземной газификации угля в выработанном пространстве, без дальнейшего извлечения.
3. Сложность практической реализации при отработке месторождений бурого угля в тонких и средней мощности пластах, залегающих на малых глубинах в неустойчивых вмещающих породах.
Наиболее близким к предлагаемому решению является способ комплексного освоения угольного месторождения, включающий деление месторождения на блоки, бурение дегазационных и дренажных скважин, предварительную дегазацию угольных пластов и подземную газификацию угля с выдачей на поверхность продуктов дегазации пластов и газификации угля, после выгорания угля в блоке его золошлаковые остатки и термально метаморфизованные породы обрабатывают водным раствором реагентов, которые подбирают в зависимости от извлекаемого компонента, продуктивный раствор откачивают на поверхность для последующей экстракции ценных и/или токсичных компонентов, причем токсичные компоненты после экстракции направляют на рециклинг, на заключительной стадии выработанное пространство блока заполняют закладочным материалом (патент РФ №2370643, МПК E21B 43/295, E21F 7/00, опубликован 20.10.2009, Кузнецова Л.В., Нифантов Б.Ф, Анферов Б.А. Способ комплексного освоения угольного месторождения).
Недостатки прототипа предлагаемого технического решения заключаются в следующем:
1. Дегазация угольных пластов при отработке месторождений бурого угля является излишней, т.к. эти угли, как правило, не содержат метана.
2. Не предусматривается очистка энергетического газа, полученного при подземной газификации, от токсичных компонентов.
3. Не предусматривается извлечение ценных компонентов и токсичных веществ из конденсата, образующегося в энергетическом газе в процессе перемещения по трубопроводам.
4. Тепловая энергия нагретого энергетического газа не используется.
5. При газификации угля конечным продуктом является энергетический газ, а не электроэнергия.
6. Предлагаемая технологическая схема подготовки и отработки месторождения огневым способом возможна только при горении и газификации угля в свободном канале, а при газификации бурых углей в рыхлых породах процесса осуществляется в фильтрационном канале.
7. Применение обычного закладочного материала при закладке выработанного пространства не обеспечивает требуемой плотности закладочного массива и герметизации выработанного пространства от подземных вод.
Задача изобретения заключается в обеспечении эффективного комплексного использования месторождений тонких и средней мощности пластов бурого угля, залегающих на глубинах 30... 100 м от земной поверхности в неустойчивых горных породах, и комплексной защите окружающей среды от воздействия технологического процесса.
Решение поставленной задачи достигается тем, что в известном способе комплексного освоения угольного месторождения, включающем деление месторождения на блоки, бурение дренажных скважин и подземную газификацию угля, растворение золошлаковых остатков угля и откачку продуктивного раствора на поверхность для последующей экстракции ценных компонентов, заполнение выработанного пространства блока закладочным материалом, бурят 6 рядов вертикальных скважин, расположенных в блоке друг от друга на расстоянии 20…25 м, которые последовательно используют как дренажные, продуктивные для газификации угля, для растворения и извлечения золошлаковых остатков угля и для нагнетания закладочной смеси, в каждом ряду располагают 10…12 вертикальных скважин на расстоянии 15…20 м друг от друга, откачивают подземную воду и через узел водоподготовки направляют к потребителю, газ подземной газификации угля очищают от примесей в узле очистки энергетического газа и сжигают в локальной газовой электростанции, образующийся диоксид углерода нагнетают в закладочный массив посредством узла аккумулирования, а продуктивный раствор очищают от твердых примесей и откачивают по трубопроводу к химико-технологическому узлу, связанному с закладочным комплексом посредством узла неутилизированных отходов.
Предлагаемое техническое решение иллюстрируется схемой, представленной на фиг.1.
Схема реализации способа комплексного освоения месторождений бурого угля содержит ряд дренажных скважин 1, ряд продуктивных скважин 2 газификации угля, ряд нагнетательных скважин 3 для воздуха, ряд нагнетательных скважин 4 для растворителя золошлаковых остатков угля, ряд скважин 5 для откачки продуктивного раствора на поверхность, ряд скважин 6 для заполнения выработанного пространства блока закладочным материалом. Ряды скважин в блоке расположены друг от друга на расстоянии 20…25 м. В каждом ряду располагают 10…12 вертикальных скважин на расстоянии 15…20 м друг от друга. Ряд дренажных скважин 1 подключен к водоводу 7, который соединен с узлом водоподготовки 8. Ряд продуктивных скважин 2 газификации угля подключают к газопроводу 9, соединенному с дымососом 10, который подключен к узлу очистки энергетического газа 11, установленному перед локальной газовой электростанцией 12. Ряд скважин 5 для откачки продуктивного раствора на поверхность подключен к трубопроводу 13, направленному к химико-технологическому узлу 14. Узел аккумулирования 15 диоксида углерода соединен с узлом очистки энергетического газа 11 и локальной газовой электростанцией 12. Узел водоподготовки 8, узел очистки энергетического газа 11, химико-технологический узел 14 связаны с входами узла неутилизируемых отходов 16. Узел неутилизируемых отходов 16 и узел аккумулирования диоксида углерода 15 соединены с закладочным комплексом 17.
Для реализации предлагаемого способа комплексного освоения месторождений бурого угля в рабочем блоке месторождения бурят ряд дренажных скважин 1, ряд продуктивных скважин 2 газификации угля, ряд нагнетательных скважин 3 для воздуха, через которые осуществляют осушение рабочего блока месторождения. Затем повышают газовую проницаемость угольного пласта 18, осуществляя подачу нагретого воздуха в ряд нагнетательных скважин 3 для воздуха и удаляют воздух, фильтрующийся по угольному пласту через ряд продуктивных скважин 2 газификации угля. А осушение рабочего блока месторождения продолжают осуществлять через ряд дренажных скважин 1. Розжиг угольного пласта 18 производят в ряду нагнетательных скважин 3 для воздуха и подают под давлением воздух, добавляя в него парокислородную смесь и формируя линию огневого забоя 19. За линией огневого забоя 19 образуется выгазованное пространство 20, заполненное золошлаковыми остатками угля. При переходе огневым забоем 19 ряда продуктивных скважин 2 газификации угля проводят их переключение и делают рядом нагнетательных скважин для воздуха, а ближайший ряд дренажных скважин 1 превращают в ряд продуктивных скважин 2 газификации угля. Для продолжения процесса осушения рабочего блока месторождения бурят новый ряд дренажных скважин 1. Ряд нагнетательных скважин 3 для воздуха превращают в ряд нагнетательных скважин 4 для растворителя золошлаковых остатков угля, через которые закачивают жидкие смеси, растворяющие золошлаковые остатки угля в выгазованном пространстве 20. По мере подвигания огневого забоя 19 ряд нагнетательных скважин 4 для растворителя золошлаковых остатков угля превращают в ряд скважин 5 для откачки продуктивного раствора на поверхность. После удаления раствора золошлаковых остатков угля из выгазованного пространства ряд скважин 5 для откачки продуктивного раствора на поверхность превращают в ряд скважин 6 для заполнения выработанного пространства блока закладочным материалом. Этот ряд скважин 6 подключают к закладочному комплексу и нагнетают твердеющие закладочные смеси, в составе которых находятся неутилизированные отходы отходов технологического процесса и других промышленных предприятий. Затем в твердеющий закладочный массив нагнетают диоксид углерода и осуществляют процесс карбонизации закладочного массива, повышая его плотность и утилизируя диоксид углерода. Затем производят тампонирование этого ряда скважин. Таким образом, сохраняют почвенный слой в пределах горного отвода и существенно снижают воздействие на окружающую среду. Откачиваемую подземную воду перерабатывают в питьевую воду в узле водоподготовки 8. Газ подземной газификации угля откачивают дымососом 10, очищают от токсичных пылегазовых примесей в узле очистки энергетического газа 11 и используют для получения электроэнергии, сжигая в локальной газовой электростанцией 12. Продуктивный раствор, содержащий золошлаковые остатки угля, доставляют на химико-технологический узел 14. Диоксид углерода, образующийся при горении угля и энергетического газа, направляют из узла очистки энергетического газа 11 и локальной газовой электростанцией 12 в узел аккумулирования 15 диоксида углерода. Узел неутилизируемых отходов 16 и узел аккумулирования 15 диоксида углерода соединены с закладочным комплексом 17, формирующим закладочный массив в выработанном пространстве отрабатываемого рабочего блока месторождения бурого угля. Питьевую воду от узла водоподготовки 8, электроэнергию от локальной газовой электростанции 12 и продукты экстракции ценных компонентов от химико-технологического узла 14 направляют потребителям.
Уравнения, которые описывают нестационарное поле температур угольного пласта и вмещающих пород при предлагаемой технологической схеме комплексного освоения месторождений бурого угля в рабочем блоке месторождения, на этапе подземной газификации угля имеют следующий вид (Пучков Л.А., Качурин Н.М., Рябов Г.Г., Абрамкин Н.И. Комплексное освоение буроугольных месторождений. - М.: Издательство «Горная книга». - 2006. - 289 с.):
ρ y C y t T ( x , t ) = λ y 2 x 2 T ( x , t ) i = 1 2 λ П i 2 y 2 T i ( x , y i , t ) | y i = 0 ρ y V C y x T ( x , t ) ;                                                                      ( 1 )
Figure 00000001
ρ П i C П i λ П i t T i ( x i , y i , t ) = 2 y i 2 T i ( x i , y i , t ) = = 2 y i 2 T ( x i , y i , t ) + 2 x i 2 T ( x i , y i , t ) , i = 1,2 ; ( 2 )
Figure 00000002
;
T ( x ,0 ) = T i ( x , y i ,0 ) = T 0 = c o n s t ; ( 3 )
Figure 00000003
T i ( x ,0, t ) = T ( x , t ) ; ( 4 )
Figure 00000004
λ y x T ( 0, t ) = q K 0 1 П . C . C ( 0, t ) exp [ E R T ( 0, t ) ] , ( 5 )
Figure 00000005
где K0 - предэкспоненциальный множитель, 1/c; E - энергия активации, Дж/моль; R - универсальная газовая постоянная, Дж/моль·K; λy - теплопроводность термически подготовленного угля, Вт/м·К; Cy - теплоемкость термически подготовленного угля, Дж/кг·К; λПi - теплопроводность вмещающих пород (индекс i=l относится к породам кровли, i=2 к породам почвы), Вт/м·К; Ti(x,yi,t) - функция, описывающая поле температур во вмещающих породах, K; ρг - плотность газообразных продуктов горения, кг/м; V - скорость фильтрации, м/с; Сг - теплоемкость газообразных продуктов горения, Дж/кг·К.
Численная реализация математической модели (1)-(5) позволила определить расстояние между рядами нагнетательных и всасывающих скважин, при котором обеспечивается устойчивое подземное горение и газификация угля в огневом забое. Это расстояние составляет 25…30 м. Учитывая возможные отклонения, обусловленные принятыми допущениями, целесообразно принять расстояние между рядами нагнетательных и всасывающих скважин 20…25 м. Такое расстояние обеспечит эффективную работу газогенератора. Соответственно, расстояние между рядами и других скважин будет равно 20…25 м.
Модуль вектора фильтрации воздуха определяется по известной формуле (Пучков Л.А., Качурин Н.М., Рябов Г.Г., Абрамкин Н.И. Комплексное освоение буроугольных месторождений. - М.: Издательство «Горная книга». - 2006. - 289 с.):
V = ( ρ 0 ) 1 ( V x 2 + V y 2 + V z 2 ) 0,5 , ( 6 )
Figure 00000006
где
ρ 0 V x = q 1 2 π n = 1 N [ x 2 σ ( n 1 ) ] [ ( S 1 n ) 1 ( S 2 n ) 1 ] 1 2 π n = 1 N q 2 n [ x 2 σ ( n 1 ) ] [ ( S 3 n ) 1 ( S 4 n ) 1 ]
Figure 00000007
;
ρ 0 V y = q 1 2 π n = 1 N ( y h ) [ ( S 1 n ) 1 ( S 2 n ) 1 ] 1 2 π n = 1 N q 2 n ( y + h ) [ ( S 3 n ) 1 ( S 4 n ) 1 ]
Figure 00000008
;
ρ 0 V z = q 1 2 π n = 1 N [ ( z h ) ( S 1 n ) 1 ( z + H ) ( S 2 n ) 1 ] 1 2 π n = 1 N q 2 n [ ( z H ) ( S 3 n ) 1 ( z + H ) ( S 4 n ) 1 ]
Figure 00000009
;
S 1 n = ( x 2 σ ( n 1 ) ) 2 + ( y h ) 2 + ( z H ) 2
Figure 00000010
;
S 2 n = ( x 2 σ ( n 1 ) ) 2 + ( y h ) 2 + ( z + H ) 2
Figure 00000011
;
S 3 n = ( x 2 σ ( n 1 ) ) 2 + ( y + h ) 2 + ( z H ) 2
Figure 00000012
;
S 4 n = ( x 2 σ ( n 1 ) ) 2 + ( y + h ) 2 + ( z + H ) 2
Figure 00000013
;
H - глубина залегания разрабатываемого угольного пласта, м; q1, q2n - мощность стоков и источников, на единицу длины скважины, Н/м·с; N - число скважин.
Расчет по формуле (6) позволил определить минимальные скорости фильтрации Vmin в плоскости угольного пласта в зависимости от соотношения линейных размеров сетки скважин и числа скважин в ряду. Установлено, что оптимальной по критерию Vmin→max является количество нагнетательных сеток скважин, равное 10…12 при расстоянии между нагнетательными скважинами 15…20 м.
Технологические процессы водоподготовки и получения питьевой воды, производство электроэнергии путем сжигания энергетического газа в газотурбинных или газопоршневых электростанциях, а также получение ценных компонентов путем экстракции соответствующих растворов общеизвестны.
Закладочные смеси, в которых в качестве инертного наполнителя используют неутилизируемые отходы и, например, магнезиальные вяжущие компоненты или же цементные растворы после твердения формируют прочный закладочный массив. Диоксид углерода нагнетается в закладочный массив для повышения его прочности и для повышения коррозийной стойкости в результате процесса карбонизации (Ратинов В.Б., Иванов Ф.М. Химия в строительстве. - М.: Стройиздат.- 1977. - С 110.). Процесс карбонизации закладочного массива увеличивает плотность закладочного материала в результате его взаимодействия с диоксидом углерода (углекислым газом, который является «парниковым» газом). Химическая реакция этого взаимодействия имеет вид: Ca(OH)2+CO2=CaCO3+H2O.
Примеры практической апробации
Лабораторная апробация. Лабораторная апробация предлагаемого способа осуществлена на физической модели участка угольного пласта в соответствии со схемой, представленной на фиг.1. Лабораторные испытания проведены с целью оценки устойчивости горения в огневом забое фильтрационного канала газифицируемого угля и количественного определения тепловых характеристик процесса газификации. Испытания проведены на 3 моделях рассматриваемой схемы газификации при различных расходах воздуха, поступавшего в нагнетательные скважины. Пересчет на натурные условия газификации показал, что устойчивое горение имеет место при температуре огневого забоя на уровне 550…700°C. В целом лабораторные испытания подтвердили эффективность предлагаемого технического решения.
Практическая апробация способа комплексного освоения месторождений бурого угля осуществлялась на ш. «Киреевская - З» ОАО «Мосбасс-уголь». В качестве объекта газификации был использован предохранительный целик в околоствольном дворе. Предохранительный целик залегал на глубине 65 м в неустойчивых горных породах. Было осуществлено осушение горных выработок околоствольного двора. При этом исследования показали, что подземную воду после соответствующей обработки можно использовать в качестве питьевой воды. Целик был оконтурен горными выработками. После розжига угля и подачи дутья в нагнетательные скважины газогенератор вышел на устойчивый режим работы в течение 8 суток. В целом генератор действовал в течение 8 месяцев, в том числе и в холодный период года.
Общие характеристики энергетического газа представлены в таблице 1.
Таблица 1
Состав энергетического газа при работе подземного газогенератора
Концентрации газовых компонент в энергетическом газе, %
CO2 O2 H2S CnHm CO H2 CH4 N2
12-17 0,2-0,3 0,6-1,4 0,2 6-15 14-15 1,5-2 56-58,6
Низшая теплотворная способность полученного энергетического газа при работе газогенераторов на воздушном дутье: 3360-4200 кДж/м3. Подача парокислородного дутья повышала теплотворную способность энергетического газа на 45…80%. То есть целесообразно использовать газотурбинную локальную электростанцию.
Таблица 2
Результаты химического анализа зольного остатка угля Подмосковного бассейна
Элемент Символ Содержание, мг/г Метод анализа
1 2 3 4
Литий Li 98 АЭ, МС
Бериллий Be 2,6 МС
Скандий Sc 10 МС
Ванадий V 110 АЭ
Хром Cr 70 АЭ, МС
Кобальт Co 11 АЭ, МС
Никель Ni 30 АЭ, МС
Медь Cu 15 АЭ, МС
Цинк Zn 85 АЭ, МС
Галлий Ga 22 МС
Мышьяк As 2,4 МС
Селен Se 6,5 МС
Рубидий Rb 26 МС
Стронций Sr 42 АЭ, МС
Иттрий Y 57 МС
Цирконий Zr 350 МС
Ниобий Nb 28 МС
Молибден Mo 2,0 МС
Родий Rh 0,008 МС
Палладий Pd 0,1 МС
Серебро Ag 0,5 МС
Кадмий Cd 0,57 АЭ, МС
Олово Sn 7,1 МС
Сурьма Sb 1,1 МС
Теллур Te 0,16 МС
Цезий Cs 1,7 МС
Барий Ba 93 АЭ, МС
Лантан La 84 МС
Церий Ce 200 МС
Празеодим Pr 16 МС
Неодим Nd 56 МС
Самарий Sm 9,0 МС
Европий Eu 1,8 МС
Гадолиний Gd 11 МС
Тербий Tb 1,5 МС
Диспрозий Dy 8,4 МС
Гольмий Ho 1,7 МС
Продолжение табл.2
1 2 3 4
Эрбий Er 4,7 MC
Тулий Tm 0,63 MC
Иттербий Yb 4,0 MC
Лютеций Lu 0,59 MC
Гафний Hf 5,6 MC
Тантал Ta 2,2 MC
Вольфрам W 4,7 MC
Рений Re 0,001 MC
Иридий Ir 0,01 MC
Платина Pt 0,7 MC
Золото Au 0,1 MC
Ртуть Hg 0,5 MC
Таллий Tl 0,32 MC
Свинец Pb 41 АЭ.МС
Висмут Bi 1,5 MC
Торий Th 27 MC
Уран U 7,0 MC
Примечание: АЭ - атомно-адсорбционная электроноскопия; MC - масс-спектрометрия.
Для растворения зольного остатка угля могут быть использованы известные физико-химические геотехнологии. Результаты химического анализа зольного остатка угля Подмосковного бассейна показали наличие различных металлов, представляющих практический интерес (таблица 2). До стадии закладочных работ натурный эксперимент не был доведен, хотя с технологической точки зрения это хорошо отработанный процесс и затруднений не вызывает, как и реализация процесса карбонизации закладочного массива. В целом результаты наблюдений показали, что предлагаемые технологические параметры позволяют обеспечить эффективное комплексное использование месторождений тонких и средней мощности пластов бурого угля, залегающих на глубинах 30…100 м от земной поверхности в неустойчивых горных породах, и комплексную защиту окружающей среды от воздействия технологического процесса.

Claims (1)

  1. Способ комплексного освоения месторождений бурого угля, включающий деление месторождения на блоки, бурение дренажных скважин и подземную газификацию угля, растворение золошлаковых остатков угля и откачку продуктивного раствора на поверхность для последующей экстракции ценных компонентов, заполнение выработанного пространства блока закладочным материалом, отличающийся тем, что бурят 6 рядов вертикальных скважин, расположенных в блоке друг от друга на расстоянии 20…25 м, которые последовательно используют как дренажные, продуктивные для газификации угля, для растворения и извлечения золошлаковых остатков угля и для нагнетания закладочной смеси, в каждом ряду располагают 10…12 вертикальных скважин на расстоянии 15…20 м друг от друга, откачивают подземную воду и через узел водоподготовки направляют к потребителю, газ подземной газификации угля очищают от примесей в узле очистки энергетического газа и сжигают в локальной газовой электростанции, образующийся диоксид углерода нагнетают в закладочный массив посредством узла аккумулирования, а продуктивный раствор очищают от твердых примесей и откачивают по трубопроводу к химико-технологическому узлу, связанному с закладочным комплексом посредством узла неутилизированных отходов.
RU2013125154/03A 2013-05-31 2013-05-31 Способ комплексного освоения месторождений бурого угля RU2526953C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013125154/03A RU2526953C1 (ru) 2013-05-31 2013-05-31 Способ комплексного освоения месторождений бурого угля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013125154/03A RU2526953C1 (ru) 2013-05-31 2013-05-31 Способ комплексного освоения месторождений бурого угля

Publications (1)

Publication Number Publication Date
RU2526953C1 true RU2526953C1 (ru) 2014-08-27

Family

ID=51456309

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013125154/03A RU2526953C1 (ru) 2013-05-31 2013-05-31 Способ комплексного освоения месторождений бурого угля

Country Status (1)

Country Link
RU (1) RU2526953C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104695933A (zh) * 2015-02-13 2015-06-10 新奥气化采煤有限公司 一种基于分支井的煤层气化方法及煤层气化炉
CN107269256A (zh) * 2017-08-07 2017-10-20 新疆国利衡清洁能源科技有限公司 煤炭地下气化填充井口装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393934A (en) * 1981-08-25 1983-07-19 Mobil Oil Corporation Conditioning a coal seam prior to in-situ gasification
SU1634785A1 (ru) * 1989-03-03 1991-03-15 Химико-металлургический институт АН КазССР Способ добычи угл
SU1643708A1 (ru) * 1989-03-20 1991-04-23 Государственный Проектный Институт "Донгипрошахт" Способ подготовки и газификации обводненных пологих угольных пластов
SU1647124A1 (ru) * 1989-04-18 1991-05-07 Б.И Кондырев. М.И.Звонарев и В.И.Рухмаков Способ подземной газификации угл
RU2100588C1 (ru) * 1995-10-31 1997-12-27 Васючков Юрий Федорович Способ получения электроэнергии при бесшахтной углегазификации и/или подземном углесжигании
RU2370643C1 (ru) * 2008-04-14 2009-10-20 Институт угля и углехимии Сибирского отделения Российской Академии Наук (ИУУ СО РАН) Способ комплексного освоения угольного месторождения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393934A (en) * 1981-08-25 1983-07-19 Mobil Oil Corporation Conditioning a coal seam prior to in-situ gasification
SU1634785A1 (ru) * 1989-03-03 1991-03-15 Химико-металлургический институт АН КазССР Способ добычи угл
SU1643708A1 (ru) * 1989-03-20 1991-04-23 Государственный Проектный Институт "Донгипрошахт" Способ подготовки и газификации обводненных пологих угольных пластов
SU1647124A1 (ru) * 1989-04-18 1991-05-07 Б.И Кондырев. М.И.Звонарев и В.И.Рухмаков Способ подземной газификации угл
RU2100588C1 (ru) * 1995-10-31 1997-12-27 Васючков Юрий Федорович Способ получения электроэнергии при бесшахтной углегазификации и/или подземном углесжигании
RU2370643C1 (ru) * 2008-04-14 2009-10-20 Институт угля и углехимии Сибирского отделения Российской Академии Наук (ИУУ СО РАН) Способ комплексного освоения угольного месторождения

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104695933A (zh) * 2015-02-13 2015-06-10 新奥气化采煤有限公司 一种基于分支井的煤层气化方法及煤层气化炉
CN104695933B (zh) * 2015-02-13 2017-11-03 新奥科技发展有限公司 一种基于分支井的煤层气化方法及煤层气化炉
CN107269256A (zh) * 2017-08-07 2017-10-20 新疆国利衡清洁能源科技有限公司 煤炭地下气化填充井口装置

Similar Documents

Publication Publication Date Title
RU2263774C2 (ru) Способ получения углеводородов из богатой органическими соединениями породы
CN105003237B (zh) 地热开采天然气水合物与co2废气回注处理一体化的装置及方法
US3794116A (en) Situ coal bed gasification
US6193881B1 (en) In-situ chemical reactor for recovery of metals or purification of salts
JP5214459B2 (ja) 溶液採鉱システム及び炭化水素含有地層の処理方法
RU2443857C1 (ru) Способ производства водорода при подземной газификации угля
CN106522914B (zh) 用于煤炭地下气化工艺的地下气化炉停车及燃空区复原处理方法
US20140144640A1 (en) Method of gas and oil production from shale, oil sands and biomass using proppants and well safety options
RU2322586C2 (ru) Способ извлечения метана из пластов угольных месторождений
RU2526953C1 (ru) Способ комплексного освоения месторождений бурого угля
US4117886A (en) Oil shale retorting and off-gas purification
US20150192002A1 (en) Method of recovering hydrocarbons from carbonate and shale formations
Zyrin et al. Ecology safety technologies of unconventional oil reserves recovery for sustainable oil and gas industry development
JP2023024948A (ja) 再生可能エネルギー源を使用して恒常的に二酸化炭素を隔離するためのシステム及び方法
RU2359116C1 (ru) Способ экологически чистой подземной газификации глубокозалегающих углей
Dychkovskyi et al. Characteristic of possible obtained products during the well underground coal gasification
Brown In situ coal gasification: An emerging technology
RU2547847C1 (ru) Способ разработки сланцевых нефтегазоносных залежей и технологический комплекс оборудования для его осуществления
RU2543235C2 (ru) Способ разработки сланцевых месторождений
RU2656289C1 (ru) Технологический комплекс по переработке рассола при сооружении подземных хранилищ газообразных и жидких продуктов в отложениях каменной соли
CN114324550B (zh) 一种煤型关键金属矿产原位开发的方法
RU2370643C1 (ru) Способ комплексного освоения угольного месторождения
CN109882145A (zh) 煤型铀矿床无井式流态化开采方法
WO2015095926A1 (en) A method, a system and an apparatus for in situ processing of an oil shale formation
CN111980710A (zh) 带有脱硫系统的可循环连续的天然气水合物开采装置及开采方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150601